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A NOTE ON VARIOUS TYPES OF CONES

AND FIXED POINT RESULTS IN CONE METRIC SPACES

ZORAN KADELBURG AND STOJAN RADENOVIĆ

Abstract. Various types of cones in topological vector spaces are discussed.

In particular, the usage of (non)-solid and (non)-normal cones in fixed point

results is presented. A recent result about normable cones is shown to be
wrong. Finally, a Geraghty-type fixed point result in spaces with cones which

are either solid or normal is obtained.

1. Introduction

The usage of cones in vector spaces and their connection with order relations
is a standard algebraic procedure. Ordered Banach and, later, topological vector
spaces have been used since 1940’s (see [18, 19] and [25, 27]).

The idea to use an ordered normed space instead of the set of real numbers as the
codomain of a metric goes back to 1934 (-D. Kurepa [20], see also [22]). Later, such
spaces were called K-metric spaces and used to obtain several results, including
fixed point ones (see a survey in [28]).
K-metric spaces (sometimes also called abstract metric spaces) were re-introduced

in 2007 by L.G. Huang and X. Zhang [12] under the name of cone metric spaces. A
novelty was the use of a relation � which could be defined under the supposition
that the underlying cone had a nonempty interior (such cones are usually called
solid). Thus, convergent sequences and completeness could be defined in a new
way. Later, these definitions were extended for tvs-cone valued cone metric spaces
in [5] (see also [8, 14]).

It should be noted that each cone metric space over a solid cone is metrizable,
as was shown by various methods in [2, 3, 6, 8, 10, 15, 17]. However, not all fixed
point results can be reduced in this way to their standard metric counterparts, so
this line of investigation is still open (see, e.g., the recent paper [16]).

In [12], the underlying cones were supposed to be normal (see definition in the
next section). It was shown in [24] that such assumption is usually not necessary.
Hence, further, a lot of authors obtained (common) fixed point results for nonnormal
solid cones (see a survey of these results until 2011 in [13]).

M. Asadi et al. [4] tried to prove that each cone in a Banach space can, by re-
norming of the space, become normal with the normal constant equal to 1 (such
cones are usually called monotone). We will show in Section 3 of this paper that
their Theorem 2.1 contradicts some well known results and must be wrong.
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Solidness of the cone is an important assumption since without it interior points
cannot be used to introduce convergence and no natural corresponding topology
can be defined. Nevertheless, some results in the case when the cone is not solid
were obtained by Kunze et al. in [21]. However, their approach is quite restrictive
since rather strong assumptions (separability and reflexivity of the space) are used.
Since there are a lot of examples of non-solid cones in spaces that do not satisfy
these assumptions, a corresponding theory would be welcome.

In Section 4 of this paper we present a Geraghty-type fixed point result using
cones which are either solid or normal. Thus, we generalize a result from [2], since
we do not use dual bases of the cones.

2. Preliminaries

Let E be a real Hausdorff topological vector space (tvs for short) with the zero
vector θ. A proper nonempty and closed subset K of E is called a cone if K+K ⊂
K,λK ⊂ K for λ ≥ 0 and K ∩ (−K) = {θ}. If the cone K has a nonempty interior
intK then it is called solid .

Example 2.1. The easiest examples of solid cones are {x = (xi)
n
i=1 ∈ Rn : xi ≥

0, i = 1, . . . , n} and {x ∈ C[a, b] : x(t) ≥ 0, a ≤ t ≤ b}.
On the other hand, similarly defined cones in many important spaces of func-

tional analysis have empty interiors. These are, for example, c0, lp (p > 0), Lp

(p > 0) [1, 7, 27].

Each cone K induces a partial order � on E by x � y ⇔ y − x ∈ K. x ≺ y
will stand for (x � y and x 6= y). In the case when the cone K is solid, x� y will
stand for y − x ∈ intK. The pair (E,K) is an ordered topological vector space.

For a pair of elements x, y in E such that x � y, put [x, y] = {z ∈ E : x � z � y}.
A subset A of E is said to be order-convex if [x, y] ⊂ A, whenever x, y ∈ A and
x � y. Ordered topological vector space (E,K) is order-convex if it has a base of
neighborhoods of θ consisting of order-convex subsets. In this case, the cone K is
said to be normal.

If E is a normed space, the last condition means that the unit ball is order-
convex, which is equivalent to the condition that there is a number k such that
x, y ∈ E and 0 � x � y implies that ‖x‖ ≤ k‖y‖. The minimal such constant k is
called the normal constant of K. Obviously, the normal constant is always greater
or equal to 1. In the case when k = 1, i.e., when 0 � x � y implies that ‖x‖ ≤ ‖y‖,
the cone is called monotone.

The next lemma contains a result on cones in ordered Banach spaces that is
rather old (1940, see [18]). It is interesting that most authors (working with normal
cones after 2007) do not use this result, which can be applied to reduce a lot of
results to the setting of ordinary metric spaces.

Lemma 2.2. [18] The following conditions are equivalent for a cone K in the
Banach space (E, ‖ · ‖):

(1) K is normal;
(2) for arbitrary sequences {xn}, {yn}, {zn} in E,

(2.1) (∀n) xn � yn � zn and lim
n→∞

xn = lim
n→∞

zn = x imply lim
n→∞

yn = x;

(3) there exists a norm ‖ · ‖1 on E, equivalent to the given norm ‖ · ‖, such that
the cone K is monotone w.r.t. ‖ · ‖1.
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Proof of this important lemma can be found, e.g., in [1, 7, 26, 27].

Example 2.3. [26] Let E = C1
R[0, 1], with ‖x‖ = ‖x‖∞ + ‖x′‖∞, K = {x ∈ E :

x(t) ≥ 0, t ∈ [0, 1]}. This cone is solid but non-normal. Consider, for example,

xn(t) = tn

n and yn(t) = 1
n . Then θ � xn � yn, and limn→∞ yn = θ, but ‖xn‖ =

maxt∈[0,1]

∣∣ tn
n

∣∣ + maxt∈[0,1] |tn−1| = 1
n + 1 > 1; hence {xn} does not converge to

zero. It follows that K is a non-normal cone.
Now consider the set E = C1

R[0, 1] endowed with the strongest locally convex
topology t∗. Then K is also t∗-solid (it has the nonempty t∗-interior), but not t∗-
normal. Indeed, if it were normal then, according to Theorem 2.4 (see further), the
space (E, t∗) would be normed, which is impossible since an infinite-dimensional s-
pace with the strongest locally convex topology cannot be metrizable (see, e.g., [25]).

Note the following properties of bounded sets in an ordered tvs E.
If the cone K is solid, then each topologically bounded subset of (E,K) is also

order-bounded, i.e., it is contained in a set of the form [−c, c] for some c ∈ intK.
On the other hand, if the cone K is normal, then each order-bounded subset of
(E,K) is topologically bounded. Hence, if the cone is both solid and normal these
two properties of subsets of E coincide. Moreover, a proof of the following assertion
can be found, e.g., in [26].

Theorem 2.4. If the underlying cone of an ordered tvs is solid and normal, then
such tvs must be an ordered normed space.

Following [5, 8, 12, 14], we give the following

Definition 2.5. Let X be a nonempty set and (E,K) be an ordered tvs. A function
d : X × X → E is called a tvs-cone metric and (X , d) is called a tvs-cone metric
space if the following conditions hold:

(c1) θ � d(x, y) for all x, y ∈ X and d(x, y) = θ if and only if x = y;
(c2) d(x, y) = d(y, x) for all x, y ∈ X ;
(c3) d(x, z) � d(x, y) + d(y, z) for all x, y, z ∈ X .

Further, we distinguish two possibilities.
Case 1. Suppose that the cone K in E is solid. We will call a sequence {un}

in K a c-sequence [9] if for each c � θ there exists n0 ∈ N such that un � c for
n ≥ n0. It is easy to show that if {un} and {vn} are c-sequences in K and α, β > 0,
then {αun + βvn} is a c-sequence. We will say that a sequence {xn} in (X , d)

c-converges to x ∈ X (denoted as xn
c→ x, n → ∞) if {d(xn, x)} is a c-sequence

in K. Similarly, Cauchy sequences and completeness of the space are defined, see
[12, 13, 14] and references therein.

Case 2. The cone K is arbitrary (i.e., possibly non-solid). We will call a sequence
{un} in K a θ-sequence if un → θ as n→∞ (in the sense of the topology of E). We

will say that a sequence {xn} in (X , d) d-converges to x ∈ X (denoted as xn
d→ x,

n→∞) if {d(xn, x)} is a θ-sequence in K.
In the case of a solid cone K, it is easy to prove that if {un} is a θ-sequence in K

then it is also a c-sequence in K. Hence, each d-convergent sequence in (X , d) is c-
convergent. The converse does not hold in general, as Lemma 2.2 and Example 2.3
show. If the cone K is both solid and normal, then these two types of convergence
coincide.
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3. Results for (non)-normal cones

In the case when the underlying cone K of a (tvs-valued) cone metric space
(X , d) is solid and normal, most of the fixed point problems can be reduced to their
standard metric counterparts. It is enough to apply Theorem 2.4 and Lemma 2.2
and, after possible re-norming of the codomain space, use the metric D(x, y) =
‖d(x, y)‖ (see details in [13]).

In an attempt to extend this procedure to arbitrary cones, M. Asadi et al. pre-
sented the following result ([4, Theorem 2.1]).

Let (E, ‖ · ‖) be a real Banach space with a positive cone K. There exists a norm
on E such that K is a normal cone with constant k = 1, with respect to this norm.

Moreover, they stated in Remark 2.1 that these two norms are equivalent.
However, this result cannot be true (an error appears in the last step of the

proof, when proving that K is monotone in the new norm). Indeed, taking into
account Lemma 2.2, this would imply that all cones in Banach spaces are normal,
which is obviously not true (see Example 2.3).

Hence, fixed point theory in (tvs-valued) cone metric spaces over non-normal
cones remains a possible area of investigations.

4. Results for (non)-solid cones

We first present the following variant of [21, Proposition 1].

Proposition 4.1. Let K be a solid cone in a tvs E and {un} be a sequence in K.
Then the following conditions are equivalent:

(1) {un} is a c-sequence.
(2) For each c� θ there exists n0 ∈ N such that un ≺ c for n ≥ n0.
(3) For each c� θ there exists n0 ∈ N such that un � c for n ≥ n0.

Proof. (1) =⇒ (2) and (2) =⇒ (3) are obvious. Let (3) hold and let c � θ be
arbitrary. Then c

2 � θ and choosing n0 such that n ≥ n0 implies un � c
2 � c we

get that un � c for n ≥ n0. �

As a consequence, the usage of relation � can be avoided in the formulations
and proofs concerning c-convergence.

If the underlying cone K of a cone metric space is normal (solid or not), then
using the metric D : X × X → R given by D(x, y) = ‖d(x, y‖ (after possible
renorming, see Lemma 2.2), all the results from [12] (and other papers that use
normal cones) can be reduced to their standard metric counterparts (see, e.g., [13]).

In particular, the cone metric d is in this case a continuous function in two
variables (which may not be the case if the cone is not normal). Indeed, the
following lemma can be proved without using interior points of the cone.

Lemma 4.2. [12, Lemma 5] Let (X , d) be a cone metric space over a normal

cone K. If {xn} and {yn} are sequences in X such that xn
d→ x and yn

d→ y, then
d(xn, yn)→ d(x, y) in E.

Proof. From
d(xn, yn) � d(xn, x) + d(x, y) + d(y, yn)

and
d(x, y) � d(x, xn) + d(xn, yn) + d(yn, y),
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it follows that

−(d(xn, x) + d(yn, y)) � d(xn, yn)− d(x, y) � d(xn, x) + d(yn, y).

It follows from the Sandwich Theorem (which holds in the case of a normal cone,
see Lemma 2.2) that d(xn, yn)→ d(x, y) as n→∞. �

The following Geraghty-type fixed point result is a generalization of [2, Theorem
2.2] since it does not use any conditions concerning dual cones.

Theorem 4.3. Let (X , d) be a complete tvs-cone metric space over a cone K which
is solid or normal. Let T : X → X be a mapping satisfying

d(Tx, Ty) � α(d(x, y))d(x, y),

for all x, y ∈ X , where α : K → [0, 1) has the property that α(un) → 1 implies
un → θ in E as n→∞. Then T has a unique fixed point x∗ and Tnx→ x∗ in X
as n→∞ for each x ∈ X .

Proof. Suppose that the cone K is solid. Let e ∈ intK be arbitrary and let qe be the
corresponding Minkowski functional of [−e, e]. Then dq = qe ◦ d is a (real-valued)
metric on X (see [15, Theorem 3.1]). Moreover,

dq(Tx, Ty) ≤ α(d(x, y))dq(x, y)

holds for all x, y ∈ X . Let x ∈ X be arbitrary and denote xn = Tnx, n ∈ N.
Supposing that xn+1 6= xn for each n, we have that

dq(xn+1, xn) = dq(Txn, Txn−1) ≤ α(d(xn, xn−1))dq(xn, xn−1) < dq(xn, xn−1),

i.e., {dq(xn+1, xn)} is a strictly decreasing sequence in R+. It follows that dq(xn+1, xn)→
d∗ ≥ 0 as n→∞. Suppose that d∗ > 0. Then

0 <
dq(xn+1, xn)

dq(xn, xn−1)
≤ α(d(xn, xn−1)) < 1,

implying that α(d(xn, xn−1))→ 1 as n→∞. It follows that d(xn, xn−1)→ θ in E
as n→∞. As qe is a continuous semi-norm, we get that qe(d(xn, xn−1))→ qe(θ) =
0, i.e., dq(xn, xn−1)→ 0 as n→∞, a contradiction.

Suppose now that {xn} is not a Cauchy sequence in the metric space (X , dq).
Using [23, Lemma 2.1], we obtain that there exist an ε > 0 and two sequences {mk}
and {nk} of positive integers, such that dq(x2nk+1, x2mk

)→ ε and dq(x2nk
, x2mk−1)→

ε as k →∞. Then

dq(x2nk+1, x2mk
) ≤ α(d(x2nk

, x2mk−1))dq(x2nk
, x2mk−1),

implying that

0 <
dq(x2nk+1, x2mk

)

dq(x2nk
, x2mk−1)

≤ α(d(x2nk
, x2mk−1)) < 1,

and α(d(x2nk
, x2mk−1)) → 1. Hence, d(x2nk

, x2mk−1) → θ as n → ∞. Again, as
before, it follows that dq(x2nk

, x2mk−1)→ qe(θ) = 0 as n→∞, a contradiction.
It follows that {xn} is a dq-Cauchy sequence, and hence also a d-Cauchy sequence

in X . Hence, there exists x∗ ∈ X such that xn
d→ x∗ as n → ∞. The rest of the

proof is standard.
If the cone K is normal, then the space can be renormed such that the normal

constant of the cone becomes equal to 1 (see Lemma 2.2). Further, a similar
procedure as before can be done, using the metric D(x, y) = ‖d(x, y‖. �
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As corollaries, we obtain [2, Theorem 2.2] (without using dual bases of the cones)
and the classical Geraghty result from 1979 [11].
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[13] S. Janković, Z. Kadelburg, S. Radenović, On cone metric spaces: a survey, Nonlinear Anal.

74 (2011), 2591–2601.
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