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Abstract
In this paper, we introduce the concept of ∗-K-g-frames in Hilbert modules over a pro-C∗-algebras. The anal-
ysis operator, the synthesis operator and the frame operator are presented. Also, we investigate the relationship
between ∗-g-frames, and ∗-K-g-frames. We give some properties of them. Finally, we study the tensor product
of ∗-K-g-frames for Hilbert pro-C∗-modules.
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Introduction

Frame theory is recently an active research area in mathematics, computer science and engineering with many
exciting applications in a variety of dierent elds. They are generalizations of bases in Hilbert spaces. Frames
forHilbert spaces were rst introduced in 1952 byDun and Schaefer [4] for study some problems of nonhar-
monic Fourier series. They were reintroduced and developed in 1986 by Daubechies, Grossmann and Meyer
[3], and popularized from then on. Hilbert C∗-modules is a generalization of Hilbert spaces by allowing the
inner product to take values in a C∗-algebra rather than in the eld of complex numbers.

Pro-C∗-algebras also called locally C∗-algebra is a (projective) limit of C∗-algebras in the category of topo-
logical ∗-algebras. In this direction we mention, in particular, the works of Inoue [6], Zhuraev and Sharipov
[11] and Phillips [9].

The aim of this paper is to introduce the notion of ∗-K-g-frame in Hilbert modules over pro-C∗-algebras
and investigate some results for these frames. We extend some results about ∗-K-g-frames for Hilbert C∗-
modules from [10].

This paper is divided into three sections. After recalling some fundamental denitions and notations of
Hilbert pro-C∗-modules in section 2, we move on to denition of ∗-K-g-frame and we give some of its prop-
erties. Finally in section 4 we investigate the tensor product of Hilbert pro-C∗-modules,we show that tensor
product of ∗-K-g-frame for Hilbert pro-C∗-modules X and Y, present ∗-K-g-frame for X ⊗ Y, and tensor
product of their frame operators is the frame operator of the tensor product of ∗-K-g-frame.
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Preliminaries

In this section we briey recall some denitions and properties of pro-C∗-algebras, which will be necessary to
prove our results.

Recall that a pro-C∗-algebra is a complete Hausdor complex topological ∗-algebra Awhose topology is
determined by its continuous C∗-seminorms in the sens that a net {a𝛼} converges to 0 if and only if p(a𝛼)
converges to 0 for all continuous C∗-seminorm p on A and we have:

1) p(ab) ≤ p(a)p(b)

2) p(a∗a) = p(a)2

for all a, b ∈ A.
If the topology of pro-C∗-algebra is determined by only countably many C∗-seminorms, then it is called a

𝜎-C∗-algebra.
We denote by sp(a) the spectrum of a such that: sp(a) = {𝜆 ∈ ℂ : 𝜆1A− a is not invertible } for all a ∈ A

. Where A is unital pro-C∗-algebra with unite 1A.
The set of all continuous C∗-seminorms on A is denoted by S (A). If A+ denotes the set of all positive

elements of A, then A+ is a closed convex C∗-seminorms on A.

Example 1.1. Every C∗-algebra is a pro-C∗-algebra.

Proposition 1.2. [6]. Let A be a unital pro-C∗-algebra with an identity 1A. Then for any p ∈ S (A) , we have:

(1) p(a) = p(a∗) for all a ∈ A

(2) p (1A) = 1

(3) If a, b ∈ A+ and a ≤ b, then p(a) ≤ p(b)

(4) If 1A ≤ b, then b is invertible and b−1 ≤ 1A

(5) If a, b ∈ A+ are invertible and 0 ≤ a ≤ b, then 0 ≤ b−1 ≤ a−1

(6) If a, b , c ∈ Aand a ≤ b then c∗ac ≤ c∗bc

(7) If a, b ∈ A+ and a2 ≤ b2, then 0 ≤ a ≤ b

Denition 1.3. [9]. A pre-Hilbert module over pro-C∗-algebra A, is a complex vector space E which is also a
left A-module compatible with the complex algebra structure, equipped with an A-valued inner product 〈., .〉
E × E → Awhich is ℂ-and A-linear in its rst variable and satises the following conditions:

1) 〈𝜉 , 𝜂〉∗ = 〈𝜂 , 𝜉 〉 for every 𝜉 , 𝜂 ∈ E

2) 〈𝜉 , 𝜉 〉 ≥ 0 for every 𝜉 ∈ E

3) 〈𝜉 , 𝜉 〉 = 0 if and only if 𝜉 = 0

for every 𝜉 , 𝜂 ∈ E.We say E is a Hilbert A-module (or Hilbert pro-C∗-module overA ). If E is complete with
respect to the topology determined by the family of seminorms

p̄E (𝜉 ) =
√︁
p(〈𝜉 , 𝜉 〉) 𝜉 ∈ E , p ∈ S (A)

Let Abe a pro-C∗-algebra and let X and Ybe Hilbert A -modules.A bounded A-module map from X to
Y is called an operators from X to Y. We denote the set of all operator from X to YbyHomA(X, Y).
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Denition 1.4. An A-module map T : X −→ Y is adjointable if there is a mapT ∗ : Y −→ X such that
〈T 𝜉 , 𝜂〉 = 〈𝜉 ,T ∗𝜂〉 for all 𝜉 ∈ X, 𝜂 ∈ Y, and is called bounded if for all p ∈ S (A), there is Mp > 0 such that
p̄Y(T 𝜉 ) ≤ Mp p̄X(𝜉 ) for all 𝜉 ∈ X.

It is clear that every adjointable map is a bounded A-module map. The set of all adjointable maps from X

into Y is denoted byHom∗
A
(X, Y) and we write Hom∗

A
(X) = Hom∗

A
(X, X) The vector space Hom∗

A
(X, Y) is

a complete locally convex space.
The HilbertM (A)-moduleL(A, X) is called the multiplier module of X and it is denoted byM (X). For

all h ∈ M (X) and 𝜉 ∈ X, we have 〈h, 𝜉 〉M (X) = h∗ (𝜉 ). Moreover, if a ∈ A and h ∈ M (X), then h.a can be
identied by h(a).

Denition 1.5. Let Abe a pro-C∗-algebra and X, Ybe two Hilbert A-modules. The operatorT : X→ Y is
called uniformly bounded below, if there exists C > 0 such that for each p ∈ S (A),

p̄Y(T 𝜉 ) 6 Cp̄X(𝜉 ) , for all 𝜉 ∈ X

and is called uniformly bounded above if there exists C ′ > 0 such that for each p ∈ S (A),

p̄Y(T 𝜉 ) > C ′p̄X(𝜉 ) , for all 𝜉 ∈ X

‖T ‖∞ = inf{M : M is an upper bound forT }

p̂Y(T ) = sup
{
p̄Y(T (x)) : 𝜉 ∈ X, p̄X(𝜉 ) 6 1

}
It’s clear to see that, p̂(T ) 6 ‖T ‖∞ for all p ∈ S (A).

Proposition 1.6. [5]. LetT be an uniformly bounded below operator inHom∗
A
(X, Y). thenT is closed and injective.

Proposition 1.7. [2]. LetX be a Hilbert module over pro-C∗-algebraAandT be an invertible element inHom∗
A(X)

such that both are uniformly bounded. Then for each 𝜉 ∈ X,T−1
−2
∞

〈𝜉 , 𝜉 〉 ≤ 〈T 𝜉 ,T 𝜉 〉 ≤ ‖T ‖2∞〈𝜉 , 𝜉 〉.

Let X and Y be two Hilbert pro-C∗-modules, and {Yi }i∈I be a countable sequence of closed submodules
of Y.

Denition 1.8. [8]. We call a sequenceΛ = {Λi ∈ HomA (X, Yi )}i∈I a ∗-g-frame forXwith respect to {Yi }i∈I
if

A〈𝜉 , 𝜉 〉A∗ ≤
∑︁
i∈I

〈Λi𝜉 , Λi𝜉 〉 ≤ B〈𝜉 , 𝜉 〉B∗ (1.1)

for all 𝜉 ∈ X and strictly nonzero elements A, B ∈ A. The number A and B are called ∗-g-frame bounds for
Λ. The ∗-g-frame is called tight if A = B and a Parseval if A = B = 1. If in the above we only have the upper
bound, then Λ is called a ∗-g-Bessel sequence. Also if for each i ∈ I , Yi = Y, we call Λ a ∗-g-frame forXwith
respect to Y.

∗-K-g-frames in Hilbert pro-C∗-modules

Let A be a pro-C∗-algebra, X and Y two Hilbert A-modules, and {Yi }i∈J is a countable sequence of closed
submodules of Y.
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Denition 1.9. Let K ∈ Hom∗
A
(X). We say that {Λi ∈ HomA (X, Yi )}i∈I is ∗-K-g-frame for Xwith respect

to {Yi }i∈I if there exist nonzero elements A, B ∈ A such that for all 𝜉 ∈ X,

A〈K∗𝜉 , K∗𝜉 〉A∗ ≤
∑︁
i∈I

〈Λi𝜉 , Λi𝜉 〉 ≤ B〈𝜉 , 𝜉 〉B∗ (1.2)

The numbers A and B are called lower and upper bound of the ∗-K-g-frame, respectively. If

A〈K∗𝜉 , K∗𝜉 〉A∗ =
∑︁
i∈I

〈Λi𝜉 , Λi𝜉 〉 , ∀𝜉 ∈ X. (1.3)

The ∗-K-g-frame is A-tight.

Example 1.10. Let l∞ be the set of all bounded complex-valued sequences. For any u = {u j} j∈N , v = {v j} j∈N ∈
l∞, we dene

uv = {u jv j} j∈N , u∗ = {ū j} j∈N , ‖u‖ = sup
j∈N

|u j |.

Then A= {l∞ , ‖.‖} is a C∗-algebra. Consequently A= {l∞ , ‖.‖} is pro-C∗-algebra.
Let X= C0 be the set of all sequences converging to zero. For any u , v ∈ Xwe dene

〈u , v〉 = uv∗ = {u j ū j} j∈N.

Then X is a Hilbert A-module.
Dene fj = { f ji }i∈N∗ by f ji = 1

2 + 1
i if i = j and f ji = 0 if i ≠ j ∀ j ∈ N∗. Now dene the adjointable operator

Λ j : X→ A, Λ j𝜉 = 〈𝜉 , fj〉.
then for every 𝜉 ∈ Xwe have∑︁

j∈N
〈Λ j𝜉 , Λ j𝜉 〉 = {1

2
+ 1
i
}i∈N∗ 〈𝜉 , 𝜉 〉{1

2
+ 1
i
}i∈N∗ .

Let K : X→ Xdened by K𝜉 = { 𝜉ii }i∈N∗ .
Then for every 𝜉 ∈ Xwe have

〈K∗𝜉 , K∗𝜉 〉A ≤
∑︁
j∈N

〈Λ j𝜉 , Λ j𝜉 〉 = {1
2
+ 1
i
}i∈N∗ 〈𝜉 , 𝜉 〉{1

2
+ 1
i
}i∈N∗ .

Which shows that {Λ j} j∈N is a ∗-K-g-frame for Xwith bounds 1 and { 12 + 1
i }i∈N∗ .

Remark 1.11. 1. Every ∗-g-frame for X with respect to {Yi : i ∈ I} is an ∗-K-g-frame, for any K ∈
Hom∗

A
(X): K ≠ 0.

2. If K ∈ HomA(X) is an bounded surjective operator, then every ∗-K-g-frame for Xwith respect to {Yi :
i ∈ I} is a ∗-g-frame.

Example 1.12. Let X be a nitely or countably generated Hilbert A-module. Hom∗
A(X) Let K ∈ Hom∗

A
(X)

an invertible element such that both are uniformly bounded and K ≠ 0. Let A be a Hilbert A-module over
itself with the inner product 〈a, b〉 = ab∗. Let {xi }i∈I be an ∗-frame for Xwith bounds A and B, respectively.
For each i ∈ I , we dene Λi : X → A by Λi𝜉 = 〈𝜉 , xi〉 , ∀𝜉 ∈ X. Λi is adjointable and Λ∗

i a = axi for each
a ∈ A. And we have

A〈𝜉 , 𝜉 〉A∗ ≤
∑︁
i∈I

〈𝜉 , xi〉〈xi , 𝜉 〉 ≤ B〈𝜉 , 𝜉 〉B∗ , ∀𝜉 ∈ X.

Or
〈K∗𝜉 , K∗𝜉 〉 ≤ ‖K‖2∞〈𝜉 , 𝜉 〉 , ∀𝜉 ∈ X.

Then
‖K‖−1∞ A〈K∗𝜉 , K∗𝜉 〉(‖K‖−1∞ A)∗ ≤

∑︁
i∈I

〈Λi𝜉 , Λi𝜉 〉 ≤ B〈𝜉 , 𝜉 〉B∗ , ∀𝜉 ∈ X.

So {Λi }i∈I is ∗-K-g-frame for Xwith bounds ‖K‖−1∞ A and B, respectively.
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Denition 1.13. Let {Λi }i∈I be an ∗-K-g-frame in X with respect to {Yi : i ∈ I}. We dene the analysis
operator as follows

T : X→ ⊕i∈IYi by T 𝜉 = {Λi𝜉 }i , ∀𝜉 ∈ X

So the synthesis operator is

T ∗ : ⊕i∈IYi → X given by T ∗ ({𝜉i }i ) =
∑︁
i∈I

Λ∗
i 𝜉i , ∀{𝜉i }i ∈ ⊕i∈IYi .

The combination ofT andT ∗, gives the frame operator S : X→ X such that S𝜉 =T ∗T 𝜉 =
∑
i∈I Λ

∗
iΛi𝜉 .

Theorem 1.14. LetK ∈ Hom∗
A
(X) be an bounded surjective operator. If {Λi }i∈I is an ∗-K-g-frame inXwith respect

to {Yi : i ∈ I}, then the frame operator S is invertible, positive and it is self-adjoint such that :

AIXA∗ ≤ S ≤ BIXB∗

Where IX is the identity function onX.

Proof. Result of (2) in Remark 1.11 and Theorem 3.1 in [8]. �

Let K ∈ Hom∗
A
(X), in the following theorem we construct an ∗-K-g-frame using an ∗-g-frame.

Theorem 1.15. Let K ∈ Hom∗
A
(X) an invertible element such that both are uniformly bounded and {Λi }i∈I be an

∗-g-frame inXwith respect to {Xi : i ∈ I} with bounds A, B. Then {ΛiK}i∈I is an ∗-K∗-g-frame inXwith respect to
{Xi : i ∈ I} with bounds A, ‖K‖∞B. The frame operator of {ΛiK}i∈I is S

′
= K∗SK, where S is the frame operator of

{Λi }i∈I .

Proof. From
A〈𝜉 , 𝜉 〉AA∗ ≤

∑︁
i∈I

〈Λi𝜉 , Λi𝜉 〉A ≤ B〈𝜉 , 𝜉 〉AB∗ , ∀𝜉 ∈ X.

We get for all 𝜉 ∈ X,

A〈K𝜉 , K𝜉 〉AA∗ ≤
∑︁
i∈I

〈ΛiK𝜉 , ΛiK𝜉 〉A ≤ B〈K𝜉 , K𝜉 〉AB∗ ≤ ‖K‖∞B〈𝜉 , 𝜉 〉A(‖K‖∞B)∗.

Then {ΛiK}i∈I is an ∗-K∗-g-frame in Xwith respect to {Yi : i ∈ I} with bounds A, ‖K‖∞B.
By denition of S,we have SK𝜉 =

∑
i∈I Λ

∗
iΛiK𝜉 . Then

K∗SK = K∗
∑︁
i∈I

Λ∗
iΛiK𝜉 =

∑︁
i∈I

K∗Λ∗
iΛiK𝜉 .

Hence S
′
= K∗SK. �

Corollary 1.16. Let K ∈ HomA(X) and {Λi }i∈I be an ∗-g-frame. Then {ΛiS−1K}i∈I is an ∗-K∗-g-frame, where S
is the frame operator of {Λi }i∈I .

Proof. Result of the Theorem 1.15 for the ∗-g-frame {ΛiS−1}i∈I . �

Theorem 1.17. Let K ∈ HomA(X) bounded and surjective such that K = K∗ , {Λi }i∈I ∈ HomA(X, Yi ) and∑
i∈I 〈Λi𝜉 , Λi𝜉 〉 converge in the semi-norm for 𝜉 ∈ X. Then Λ =

{
Λ j

}
i∈I is a ∗-K-g-frame for X with respect to

{Yi }i∈I if and only if there are two strictly nonzero elements C , D ∈ A and two constants m,M > 0 such that for every
𝜉 ∈ X,

p
(
(Cm 1

2 )−1
)−1

p(〈𝜉 , 𝜉 〉)p
(
(Cm 1

2 )∗−1
)−1

≤ p
(∑︁
i∈I

〈Λi𝜉 , Λi𝜉 〉
)
≤ p(D)p(〈𝜉 , 𝜉 〉)p (D∗) . (1.4)
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Proof. Suppose that {Λi }i∈I ∈ HomA(X, Yi ) is a ∗-K-g-frame forXwith respect to {Yi }i∈I , then by Corollary
2.3 in [1], there exist m > 0 such that m〈𝜉 , 𝜉 〉 ≤ 〈K∗𝜉 , K∗𝜉 〉. Then

〈𝜉 , 𝜉 〉 ≤ (Cm 1
2 )−1

(∑︁
i∈I

〈Λi𝜉 , Λi𝜉 〉
) (

(Cm 1
2 )∗

)−1
and (∑︁

i∈I
〈Λi𝜉 , Λi𝜉 〉

)
≤ D〈𝜉 , 𝜉 〉D∗

Hence, by Proposition 1.2

p(Cm 1
2 )−1)−1p(〈𝜉 , 𝜉 〉)p(Cm 1

2 )∗−1)−1 ≤ p
(∑︁
i∈I

〈Λi𝜉 , Λi𝜉 〉
)
≤ p(D)p(〈𝜉 , 𝜉 〉)p (D∗)

Conversely, if we suppose that hold.Then we can dene :

T : X→
⊕
i∈I

Yi , T (𝜉 ) = {Λi𝜉 }i∈I , ∀𝜉 ∈ X.

as a linear operator, such that
〈T 𝜉 ,T 𝜉 〉 =

∑︁
i∈I

〈Λi𝜉 , Λi𝜉 〉 , ∀𝜉 ∈ X

We have p̄X(T (𝜉 )) =
√︁
〈T 𝜉 ,T 𝜉 〉,(3.3) implies

p̄X(T (𝜉 )) ≤ p(D) 12 p̄X(𝜉 )p (D∗)
1
2

which implies that T is uniformly bounded. We write T ∗T = U . Then 〈T (𝜉 ) ,T (𝜉 )〉 = 〈T ∗T (𝜉 ) , 𝜉 〉 =

〈U (𝜉 ) , 𝜉 〉. Therefore,U is positive. On the one hand we have,U ∗ =T ∗T , thenU is self-adjoint.
On the other hand, 〈

U
1
2 𝜉 ,U

1
2 𝜉

〉
= 〈U𝜉 , 𝜉 〉 =

∑︁
i∈I

〈Λi𝜉 , Λi𝜉 〉

Then by Proposition 1.6 and (3.3),U is invertible and uniformily bounded. Hence by Proposition 1.6, we get:

‖U− 1
2 ‖−1∞ 〈𝜉 , 𝜉 〉‖U− 1

2 ‖−1∗∞ ≤ 〈U 1
2 (𝜉 ) ,U 1

2 (𝜉 )〉 ≤ ‖U 1
2 ‖∞〈𝜉 , 𝜉 〉‖U

1
2 ‖∞

For all K ∈ Hom∗
A(X) bounded and surjective such that K = K∗ , we have

〈K∗𝜉 , K∗𝜉 〉 ≤ ‖K‖2∞〈𝜉 , 𝜉 〉

Then
M−1‖U− 1

2 ‖−1∞ 〈K∗𝜉 , K∗𝜉 〉(M−1‖U− 1
2 ‖−1∞ )∗ ≤ ‖U− 1

2 ‖−1∞ 〈𝜉 , 𝜉 〉‖U− 1
2 ‖−1∗∞

Therefore {ΛiK}i∈I is an ∗-K∗-g-frame in Xwith respect to {Yi }i∈I �

Tensor Product

The minimal or injective tensor product of the pro-C∗-algebrasAandB, denoted byA⊗B, is the completion
of the algebraic tensor productA⊗alg Bwith respect to the topology determined by a family of C∗-seminorms.
Suppose that X is a Hilbert module over a pro-C∗-algebra Aand Y is a Hilbert module over a pro-C∗-algebra
B. The algebraic tensor productX⊗alg YofXand Y is a pre-HilbertA⊗B-module with the action ofA⊗B

on X⊗alg Ydened by

(𝜉 ⊗ 𝜂) (a ⊗ b) = 𝜉 a ⊗ 𝜂b for all 𝜉 ∈ X, 𝜂 ∈ Y, a ∈ A and b ∈ B

6
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and the inner product

〈·, ·〉 :
(
X⊗alg Y

)
×

(
X⊗alg Y

)
→ A⊗alg B. dened by

〈𝜉1 ⊗ 𝜂1 , 𝜉2 ⊗ 𝜂2〉 = 〈𝜉1 , 𝜉2〉 ⊗ 〈𝜂1 , 𝜂2〉

We also know that for z =
∑n
i=1 𝜉i ⊗ 𝜂i in X ⊗al g Y we have 〈z, z〉A⊗B =

∑
i , j 〈𝜉i , 𝜉 j〉A ⊗ 〈𝜂i , 𝜂 j〉B ≥ 0 and

〈z, z〉A⊗B = 0 i z = 0.
The external tensor product of X and Y is the Hilbert module X⊗ Yover A⊗Bobtained by the completion
of the pre-Hilbert A⊗ B-module X⊗alg Y.

If P ∈ M (X) andQ ∈ M (Y) then there is a unique adjointable module morphism P ⊗Q : A⊗B→ X⊗Y

such that (P ⊗ Q) (a ⊗ b) = P (a) ⊗ Q (b) and (P ⊗ Q)∗ (a ⊗ b) = P∗ (a) ⊗Q∗ (b) for all a ∈ A and for all b ∈ B
(see, for example, [7]).

Let I and J be countable index sets.

Theorem 1.18. Let X and Y be two Hilbert pro-C∗-modules over unitary pro-C∗-algebras A and B, respectively.
Let {Λi }i∈I ⊂ HomA(X, Yi ) be an ∗-K-g-frame for Xwith bounds A and B and frame operators SΛ and {Γ j} j∈J ⊂
HomA(X,Zi ) be an ∗-L-g-frame for Ywith bounds C and D and frame operators SΓ. Then {Λi ⊗ Γ j}i∈I , j∈J is an
∗-K⊗L-g-frame for Hibert A⊗ B-module X⊗ Ywith frame operator SΛ ⊗ SΓ and bounds A ⊗ C and B ⊗ D.

Proof. The denition of ∗-K-g-frame {Λi }i∈I and ∗-L-g-frame {Γ j} j∈J gives

A〈K∗𝜉 , K∗𝜉 〉AA∗ ≤
∑︁
i∈I

〈Λi𝜉 , Λi𝜉 〉A ≤ B〈𝜉 , 𝜉 〉AB∗ , ∀𝜉 ∈ X.

C 〈L∗𝜂 , L∗𝜂〉BC∗ ≤
∑︁
j∈J

〈Γ j𝜂 , Γ j𝜂〉B ≤ D〈𝜂 , 𝜂〉BD∗ , ∀𝜂 ∈ Y.

Therefore
(A〈K∗𝜉 , K∗𝜉 〉AA∗) ⊗ (C 〈L∗𝜂 , L∗𝜂〉BC∗)

≤
∑︁
i∈I

〈Λi𝜉 , Λi𝜉 〉A ⊗
∑︁
j∈J

〈Γ j𝜂 , Γ j𝜂〉B

≤ (B〈𝜉 , 𝜉 〉AB∗) ⊗ (D〈𝜂 , 𝜂〉BD∗) , ∀𝜉 ∈ X, ∀𝜂 ∈ Y.

Then
(A ⊗ C) (〈K∗𝜉 , K∗𝜉 〉A ⊗ 〈L∗𝜂 , L∗𝜂〉B) (A∗ ⊗ C∗)

≤
∑︁

i∈I , j∈J
〈Λi𝜉 , Λi𝜉 〉A ⊗ 〈Γ j𝜂 , Γ j𝜂〉B

≤ (B ⊗ D) (〈𝜉 , 𝜉 〉A ⊗ 〈𝜂 , 𝜂〉B) (B∗ ⊗ D∗) , ∀𝜉 ∈ X, ∀𝜂 ∈ Y.

Consequently we have

(A ⊗ C)〈K∗𝜉 ⊗ L∗𝜂 , K∗𝜉 ⊗ L∗𝜂〉A⊗B(A ⊗ C)∗

≤
∑︁

i∈I , j∈J
〈Λi𝜉 ⊗ Γ j𝜂 , Λi𝜉 ⊗ Γ j𝜂〉A⊗B

≤ (B ⊗ D)〈𝜉 ⊗ 𝜂 , 𝜉 ⊗ 𝜂〉A⊗B(B ⊗ D)∗ , ∀𝜉 ∈ X, ∀𝜂 ∈ Y.

Then for all 𝜉 ⊗ 𝜂 in X⊗ Ywe have

(A ⊗ C)〈(K ⊗ L)∗ (𝜉 ⊗ 𝜂) , (K ⊗ L)∗ (𝜉 ⊗ 𝜂)〉A⊗B(A ⊗ C)∗

≤
∑︁

i∈I , j∈J
〈(Λi ⊗ Γ j) (𝜉 ⊗ 𝜂) , (Λi ⊗ Γ j) (𝜉 ⊗ 𝜂)〉A⊗B

≤ (B ⊗ D)〈𝜉 ⊗ 𝜂 , 𝜉 ⊗ 𝜂〉A⊗B(B ⊗ D)∗.
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The last inequality is satised for every nite sum of elements inX⊗al gYand then it’s satised for all z ∈ X⊗ Y.
It shows that {Λi ⊗ Γ j}i∈I , j∈J is an ∗-K ⊗ L-g-frame for Hilbert A⊗ B-module X⊗ Ywith lower and upper
bounds A ⊗ C and B ⊗ D, respectively.
By the denition of frame operator SΛ and SΓ we have

SΛ𝜉 =
∑︁
i∈I

Λ∗
iΛi𝜉 , ∀𝜉 ∈ X.

SΓ𝜂 =
∑︁
j∈J

Γ∗
jΓ j𝜂 , ∀𝜂 ∈ Y.

Therefore
(SΛ ⊗ SΓ) (𝜉 ⊗ 𝜂) = SΛ𝜉 ⊗ SΓ𝜂

=
∑︁
i∈I

Λ∗
iΛi𝜉 ⊗

∑︁
j∈J

Γ∗
jΓ j𝜂

=
∑︁

i∈I , j∈J
Λ∗
iΛi𝜉 ⊗ Γ∗

jΓ j𝜂

=
∑︁

i∈I , j∈J
(Λ∗

i ⊗ Γ∗
j ) (Λi𝜉 ⊗ Γ j𝜂)

=
∑︁

i∈I , j∈J
(Λ∗

i ⊗ Γ∗
j ) (Λi ⊗ Γ j) (𝜉 ⊗ 𝜂)

=
∑︁

i∈I , j∈J
(Λi ⊗ Γ j)∗ (Λi ⊗ Γ j) (𝜉 ⊗ 𝜂).

Now by the uniqueness of frame operator, the last expression is equal to SΛ⊗Γ (𝜉 ⊗ 𝜂). Consequently we have
(SΛ ⊗ SΓ) (𝜉 ⊗ 𝜂) = SΛ⊗Γ (𝜉 ⊗ 𝜂). The last equality is satised for every nite sum of elements in X⊗al g Y and
then it’s satised for all z ∈ X⊗ Y. It shows that (SΛ ⊗ SΓ) (z) = SΛ⊗Γ (z). So SΛ⊗Γ = SΛ ⊗ SΓ. �
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