Asian J. Math. Appl. (2022) 2022:5

Unique Solution of Operator Equations in Arbitrary Banach Spaces

Neeta Singh

Department of Mathematics, University of Allahabad, Prayagraj-211002, India Email(s): n_s32132@yahoo.com

Abstract

We apply the Banach's contraction principle to obtain a unique solution of the operator equation x - Tx = f in arbitrary Banach spaces.

Keywords: Banach's contraction principle; Contraction mappings; Picard iteration; Operator equation; Banach spaces.

Preliminaries

We require the followings definitions and the statement of the Banach's contraction principle.

Definition 1.1. [2] Let (M, d) be a metric space. A mapping $T : M \to M$ is said to be Lipschitzian if there is a constant $k \ge 0$ such that for all $x, y \in M$,

$$d(T(x), T(y)) \leq kd(x, y).$$

The smallest number k for which the above inequality holds is called the Lipschitz constant of T.

Definition 1.2. [2] A Lipschitzian mapping $T : M \to M$ with Lipschitz constant k < 1 is said to be a contraction mapping.

Theorem 1.3. [2] (Banach contraction principle) Let (M, d) be a complete metric space and let $T : M \to M$ be a contarction mapping, then T has a unique fixed point in M.

Definition 1.4. [1] Let (X, d) be a metric space, and $T : X \to X$ a self map. For a given $x_0 \in X$, we consider the sequence of iterates $\{x_n\}_{n=0}^{\infty}$ determined by the successive iteration method,

$$x_n = T(x_{n-1}) = T^n(x_0), \quad n = 1, 2, \dots$$

The sequence thus defined is known as the sequence of successive approximations or simply, Picard iteration.

Main Theorem

Theorem 1.5. Let X be an arbitrary Banach space, f an element in X and $T : X \to X$ a contraction mapping, then the operator equation

$$x - Tx = f$$

has a unique solution if and only if for any $x_0 \in X$, the sequence of Picard iterates $\{x_n\}$ in X defined by $x_{n+1} = Tx_n + f$, $n \in \mathbb{N}_0$ is bounded.

Received: 2021-11-10

Proof. Let T_f be the mapping from X into X defined by

$$T_f(u) = Tu + f.$$

Then *u* is a unique solution of x - Tx = f if and only if *u* is a unique fixed point of T_f . Since *T* is a contraction mapping, for $x, y \in X$, we have

$$||T_f(x) - T_f(y)|| = ||T(x) - T(y)|| < ||x - y||,$$

giving that T_f is also a contraction mapping.

Suppose T_f has a unique fixed point $u \in X$, then for all $n \in \mathbb{N}$

$$||x_{n+1} - u|| = ||Tx_n + f - u|| = ||T_f(x_n) - T_f(u)|| < ||x_n - u||,$$

hence $\{x_n\}$ is bounded.

Conversely, suppose that $\{x_n\}$ is bounded. Let $d = diam(\{x_n\})$ and for each $x \in X$

y

$$B_d(x) = \{ y \in X : ||x - y|| < d \}.$$

We define $C_n = \bigcap_{i \ge n} B_d(x_i)$. Now we have using that *T* is a contraction mapping and the given Picard iteration,

$$\in B_d(x_n) \Rightarrow ||y - x_n|| < d \Rightarrow ||Ty - Tx_n|| < d \Rightarrow ||Ty - [x_{n+1} - f]|| < d \Rightarrow ||(Ty + f) - x_{n+1}|| < d \Rightarrow (Ty + f) \in B_d(x_{n+1}).$$

The above implications give the following:

$$T_f(C_n) = T_f(\bigcap_{i \ge n} B_d(x_i))$$

$$\subseteq \bigcap_{i \ge n} T_f(B_d(x_i))$$

$$= \bigcap_{i \ge n} \{T_f(y) : ||y - x_i|| < d\}$$

$$= \bigcap_{i \ge n} \{(T(y) + f) : ||y - x_i|| < d\}$$

$$\subseteq \bigcap_{i \ge n+1} B_d(x_i) = C_{n+1}.$$

Let $C = \overline{\bigcup_{n \in \mathbb{N}} C_n}$. Since C_n increases with n, C is a closed and bounded subset of X. We next consider

$$T_f(C) = T_f(\overline{\bigcup C_n}) \subseteq \overline{T_f(\bigcup C_n)} = \overline{\bigcup T_f(C_n)} \subseteq \overline{\bigcup C_{n+1}} = C,$$

giving that T_f maps C into itself. Now since C is a closed subset of the Banach space X, C is itself complete. Finally applying the Banach contraction principle to T_f and C, we get that T_f has a unique fixed point in C which proves the theorem.

Conflict of interests: The author declares that there is no conflict of interests.

References

- [1] Vasile Berinde, Iterative Approximation of Fixed Points, Lecture Notes in Mathematics 1912, Springer 2007.
- [2] M. A. Khamsi and W. A. Kirk, An Introduction to Metric Spaces and Fixed Point Theory. Pure and Applied Mathematics. John Wiley & Sons, Inc., 2001.