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ON AN ESSENTIAL CONNECTION OF THE RIEMANN HYPOTHESIS AND 

DIFFERENTIAL EQUATIONS 
 

TOMÁŠ PERNA 
 
Abstract. We state that if randomly distributed prime numbers p are building blocks of the natural 
numbers n, which are regularly distributed with respect to primes, then such a regularity should be far 
more complex than it is revealed via a distribution of n. We find such a regularity within the axioms of the 
calculus, winning attributes of "meromorphic" and "holomorphic" for the Riemann zeta function in this 
natural way. A differential equation with the right hand side as a distribution term is obtained together 
with the function x/lnx approximating the function π(x). This (wave) equation is shown to be the model 
of the theory of distribution of prime numbers containing the Riemann hypothesis. Namely, there exists 
an unique solution of the obtained equation on Re s = ½ which coincidates with the nontrivial zeros of 
the Riemann zeta function ζ(s).  
 
 
Preliminary conceptual considerations (an equivalence of "Part" and "Whole") 
 
Before we take the distribution of the prime numbers p and the Riemann zeta function 
ζ(s) into a connection, we will try to outline a framework, within which a context of the 
complex nature of the variable s can be simply observed with respect to the nature of  p. 

a) If primes p can be seen as the buildings blocks of structure of natural numbers n, 
then we can say that they have such a structural participation on all n∈N, via 
which that regulariry R is revealed which is mapped within a regular distribution 
of all n with respect to all p. 

b) Let therefore as R be denoted a general property of such a function FR , which 
binds an existence of numbers p with respect to n and a regularity R together.  

c) Thus we consider firstly only F(∃p) = ∃n and not FR(∃p) = ∃n, since FR cannot be 
any function of ∃p and thus neither of ∃n. ( FR cannot namely depend on its own 
property R existencially revealed by a distribution of natural numbers.) 

d) In this sense we can write 
 

(1) ∂FR/∂(∃n) = 0 . 
 

e) Now, let us introduce such a coordinate x, on which natural numbers n exist as 
its  particular    instances. Since x is not identically ∃n, we put 

 
(2) ∂FR/∂x ≠ 0  and dFR/dx = 0 
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 distinguishig ("differentiating") x and ∃n from each other. 
 

f) The given differential approach to FR can indicate an existence of a curve y = 
FR(x), for which there exists no point x = x1, at which the property R could be 
changed, i.e. a notion of "inflex points" is not permitted at 

 
(3) d2FR(x)/dx2 ≠ 0. 

 
g) If we have such a variable t now, which is in no sense regular and it is not a curve 

at the same time, i.e. t ≠y essentially, then an expression 
 

(4) FR(x, t) = 0 
 

does not represent any curve (as it would be the case for FR(x, y) = 0). The 
"curve case" cannot exist due to the nonexistence of inflex points for y = FR(x), 
the case (4) creates a necessary condition of  existence of the given meaning of 
regularity of FR(x), provided that the irregular t is in some sense coupled with 
the distribution of primes p. 

 
h) It has no sense to search for singularities for (4), which are searched in cases 

when prescriptions like (4) represent curves. Therefore we must strictly forbid 
the function FR(x) to take a part in the relations searching for singularities for the 
function FR(x, t) = 0 which could be of the type:(FR)xt2 > (FR)xx ⋅ (FR)tt (knot), 
(FR)xt2 = (FR)xx ⋅ (FR)tt (cusp) and (FR)xt2 < (FR)xx ⋅ (FR)tt (isolated point). For this 
goal we take (FR)xx from these relations and fit it by (3), i.e. we have 

 
      (5)                        ∂2FR/∂x2 = d2FR(x)/dx2 with respect to (4). 

 
       i)  The relevance interpretation.  
            In the relation (5) we have yielded a concept  of "Part"  ⇔ "Whole".  
            Within this concept it can be contextually distinguished: 
 1. The set of all primes is in some infinite(simal) approach equivalent to the set N 
of all natural numbers. Since the both sets have the same cardinal number ℵ0 that 
generally carry an idea of "infinity", we accept the relation (5) with respect to ℵ0.  
 2. "Meros" ⇔ „Holos“ with respect to (4), where FR(x, t) carries a notion of shape 
in that sense that it is not a curve. Thus, consequently, it is induced a general notion of 
"morphic": We distinguish a meromorphic function FR on some open subset D of the 
complex plane that is holomorphic as FR(x) on all D except its pole(s). Since the function 
FR(x, t) = 0 has no poles, it is a very special instance of "meromorphism". 
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            3. Now, we can already search for a "part" t of certain "whole" variable s ∈D, that 
changes itself in such a way that another part of s (denoted contextually as σ) stays 
unchanged. - If  namely σ could be changed too, than we would have no one changing 
"part" t  with respect to one changing "whole"s as a particular case of the "part - whole"-
equivalence-concept. 
                Thus any movements within t characterize completely a change of s as a 
"whole" provided, that σ can be tuned for an entire participation of R on the distribution 
of all n  This "state of entire participation of R" will be cosidered as 
 

      (6)                                σI for FR = FR(x) in (5) 
 
                with respect to the the "state" 
 

(7) σII for FR(x, t) = 0 
 

     avoiding singularities for "entire participation" of the distribution of primes p.  
 

Hint. According with the given construction of (4), it is also FR(∃n, t) ≠ 0. - If there is no 
function ϕ such that it could "absorb" the regularity R with respect to ∃n, i.e. if no  
"transformation" 
    FR(∃n, t) → ϕ(t)  
 
is permitted,  then any ϕ(t) cannot exist. Therefore, if there exist the "xi function" ξ(t) 
(introduced firstly by Riemann in /1/), then naturally ξ≠ϕ in that meaning that ξ cannot 
"absorb" regularity R with respect to ∃n and thus it depends additively on R and ∃n. In 
this sense t should become a complex nature within ξ(t). (Consequently, if we write ½ 
+ iα for a "part" t , then we indicate that real part of the "whole" s, at which the concept 
of equivalence of a „part“ and a "whole" is completely satisfied here.) 
 
Above, we have outlined a "logico-mathematical model" of a possible connection 
between the Riemann zeta function and a distribution of primes based on the certain 
concept of regularity, within which a regular function can be referred as meromorphic, 
or holomorphic respectively. Via s ∈ D, we have naturally obtained its complex nature 
within this concept. Our task is to show in the following text, how (7) can be obtained 
for the Riemann zeta function within the mathematical model, when σII = ½. 
However, the following text can be regarded as completely indepedent of the 
preliminary considereations, which only bring a "plastic picture" of the relation (7) and 
imply a possible connection of the pure analysis and differential equations on the basis 
of Riemann hypothesis. 
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1. Introduction    
 
The Riemann zeta function ζ(s) is for the complex variable s , Re s > 1 defined by the 
absolute convergent series 
     ∞ 

    ζ(s): = Σ (1/ns)    (1.1) 
     n=1 

 

and has an analytic continuation in the whole complex plane C. The behavior of the zeta 
function in the region where the series (1.1) is not convergent is expressed by the 
Riemann hypothesis: 
RH. All nontrivial zeros of ζ(s) lie on the critical straight line Re s = ½. 
The distribution of these zeros is supposed to be uniquely related to the distribution of 
prime numbers. In this article we will try to show that if it is the case, then one must 
consider more general concept of distribution within which the both distributions are 
uniquely emerged, namely the PDE with the right hand side as their common 
distribution term. Thus one can construct a mathematical model M of the theory T of 
distribution of prime numbers concerning quite naturally the Goedel theorem of 
completeness: Any theory T is consistent just when it has a model. Consequently, the RH 
must be consistent, if M exists. 
With a purely analytical distribution concept within RH on the one side, we have purely 
empirically obtained distribution of primes on another side, namely the function x/ln x. 
Such a disjoint nature of both distributions enables to require a certain exceeding of an 
appeiron of both of them within a PDE-approach outlining their common logic within M. 
This is the main idea of the article that will be consequently followed starting with the 
definition of T up to the unique finding of the model M. 
 
2. Construction of M 
 
The first step showing the connection between x/ln x and ζ(s) was made by Hadamard 
and, independently, by de la Vallee Poussin in 1896. It concerns the fact that the 
information about the position of nontrivial zeros of ζ(s) can be directly transferred 
onto a behavior of the function π(x) such that, when we only know that ζ(s)≠0 on Re s 
=1, then we obtain the relation 
 
    π(x)∼x/ln x , i.e. lim  (π(x)ln x)/x=1,  (2.1) 
         x→+∞ 

or more precisely 
       
    π(x)∼Li x = ∫ dτ/ln τ .    (2.2) 
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This implies that ζ(s) = 0 cannot be considered independently without its relation to 
ζ(s)≠0 on Re s=1 with respect to the relation π(x)∼ x/ln x within T.  
 
2.2. Definition As the theory of distribution of prime numbers we regard such a theory T, 
which contains the relation π(x)∼x/ln x with respect to ζ(s)=0 on Re s = ½ and ζ(s)≠0 
on  
Re s = 1 uniquely. 
 
2.3. Theorem The RH is consistent since the theory T has the model M. 
 
Proof of Theorem. (The construction of M). Let 
 
    w = x−  (σ + it), σ = Re s  for x = n               (2.3) 
 
just if and only if the function x/ln x can be expressed within the model M with the 
function w as its solution. Knowing that we tend to the PDE with a distribution term, it 
is not hard to find the searched distribution x/ln x. We simply put in the elementary 
formula  
 
  d2w/dx2 = ∂2w/∂x2 + 2(∂2w/∂x∂t)dt/dx + (∂2w/∂t2)(dt/dx)2 (2.4) 
 
of differential calculus that 
 
    2(∂2w/∂x∂t) + (∂2w/∂t2)dt/dx = 0 .   (2.5) 
 
Since  
 
    ∂2w/∂x∂t = i/x[(σ + it)ln x − 1]w 
and              }                (2.6) 
    ∂2w/∂t2 = −(ln x)2w . 
 
Then, substituting from (2.6) into (2.5) we obtain the equation 
 
    2i/x[(σ + it)ln x − 1]w dx = (ln x)2w dt,               (2.7) 
 
which can be also written as 
 
  2i[(σ + it)(1/x) − 1/(xln x)]w dx = (ln x)w dt for x>1 . (2.8) 
 
The differential equation 
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    d2w/dx2 = ∂2w/∂x2   for x>1   (2.9) 
 
is yielded from (2.4), if (2.8) is satisfied. If further (2.8) is observed from the building 
blocks x and ln x of the function (x/ln x) point of view, then some close correspondence  
 
    π(x) ↔ w                  (2.10) 
 
should be expected during a process of yielding of (x/ln x). The main features of (2.10) 
are: 
 
• Differential equation (2.9) is deterministic, the distribution π(x) not. (The situation in 
(2.10) reminds thus the analogous situation in quantum mechanics, where the 
probability wave function satisfies the deterministic Schrödinger equation.)  
• Unlikely w, π(x) is not a function, but a distribution, so that the function w as the 
solution of M must be independent on x/ln x (which approximates the distribution π(x) 
only).  In that way the function w cannot take a part in the yielding of x/ln x by the 
process of integration of the relation (2.8). 
 
So, integrating (2.8) we obtain 
 
  2iσln x − 2t ln x − 2i ln |ln x| + G(t) = t ln x + F(x) ,  (2.11) 
 
where F(x) and G(t) are arbitrary independent functions. We rewrite the last equation 
as 
 
   2σln x − 2 ln |ln x| = −i[3tln x + (F(x) − G(t))] ,              (2.12) 
 
whence it is immediately evident that there are only two ways how to express the 
function x/ln x uniquely, namely 
 
  x/ln x = exp[−i/2(3tln x + (F(x) − G(t))I]   for σI = 1  (2.13) 
and 
 x/ln x = exp[−i(3t ln x + (F(x) − G(t))II) + ln |ln x|]  for σII = ½ . (2.14) 
 
This means that we can obtain the equation (2.9) only in two unique ways with respect 
to the function x/ln x. We see at the same time that this function cannot be determined 
by any particular choice of the arbitrary functions F(x) and G(t) such that it would lead 
to a vanishing of the imaginary unit i in the both last relations. In such a way, this fact 
establishes an indeterministic nature of the function x/ln x with respect to (2.9). 
Consequently, if the theory T has the model M given by the differential equation (2.9) 
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satisfying uniquely the correspondence (2.10), then the functions F(x) and G(t) cannot 
remain arbitrary in T and there must exist their particular choice following the 
distribution π(x). Thus the equation (2.9) has particular solutions 
 
   wI  on σI = 1  and  wII  on σII = ½    (2.15) 
 
at the points tI, tII at which the arbitrary functions F, G can take some particular forms 
typical for xI = xII = n = 2, 3, 4, … 
Note that the model M does not require any concrete values for tI and tII, since π(x) does 
not explicitly depend on t. In thus indicated existence of π(x), we reveal its nature 
consequently: having (2.15) as particular solutions of M, then, according with the 
superposition principle, we have their sums  
 
    ∞        ∞ 

    Σ wI  and  Σ wII     (2.16) 
    n=2        n=2 

 

 

as the solutions too, provided that the single particular solutions are mutually linearly 
independent within σI and σII . So the distribution π(x) must concern the distribution of 
mutually independent objects, or, relevantly, the distribution of prime numbers with 
none of them being any linear combination of another arbitrary ones.  
On the other hand, the both solutions (2.16) are mutually dependent with respect to 
(2.10), so they cannot commutate with each other as 
    ∞          ∞               ∞          ∞ 

    Σ wI Σ wII ≠  Σ wII Σ wI .   (2.17) 
    n=2      n=2             n=2        n=2 

This mutual dependence makes impossible to apply the superposition principle for 
them within M. Therefore, we will use only one way proposed by M how to let (2.17) 
vanish, namely, to put one of the solutions equaled to zero. Thus we firstly arrive at the 
paradox 
    ∞          ∞ 

    Σ wI 0 ≠ 0 Σ wI ,    (2.18) 
    n=2          n=2 

 
that can be removed again in one possible way. Instead of n ≥2 for “≠” within (2.18) to 
put n≥1 for “=” there. In such a way we uniquely arrive at two typical cases of the zeta 
function 
    ∞ 

   ζ(sI) ≡ Σ wI ≠ 0  on σI = Re sI ≡ 1    (2.19) 
    n=1  
and 
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     ∞ 

   ζ(sII) ≡ Σ wII = 0  on σII = Re sII ≡ ½    (2.20) 
                                          n=1 
 

as the unique solutions of the equation (2.9) with respect to the relation π(x)∼x/ln x. 
(Now, the fact that x = n  = 1 is not possible to substitute into x/ln x is logically coupled 
with the fact that this function is not determinable within M for x>1.)   
Consequently, the last step is to rewrite the equation (2.9) in terms of the zeta function. 
At first, all its solutions of the (2.3)-type are nonzero ones, which fact can be globally 
expressed, if the equation (2.9) is rearranged into the form  
 
    −∂2w/∂x2 = −d2w/dx2    (2.21) 
 

with respect to its zero-solution ζ(s) = 0 in 
 
   −∂2ζ(s)/∂x2 = −d2ζ(s)/dx2  for Re s = 1, ½ .  (2.22) 
 
Since the both last linear equations are nonhomogenous, containing the differentials of 
a different type, the zero-solution of (2.22) (unlikely trivial solutions in the case of 
homogenous PDE) is logically nontrivial, as it is also required by the RH.  
Following further the formal requirements of the PDE-approach, we obtain the right 
hand side-source term (having a meaning of distribution) within (2.22) in the form 
 
    D ≡ −d2ζ(s)/dx2  for Re s = 1, ½                (2.23) 
 
and thus we obtain the model M in the final form 
 
    −∂2ζ(s)/∂x2 = D ,                 (2.24) 
 
where D ≠ 0 for Re s = 1 and D = 0 for Re s = ½. Q.E.D. 
  
Remark. The equation (2.24) reminds the form of a stationary wave equation with ∇2 = 
∂2/∂x2. Searching for the relevant waves within M, we can write, instead of 
 
     ∞           ∞ 

     Σ  wI 0 = 0 Σ  wI                  
     n=1           n=1 

 

within (2.18) – (2.20), the expression 
 
     ζ(sI)ζ(sII) ≡ 0 .    (2.25) 
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Thus we immediately see that there is no (privileged) value of ζ(sI) ≠ 0 transferring 
(2.25) into the form ζ(sII)=0 of the unique nontrivial zero-solution of M. So, if ζ(sI) is 
unique and not single-valued at the same time, then it can be interpreted via some 
vibrational process within M following strictly the distribution of prime numbers. In 
other words, there is the collective source D ≠ 0 of elementary waves wI building the 
stationary wave ζ(sI) over ζ(sII) within M.  
 
3. Conclusion 
 
We have demonstrated that the theory T of distribution of prime numbers has the 
model M which contains the RH in the form of ζ(sII) = 0 as its unique nontrivial solution. 
Thus the Riemann hypothesis is completely logically consistent. The model M works 
only if the relation π(x)∼x/ln x holds, which symptomatically supports the proof of this 
prime number theorem.  
The main idea building the model is to unify the purely empirical approach to the 
distribution of primes mediated by the function x/ln x and purely analytical approach 
mediated by the RH via the common logical source contained in the stationary wave-like 
PDE. We can point out that this equation possesses a form that can be “translated” via 
the equation (2.9) as a “part” being equaled to a “whole”. Thus we have landed at (5) 
and can define (from the preliminary considerations): FR ≡ ζ(s) and FR(x, t) = 0 as ζ(sII) 
= 0, what we have also wanted to show. 
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