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Abstract

In this paper, we introduce the concept of #-K-g-frames in Hilbert modules over a pro-C*-algebras. The anal-
ysis operator, the synthesis operator and the frame operator are presented. Also, we investigate the relationship
between %-g-frames, and x-K-g-frames. We give some properties of them. Finally, we study the tensor product
of x-K-g-frames for Hilbert pro-C*-modules.
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Introduction

Frame theory is recently an active research area in mathematics, computer science and engineering with many
exciting applications in a variety of different fields. They are generalizations of bases in Hilbert spaces. Frames
for Hilbert spaces were first introduced in 1952 by Duflin and Schaefer [4] for study some problems of nonhar-
monic Fourier series. They were reintroduced and developed in 1986 by Daubechies, Grossmann and Meyer
[3], and popularized from then on. Hilbert C*-modules is a generalization of Hilbert spaces by allowing the
inner product to take values in a C*-algebra rather than in the field of complex numbers.

Pro-C*-algebras also called locally C*-algebra is a (projective) limit of C*-algebras in the category of topo-
logical %-algebras. In this direction we mention, in particular, the works of Inoue [6], Zhuraev and Sharipov
[11] and Phillips [9].

The aim of this paper is to introduce the notion of #-K-g-frame in Hilbert modules over pro-C*-algebras
and investigate some results for these frames. We extend some results about *-K-g-frames for Hilbert C*-
modules from [10].

This paper is divided into three sections. After recalling some fundamental definitions and notations of
Hilbert pro-C*-modules in section 2, we move on to definition of x-K-g-frame and we give some of its prop-
erties. Finally in section 4 we investigate the tensor product of Hilbert pro-C*-modules,we show that tensor
product of #-K-g-frame for Hilbert pro-C*-modules X and ¥, present #-K-g-frame for X ® ¥, and tensor
product of their frame operators is the frame operator of the tensor product of *-K-g-frame.
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Preliminaries

In this section we briefly recall some definitions and properties of pro-C*-algebras, which will be necessary to
prove our results.

Recall that a pro-C*-algebra is a complete Hausdor{l complex topological x-algebra sf whose topology is
determined by its continuous C*-seminorms in the sens that a net {a,} converges to 0 if and only if p(a,)

converges to 0 for all continuous C*-seminorm p on 9 and we have:
1) p(ab) < p(a)p(b)
2) p(a*a) = p(a)®

foralla,b e d.

If the topology of pro-C*-algebra is determined by only countably many C*-seminorms, then it is called a
o -C*-algebra.

We denote by sp(a) the spectrum of a such that: sp(a) = {1 € C: A1y — a is not invertible } forall a € o
. Where o is unital pro-C*-algebra with unite 1.

The set of all continuous C*-seminorms on 9 is denoted by S(d). If sd* denotes the set of all positive
elements of o, then A7 is a closed convex C*-seminorms on .

Example 1.1. Every C*-algebra is a pro-C*-algebra.
Proposition 1.2. [6]. Let s be a unital pro-C*-algebra with an identity 1y. Then for any p € S(dd), we have:
(1) p(a) = p(a*) foralla € A
2 p(da)=1
(8) Ifa,b e d* and a < b, then p(a) < p(b)
(4) If 14 < b, then b is invertible and b= < 14
(5) Ifa, b e A* are invertible and 0 < a < b, then 0 < b™! < a”!
(6) Ifa,b,c e danda < b thenc*ac < c*be
(7) Ifa,b e d* and a® < b? then 0 < a < b

Definition 1.3. [9]. A pre-Hilbert module over pro-C*-algebra d, is a complex vector space E which is also a
left si-module compatible with the complex algebra structure, equipped with an gf-valued inner product (., .)
E x E — ¢l which is C-and d-linear in its first variable and satisfies the following conditions:

D (&, m) =, &) foreveryé,n e £
2) (£,&)>0foreveryé € E
3) (£,¢6)=0ifandonlyif € =0

forevery &, € E. We say E is a Hilbert sf-module (or Hilbert pro-C*-module over of ). If E is complete with
respect to the topology determined by the family of seminorms

PE(E) =Vp((§,8)) &€k, peS(d)

Let of be a pro-C*-algebra and let X and Y be Hilbert of -modules.A bounded s4-module map from X to
%Y is called an operators from X to Y. We denote the set of all operator from X to Y by Homg (X, Y).
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Definition 1.4. An sf-module map 7' : X — ¥ is adjointable if there is a mapT* : Y — X such that
Té,n)y =&, Tn) forall ¢ € X, np € Y, and is called bounded if for all p € S(sf), there is M, > 0 such that
poy(TE) < Mype (¢) forall ¢ € X.

It is clear that every adjointable map is a bounded sd-module map. The set of all adjointable maps from X
into Y is denoted by Hom? (X, %) and we write Hom (X) = Hom; (X, L) The vector space Hom’ (X, Y) is
a complete locally convex space.

The Hilbert M (f)-module £ (s, X) is called the multiplier module of L and it is denoted by M (). For
allh € M(X) and é € X, we have (h, E)y(x) = h*(€). Moreover, if @ € o and h € M(X), then h.a can be
identified by i (a).

Definition 1.5. Let o be a pro-C*-algebra and &, Y be two Hilbert sf-modules. The operator 7 : X — Y is
called uniformly bounded below, if there exists C > 0 such that for each p € S(d),

py(T€) < Cpx (&), forall& eX

and is called uniformly bounded above if there exists C” > 0 such that for each p € S(sf),

py(Té) > C'px (), forallé eX

IT]|co = inf{M : M is an upper bound for T'}
Py(T) =sup {py(T'(x)) : £ € X,  px(€) < 1}
It’s clear to see that, p(T") < ||T|| forall p € S(s4).
Proposition 1.6. [5]. Let T be an uniformly bounded below operator in Hom (X, Y ). then T is closed and injective.

Proposition 1.7. [2]. Let X be a Hilbert module over pro-C*-algebra sl and T' be an invertible element in Hom”,(X)
such that both are uniformly bounded. Then for each & € X,

[ .00 < e o) < 1T 00,

Let X and U be two Hilbert pro-C*-modules, and {%;};<; be a countable sequence of closed submodules

of Y.

Definition 1.8. [8]. We call asequence A = {A; € Homg (X, Y;)};¢; @ *-g-frame for X with respect to {Y;}
if

i€l

AE, VA" < 3 ANk, AiE) < B(E, E)B° (1.1)
iel
forall ¢ € X and strictly nonzero elements 4, B € si. The number A4 and B are called *-g-frame bounds for
A. The x-g-frame is called tight if 4 = B and a Parseval if 4 = B = 1. If in the above we only have the upper
bound, then A is called a x-g-Bessel sequence. Also if for each i € I, Y; = Y, we call A a x-g-frame for X with
respect to Y.

x-K-g-frames in Hilbert pro-C*-modules

Let of be a pro-C*-algebra, X and % two Hilbert gl-modules, and {¥;};c is a countable sequence of closed
submodules of Y.
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Definition 1.9. Let K € Hom;(X). We say that {A; € Homgy (X, %;)};¢; is #-K-g-frame for X with respect
to {¥Y;},¢; if there exist nonzero elements 4, B € o such that forall £ € I,

AR E KT EA" < 3 (NE, Nig) < B(E, 6)B' (1.2)
iel
The numbers 4 and B are called lower and upper bound of the x-K-g-frame, respectively. If
AKE KTEA" = Y (A&, Ni), V€ € X. (1.8)
i€l

The *-K-g-frame is 4-tight.
Example 1.10. Let/* be the set of all bounded complex-valued sequences. Forany u = {«;};en, v = {v}jen €
[®, we define

uv = {ujvj}jeN, u* = {tj}jeN, llu|l = sup |u;|.
jeN

Then o = {I*, ||.||} is a C*-algebra. Consequently o = {[*, ||.||} is pro-C*-algebra.

Let X = Cp be the set of all sequences converging to zero. For any u, v € X we define

(u,v) = uv* = {ujiij}jen.

Then X is a Hilbert sd-module. '

Define f; = {f/}ien- by f/ = % + % ifi=jand f/ = 0ifi # j Vj € N*. Now define the adjointable operator
/\j:% —>$ﬂ, /\jf = <§,]§)

then for every £ € & we have

1 1 1 1
D AJE AE) = {5+ —dien- (€, E){g + = dien-.
; i i
jeN
Let K : X — X defined by K¢ = {%}ieN*-
Then for every & € X we have

1 1 1 1
(K*¢,K*€)g < Z(Aj§: Ajé) = {§ + 7}ieN*<§, §>{§ + l_.}ieN*-

jeN
Which shows that {A;};en is a #-K-g-frame for X with bounds 1 and {% + %}ieN*-

Remark 1.11. 1. Every #-g-frame for X with respect to {%; : i € I} is an *-K-g-frame, for any K €
Hom? (X): K # 0.

2. If K € Homg (X) is an bounded surjective operator, then every #-K-g-frame for & with respect to {%; :
i € I} is a x-g-frame.
Example 1.12. Let X be a finitely or countably generated Hilbert sf-module. Hom* (%) Let K € Hom,(X)
an invertible element such that both are uniformly bounded and K # 0. Let o be a Hilbert sf-module over
itself with the inner product {a, b) = ab*. Let {x;};c; be an x-frame for L with bounds 4 and B, respectively.
For each i € I, we define A; : X — o by A;jé = (£, 2;), V& € X. A; is adjointable and Aa = ax; for each
a € d. And we have
AE, )" < Y (€, 2i) (i, €) < B, £)B", VE € K.
iel
Or
(K*¢,K*¢) < |K||2(€, &), VéE € X.
Then
IKIZAK E, K€ IKIZ A < DAk, Nig) < BE, £)B", V€ € X
iel

So {A;}ier is #-K-g-frame for X with bounds ||K||Z' 4 and B, respectively.
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Definition 1.13. Let {A;};c; be an %-K-g-frame in &L with respect to {¥; : ¢ € I}. We define the analysis
operator as follows

T:X - @Y by TE={A&}i, V& e€X
So the synthesis operator is
T": @Y — X givenby T ({&}) = Z/\?fi, V{¢iti € @i Y.
iel
The combination of T" and T, gives the frame operator § : X — X such that S¢ = T"T¢ = 3¢ AIAE.

Theorem 1.14. Let K € Hom?, () be an bounded surjective operator. If {A;};eq is an *-K-g-frame in X with respect
to {%Y; : i € I}, then the frame operator S is invertible, positive and it is self-adjoint such that :

AlxA* < S < BlyB*
Where Iy is the identity function on X.

Proof. Result of (2) in Remark 1.11 and Theorem 3.1 in [8]. |
Let K € Hom)(X), in the following theorem we construct an *-K-g-frame using an *-g-frame.

Theorem 1.15. Let K € Hom}(X) an invertible element such that both are uniformly bounded and {A;}ic be an
x-g-frame in L with respect to {X; : i € I} with bounds A, B. Then {\;K};cs is an x-K*-g-frame in X with respect to
{X; : i € I} with bounds A, ||K||eB. The frame operator of {\;K }ier is S = K*SK, where S is the frame operator of
{Ai}iel-

Proof. From
A, E)ad” < ) (A€, Nid ) < B(E, £)aB", VE € X.
iel
We getforall £ € X,
AKE, Ké)ad™ < Z(Ain,Ainm < B(Ké, K&)aB™ < [KlloB(¢, )a(lIKlwB)"
iel

Then {A;K};er is an x-K*-g-frame in X with respect to {%¥; : i € I} with bounds A4, ||K||cB.
By definition of S,we have SK¢ = 3,c; ATA;K&. Then

K*SK =K* Y AIAKE = 3 K ATAKE.
iel iel
Hence " = K*SK. ]

Corollary 1.16. Let K € Homg(X) and {A; }ies be an x-g-frame. Then {A;S™ K };c1 is an x-K*-g-frame, where S
is the frame operator of {A; }iej.

Proof. Result of the Theorem 1.15 for the s-g-frame {A; S };¢;. |

Theorem 1.17. Let K € Homg(X) bounded and surjective such that K = K*, {A;}ic; € Homg(X,Y;) and
Yicr (NE, NE) converge in the semi-norm for & € X. Then A = {Af}iel is a #-K-g-frame for X with respect to
{Yi}; 1 if and only if there are two strictly nonzero elements C, D € 9 and two constants m, M > 0 such that for every
§ed,

p(Cmby ) pe o (mdy ) <o D iaik a)

iel

< pD)p((€,E)p (D7) (1.4)
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Proof. Suppose that {A;};ef € Homg (X, Y;) is a -K-g-frame for L with respect to {¥;},;, then by Corollary
2.3 in [1], there exist m > 0 such that m(&, &) < (K*¢, K*¢). Then

1 1\ L
€ < (Cmh) [ 3 g, 80| ((Cmby’)
iel

and

D Mg AE) | < DG, D

iel
Hence, by Proposition 1.2

pCm) ) p(E, ENp(Cmty )T < p [T (A, M) | < p(DIP(E, EN)p (D7)
iel

Conversely, if we suppose that hold. Then we can define :
T >@P%, TE={rélie, VEeX.
iel
as a linear operator, such that

(TE€,TE) = Y (M€, Ai€) , VE €L

iel
We have pg (T'(€)) = V(TE, T€),(3.8) implies
B (T'(£)) < p(D)? e (£)p (D)?

which implies that 7" is uniformly bounded. We write 7T = U. Then (T'(¢),T(¢)) = (T*T(¢),¢) =
(U(&), &). Therefore, U is positive. On the one hand we have, U* = T*T', then U is self-adjoint.
On the other hand,

(Ube,ule) = e, e)= Y (g, M)
iel

Then by Proposition 1.6 and (8.8), U is invertible and uniformily bounded. Hence by Proposition 1.6, we get:
U512, NI < U2(E), UL () < IUE|aké, E)IU[|on
For all K € Hom’(X) bounded and surjective such that K = K*, we have
(K*¢,K°¢) < K[, )

Then
I T S, ) T SR 1 1 g
MU 2| MK e, K ey MU 2| < U2 J4E, ENU 2|1

Therefore {A;K};er is an #-K*-g-frame in X with respect to {¥Y; };es O

Tensor Product

The minimal or injective tensor product of the pro-C*-algebras o and %, denoted by o ® %, is the completion
of the algebraic tensor product 9 ®,1, B with respect to the topology determined by a family of C*-seminorms.
Suppose that X is a Hilbert module over a pro-C*-algebra of and % is a Hilbert module over a pro-C*-algebra
A. The algebraic tensor product X ®,, Y of X and Y is a pre-Hilbert 9 ® B-module with the action of o ® %
on X &, Y defined by

(E®n)(a®b)y=¢(a®nb forallé e X, npeY,acdandb e B
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and the inner product
o) i (X ®ug Y) X (X @y Y) — A ®,y B. defined by

(&1 ®1m1, &2 ®ng) = (€1, 9) ® (M1, 7M9)

We also know that for z = 37| & @ n; in X ®yy Y we have (2, 2)aen = 2; (i, E)a ® (i, nj)s = 0 and
(2, 2)gex = 0iff 2 = 0.

The external tensor product of X and Y is the Hilbert module X ® Y over of ® % obtained by the completion
of the pre-Hilbert o ® B-module X ®,, Y.

IfP e M(X) and Q € M(%¥) then there is a unique adjointable module morphism PQQ : QB — L Y
such that (P ® Q)(a®b) = P(a) @ Q(b) and (P ® Q)" (a®b) = P*(a) ® Q*(b) forall a € A and forall b € B
(see, for example, [7]).

Let I and ] be countable index sets.

Theorem 1.18. Let X and Y be two Hilbert pro-C*-modules over unitary pro-C*-algebras si and B, respectively.
Let {A;}ier € Homg (X, Y;) be an +-K-g-frame for X with bounds A and B and frame operators Sp and {T'j}je; C
Homgy (X, Z;) be an #-L-g-frame for Y with bounds C and D and frame operators Sr. Then {A; @ T';}ier jeg 15 an
x-K®L-g-frame for Hibert s ® B-module X @ Y with frame operator Sx ® Sr and bounds A ® C and B ® D.

Proof. 'The definition of #-K-g-frame {A;};c; and #-L-g-frame {I';};c; gives

AR E, K Eyad” < Y (Mg, Aik)a < BIE, €)aB", VE € X

iel

C(Ln, L'msC™ < > (T, Timdas < Dén, mdaD”, ¥ € Y.

jed
Therefore
(AK*E, K7 E)aA™) @ (C{L™n, L'n)xC")
< Z(Aif, Ai&)a ® Z(an, Lin)a
iel jed
< (B¢, £)aB") @ (D(n, n)aD"),¥é € X, Vn €Y.
Then

(A®C)(K'E, K*¢)a ® (L', L'n)g) (A" ® C7)

< D (g N ® (T, Tim)ay
iel,jeJ

< (BRD)((,8)a® (m,m)a)(B* @ DY), VE € X, Vn €Y.

Consequently we have
(A®C) K¢ e L, K¢ ® L'n)aen(d®C)"

< Z NéETin, Nié ®T ) uen
iel,jed

SBRD)NE®N, £ @N)asn(BOD)", Ve € X,V €Y.
Then forall ¢ ® 7 in X ® Y we have

(A CH(K®L)(§®n), (K®L) (£ ®n))uen(deC)"
< DA eT)(E®n), (A ®T))(E & 1)uen

iel,jed

S (Be®D)E®n, & ®@n)ass(B®D)".
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The last inequality is satisfied for every finite sum of elements in X ®,;,Y and then it’s satisfied forall z € X ® Y.
It shows that {A; ® T'j}ier,jes is an #-K ® L-g-frame for Hilbert of ® %-module X ® Y with lower and upper
bounds 4 ® C and B ® D, respectively.

By the definition of frame operator S and Sr we have

SpE = ZA;‘A@, VE e X.

iel
Srn = ZF}THL Vn €Y.
jed

Therefore
(SA®Sp) (€ ®n) =SrE ® Sty

D AN ® Y T

iel jed
= > AANE®TITn

iel,jed
= > (eIl
iel,jed
= > (e er)Een)
iel,jed
= > (nem) (A eT)(E ).
iel,jed

Now by the uniqueness of frame operator, the last expression is equal to Spgr (€ ® n7). Consequently we have
(SA ®Sr) (¢ ®n) = Sper(é ®n). The last equality is satisfied for every finite sum of elements in X ®,, Y and
then i’s satisfied for all z € L ® Y. It shows that (Sx ® Sr)(2) = Saer(z)- So Saer = Sx ® Sr. O
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