Asian J. Math. Appl. (2022) 2022:6

-K-g-Frames in Hilbert Pro-C-Modules

Mohamed Rossafi¹, Roumaissae Eljazzar²

¹LaSMA Laboratory Department of Mathematics Faculty of Sciences, Dhar El Mahraz University Sidi Mohamed Ben Abdellah, B. P. 1796 Fes Atlas Morocco ²Laboratory of Partial Differential Equations, Spectral Algebra and Geometry Department of Mathematics, Faculty of Sciences, University Ibn Tofail, Kenitra, Morocco

Correspondence should be addressed to Mohamed Rossafi: rossafimohamed@gmail.com, mohamed.rossafi@usmba.ac.ma

Email(s): rossafimohamed@gmail.com (M. Rossafi), roumaissae.eljazzar@uit.ac.ma (R. Eljazzar)

Abstract

In this paper, we introduce the concept of *-K-g-frames in Hilbert modules over a pro- C^* -algebras. The analysis operator, the synthesis operator and the frame operator are presented. Also, we investigate the relationship between *-g-frames, and *-K-g-frames. We give some properties of them. Finally, we study the tensor product of *-K-g-frames for Hilbert pro- C^* -modules.

Keywords: Frame; *-K-g-frame; pro-*C**-algebra; Hilbert pro-*C**-modules; Tensor Product.

Introduction

Frame theory is recently an active research area in mathematics, computer science and engineering with many exciting applications in a variety of different fields. They are generalizations of bases in Hilbert spaces. Frames for Hilbert spaces were first introduced in 1952 by Duffin and Schaefer [4] for study some problems of nonharmonic Fourier series. They were reintroduced and developed in 1986 by Daubechies, Grossmann and Meyer [3], and popularized from then on. Hilbert C^* -modules is a generalization of Hilbert spaces by allowing the inner product to take values in a C^* -algebra rather than in the field of complex numbers.

Pro- C^* -algebras also called locally C^* -algebra is a (projective) limit of C^* -algebras in the category of topological *-algebras. In this direction we mention, in particular, the works of Inoue [6], Zhuraev and Sharipov [11] and Phillips [9].

The aim of this paper is to introduce the notion of *-K-g-frame in Hilbert modules over pro- C^* -algebras and investigate some results for these frames. We extend some results about *-K-g-frames for Hilbert C^* -modules from [10].

This paper is divided into three sections. After recalling some fundamental definitions and notations of Hilbert pro- C^* -modules in section 2, we move on to definition of *-K-g-frame and we give some of its properties. Finally in section 4 we investigate the tensor product of Hilbert pro- C^* -modules,we show that tensor product of *-K-g-frame for Hilbert pro- C^* -modules \mathfrak{X} and \mathcal{Y} , present *-K-g-frame for $\mathfrak{X} \otimes \mathcal{Y}$, and tensor product of their frame operators is the frame operator of the tensor product of *-K-g-frame.

Preliminaries

In this section we briefly recall some definitions and properties of $\text{pro-}C^*$ -algebras, which will be necessary to prove our results.

Recall that a pro- C^* -algebra is a complete Hausdorff complex topological *-algebra \mathcal{A} whose topology is determined by its continuous C^* -seminorms in the sens that a net $\{a_\alpha\}$ converges to 0 if and only if $p(a_\alpha)$ converges to 0 for all continuous C^* -seminorm p on \mathcal{A} and we have:

1) $p(ab) \le p(a)p(b)$

2) $p(a^*a) = p(a)^2$

for all $a, b \in \mathcal{A}$.

If the topology of pro- C^* -algebra is determined by only countably many C^* -seminorms, then it is called a σ - C^* -algebra.

We denote by sp(a) the spectrum of a such that: $sp(a) = \{\lambda \in \mathbb{C} : \lambda 1_{\mathcal{A}} - a \text{ is not invertible }\}$ for all $a \in \mathcal{A}$. . Where \mathcal{A} is unital pro- C^* -algebra with unite $1_{\mathcal{A}}$.

The set of all continuous C^* -seminorms on \mathcal{A} is denoted by $S(\mathcal{A})$. If \mathcal{A}^+ denotes the set of all positive elements of \mathcal{A} , then \mathcal{A}^+ is a closed convex C^* -seminorms on \mathcal{A} .

Example 1.1. Every C^* -algebra is a pro- C^* -algebra.

Proposition 1.2. [6]. Let \mathcal{A} be a unital pro-C^{*}-algebra with an identity $1_{\mathcal{A}}$. Then for any $p \in S(\mathcal{A})$, we have:

- (1) $p(a) = p(a^*)$ for all $a \in A$
- (2) $p(1_{\mathcal{A}}) = 1$
- (3) If $a, b \in A^+$ and $a \leq b$, then $p(a) \leq p(b)$
- (4) If $1_{\mathcal{A}} \leq b$, then b is invertible and $b^{-1} \leq 1_{\mathcal{A}}$
- (5) If $a, b \in \mathcal{A}^+$ are invertible and $0 \le a \le b$, then $0 \le b^{-1} \le a^{-1}$
- (6) If $a, b, c \in A$ and $a \leq b$ then $c^*ac \leq c^*bc$
- (7) If $a, b \in A^+$ and $a^2 \leq b^2$, then $0 \leq a \leq b$

Definition 1.3. [9]. A pre-Hilbert module over pro-*C*^{*}-algebra \mathcal{A} , is a complex vector space *E* which is also a left \mathcal{A} -module compatible with the complex algebra structure, equipped with an \mathcal{A} -valued inner product $\langle ., . \rangle$ *E* × *E* → \mathcal{A} which is \mathbb{C} -and \mathcal{A} -linear in its first variable and satisfies the following conditions:

- 1) $\langle \xi, \eta \rangle^* = \langle \eta, \xi \rangle$ for every $\xi, \eta \in E$
- 2) $\langle \xi, \xi \rangle \ge 0$ for every $\xi \in E$
- 3) $\langle \xi, \xi \rangle = 0$ if and only if $\xi = 0$

for every ξ , $\eta \in E$. We say E is a Hilbert \mathcal{A} -module (or Hilbert pro- C^* -module over \mathcal{A}). If E is complete with respect to the topology determined by the family of seminorms

$$\bar{p}_E(\xi) = \sqrt{p(\langle \xi, \xi \rangle)} \quad \xi \in E, p \in S(\mathcal{A})$$

Let \mathscr{A} be a pro- C^* -algebra and let \mathfrak{X} and \mathfrak{Y} be Hilbert \mathscr{A} -modules. A bounded \mathscr{A} -module map from \mathfrak{X} to \mathfrak{Y} is called an operators from \mathfrak{X} to \mathfrak{Y} . We denote the set of all operator from \mathfrak{X} to \mathfrak{Y} by $Hom_{\mathscr{A}}(\mathfrak{X}, \mathfrak{Y})$.

Definition 1.4. An \mathscr{A} -module map $T : \mathfrak{X} \longrightarrow \mathcal{Y}$ is adjointable if there is a map $T^* : \mathcal{Y} \longrightarrow \mathfrak{X}$ such that $\langle T\xi, \eta \rangle = \langle \xi, T^*\eta \rangle$ for all $\xi \in \mathfrak{X}, \eta \in \mathcal{Y}$, and is called bounded if for all $p \in S(\mathscr{A})$, there is $M_p > 0$ such that $\bar{p}_{\mathscr{Y}}(T\xi) \leq M_p \bar{p}_{\mathscr{X}}(\xi)$ for all $\xi \in \mathfrak{X}$.

It is clear that every adjointable map is a bounded \mathscr{A} -module map. The set of all adjointable maps from \mathfrak{X} into \mathscr{Y} is denoted by $Hom_{\mathscr{A}}^*(\mathfrak{X}, \mathscr{Y})$ and we write $Hom_{\mathscr{A}}^*(\mathfrak{X}) = Hom_{\mathscr{A}}^*(\mathfrak{X}, \mathfrak{X})$ The vector space $Hom_{\mathscr{A}}^*(\mathfrak{X}, \mathscr{Y})$ is a complete locally convex space.

The Hilbert $M(\mathcal{A})$ -module $\mathcal{L}(\mathcal{A}, \mathfrak{X})$ is called the multiplier module of \mathfrak{X} and it is denoted by $M(\mathfrak{X})$. For all $h \in M(\mathfrak{X})$ and $\xi \in \mathfrak{X}$, we have $\langle h, \xi \rangle_{M(\mathfrak{X})} = h^*(\xi)$. Moreover, if $a \in \mathcal{A}$ and $h \in M(\mathfrak{X})$, then h.a can be identified by h(a).

Definition 1.5. Let \mathscr{A} be a pro-*C*^{*}-algebra and \mathfrak{X} , \mathfrak{Y} be two Hilbert \mathscr{A} -modules. The operator $T : \mathfrak{X} \to \mathfrak{Y}$ is called uniformly bounded below, if there exists C > 0 such that for each $p \in S(\mathscr{A})$,

$$\bar{p}_{\mathcal{Y}}(T\xi) \leq C\bar{p}_{\mathcal{X}}(\xi), \quad \text{for all } \xi \in \mathfrak{X}$$

and is called uniformly bounded above if there exists C' > 0 such that for each $p \in S(\mathcal{A})$,

$$\bar{p}_{\mathcal{X}}(T\xi) \ge C'\bar{p}_{\mathcal{X}}(\xi), \quad \text{for all } \xi \in \mathfrak{X}$$

 $||T||_{\infty} = \inf\{M : M \text{ is an upper bound for } T\}$

$$\hat{p}_{\mathcal{Y}}(T) = \sup\left\{\bar{p}_{\mathcal{Y}}(T(x)) : \xi \in \mathfrak{X}, \quad \bar{p}_{\mathfrak{X}}(\xi) \leq 1\right\}$$

It's clear to see that, $\hat{p}(T) \leq ||T||_{\infty}$ for all $p \in S(\mathcal{A})$.

Proposition 1.6. [5]. Let T be an uniformly bounded below operator in $Hom_{\mathcal{A}}^*(\mathfrak{X}, \mathcal{Y})$. then T is closed and injective.

Proposition 1.7. [2]. Let \mathfrak{X} be a Hilbert module over pro-C^{*}-algebra \mathfrak{A} and T be an invertible element in $Hom_{\mathcal{A}}^*(\mathfrak{X})$ such that both are uniformly bounded. Then for each $\xi \in \mathfrak{X}$,

$$\left\|T^{-1}\right\|_{\infty}^{-2} \langle \xi, \xi \rangle \le \langle T\xi, T\xi \rangle \le \|T\|_{\infty}^{2} \langle \xi, \xi \rangle.$$

Let \mathfrak{X} and \mathfrak{Y} be two Hilbert pro- C^* -modules, and $\{\mathcal{Y}_i\}_{i \in I}$ be a countable sequence of closed submodules of \mathfrak{Y} .

Definition 1.8. [8]. We call a sequence $\Lambda = \{\Lambda_i \in Hom_{\mathcal{A}}(\mathfrak{X}, \mathcal{Y}_i)\}_{i \in I}$ a *-*g*-frame for \mathfrak{X} with respect to $\{\mathcal{Y}_i\}_{i \in I}$ if

$$A\langle\xi,\xi\rangle A^* \le \sum_{i\in I} \langle\Lambda_i\xi,\Lambda_i\xi\rangle \le B\langle\xi,\xi\rangle B^*$$
(1.1)

for all $\xi \in \mathfrak{X}$ and strictly nonzero elements $A, B \in \mathfrak{A}$. The number A and B are called *-*g*-frame bounds for Λ . The *-*g*-frame is called tight if A = B and a Parseval if A = B = 1. If in the above we only have the upper bound, then Λ is called a *-*g*-Bessel sequence. Also if for each $i \in I$, $\mathcal{Y}_i = \mathcal{Y}$, we call Λ a *-*g*-frame for \mathfrak{X} with respect to \mathcal{Y} .

-K-g-frames in Hilbert pro-C-modules

Let \mathscr{A} be a pro- C^* -algebra, \mathfrak{X} and \mathcal{Y} two Hilbert \mathscr{A} -modules, and $\{\mathscr{Y}_i\}_{i \in J}$ is a countable sequence of closed submodules of \mathscr{Y} .

Definition 1.9. Let $K \in Hom_{\mathscr{A}}^*(\mathfrak{X})$. We say that $\{\Lambda_i \in Hom_{\mathscr{A}}(\mathfrak{X}, \mathscr{Y}_i)\}_{i \in I}$ is *-K-g-frame for \mathfrak{X} with respect to $\{\mathscr{Y}_i\}_{i \in I}$ if there exist nonzero elements $A, B \in \mathscr{A}$ such that for all $\xi \in \mathfrak{X}$,

$$A\langle K^*\xi, K^*\xi\rangle A^* \le \sum_{i\in I} \langle \Lambda_i\xi, \Lambda_i\xi\rangle \le B\langle \xi, \xi\rangle B^*$$
(1.2)

The numbers A and B are called lower and upper bound of the *-K-g-frame, respectively. If

$$A\langle K^*\xi, K^*\xi\rangle A^* = \sum_{i\in I} \langle \Lambda_i\xi, \Lambda_i\xi\rangle, \forall \xi \in \mathfrak{X}.$$
(1.3)

The *-K-g-frame is A-tight.

Example 1.10. Let l^{∞} be the set of all bounded complex-valued sequences. For any $u = \{u_j\}_{j \in \mathbb{N}}$, $v = \{v_j\}_{j \in \mathbb{N}} \in l^{\infty}$, we define

$$uv = \{u_j v_j\}_{j \in \mathbb{N}}, u^* = \{\bar{u_j}\}_{j \in \mathbb{N}}, \|u\| = \sup_{i \in \mathbb{N}} |u_j|.$$

Then $\mathcal{A} = \{l^{\infty}, \|.\|\}$ is a C^* -algebra. Consequently $\mathcal{A} = \{l^{\infty}, \|.\|\}$ is pro- C^* -algebra.

Let $\mathfrak{X} = C_0$ be the set of all sequences converging to zero. For any $u, v \in \mathfrak{X}$ we define

$$\langle u, v \rangle = uv^* = \{u_j \bar{u_j}\}_{j \in \mathbf{N}}$$

Then ${\mathfrak X}$ is a Hilbert ${\mathcal A}\operatorname{-module}$.

Define $f_j = \{f_i^j\}_{i \in \mathbb{N}^*}$ by $f_i^j = \frac{1}{2} + \frac{1}{i}$ if i = j and $f_i^j = 0$ if $i \neq j \forall j \in \mathbb{N}^*$. Now define the adjointable operator $\Lambda_j : \mathfrak{X} \to \mathcal{A}, \ \Lambda_j \xi = \langle \xi, f_j \rangle$.

then for every $\xi \in \mathfrak{X}$ we have

$$\sum_{j\in\mathbf{N}} \langle \Lambda_j \xi, \Lambda_j \xi \rangle = \{\frac{1}{2} + \frac{1}{i}\}_{i\in\mathbf{N}^*} \langle \xi, \xi \rangle \{\frac{1}{2} + \frac{1}{i}\}_{i\in\mathbf{N}^*}.$$

Let $K : \mathfrak{X} \to \mathfrak{X}$ defined by $K\xi = \{\frac{\xi_i}{i}\}_{i \in \mathbb{N}^*}$. Then for every $\xi \in \mathfrak{X}$ we have

 \sum

$$\langle K^*\xi, K^*\xi\rangle_{\mathcal{A}} \leq \sum_{j\in\mathbb{N}} \langle \Lambda_j\xi, \Lambda_j\xi\rangle = \{\frac{1}{2} + \frac{1}{i}\}_{i\in\mathbb{N}^*} \langle \xi, \xi\rangle \{\frac{1}{2} + \frac{1}{i}\}_{i\in\mathbb{N}^*}.$$

Which shows that $\{\Lambda_j\}_{j \in \mathbb{N}}$ is a *-K-g-frame for \mathfrak{X} with bounds 1 and $\{\frac{1}{2} + \frac{1}{i}\}_{i \in \mathbb{N}^*}$.

- **Remark 1.11.** 1. Every *-g-frame for \mathfrak{X} with respect to $\{\mathcal{Y}_i : i \in I\}$ is an *-K-g-frame, for any $K \in Hom_{\mathfrak{A}}^*(\mathfrak{X}): K \neq 0$.
 - 2. If $K \in Hom_{st}(\mathfrak{X})$ is an bounded surjective operator, then every *-K-g-frame for \mathfrak{X} with respect to $\{\mathcal{Y}_i : i \in I\}$ is a *-g-frame.

Example 1.12. Let \mathfrak{X} be a finitely or countably generated Hilbert \mathscr{A} -module. $Hom^*_{\mathscr{A}}(\mathfrak{X})$ Let $K \in Hom^*_{\mathscr{A}}(\mathfrak{X})$ an invertible element such that both are uniformly bounded and $K \neq 0$. Let \mathscr{A} be a Hilbert \mathscr{A} -module over itself with the inner product $\langle a, b \rangle = ab^*$. Let $\{x_i\}_{i \in I}$ be an *-frame for \mathfrak{X} with bounds \mathscr{A} and \mathscr{B} , respectively. For each $i \in I$, we define $\Lambda_i : \mathfrak{X} \to \mathscr{A}$ by $\Lambda_i \xi = \langle \xi, x_i \rangle$, $\forall \xi \in \mathfrak{X}$. Λ_i is adjointable and $\Lambda^*_i a = ax_i$ for each $a \in \mathscr{A}$. And we have

$$A\langle \xi, \xi \rangle A^* \leq \sum_{i \in I} \langle \xi, x_i \rangle \langle x_i, \xi \rangle \leq B\langle \xi, \xi \rangle B^*, \, \forall \xi \in \mathfrak{X}.$$

Or

$$\langle K^*\xi, K^*\xi \rangle \le ||K||_{\infty}^2 \langle \xi, \xi \rangle, \forall \xi \in \mathfrak{X}.$$

Then

$$\|K\|_{\infty}^{-1}A\langle K^{*}\xi, K^{*}\xi\rangle(\|K\|_{\infty}^{-1}A)^{*} \leq \sum_{i \in I} \langle \Lambda_{i}\xi, \Lambda_{i}\xi\rangle \leq B\langle \xi, \xi\rangle B^{*}, \forall \xi \in \mathfrak{X}.$$

So $\{\Lambda_i\}_{i \in I}$ is *-K-g-frame for \mathfrak{X} with bounds $||K||_{\infty}^{-1}A$ and B, respectively.

Definition 1.13. Let $\{\Lambda_i\}_{i \in I}$ be an *-K-g-frame in \mathfrak{X} with respect to $\{\mathcal{Y}_i : i \in I\}$. We define the analysis operator as follows

$$T: \mathfrak{X} \to \bigoplus_{i \in I} \mathcal{Y}_i$$
 by $T\xi = \{\Lambda_i \xi\}_i, \forall \xi \in \mathfrak{X}$

So the synthesis operator is

$$T^*: \oplus_{i \in I} \mathcal{Y}_i \to \mathfrak{X} \quad \text{given by} \quad T^*(\{\xi_i\}_i) = \sum_{i \in I} \Lambda_i^* \xi_i, \quad \forall \{\xi_i\}_i \in \oplus_{i \in I} \mathcal{Y}_i.$$

The combination of T and T^{*}, gives the frame operator $S : \mathfrak{X} \to \mathfrak{X}$ such that $S\xi = T^*T\xi = \sum_{i \in I} \Lambda_i^* \Lambda_i \xi$.

Theorem 1.14. Let $K \in Hom_{\mathcal{A}}^*(\mathfrak{X})$ be an bounded surjective operator. If $\{\Lambda_i\}_{i \in I}$ is an *-K-g-frame in \mathfrak{X} with respect to $\{\mathcal{Y}_i : i \in I\}$, then the frame operator S is invertible, positive and it is self-adjoint such that :

$$AI_{\mathfrak{X}}A^* \le S \le BI_{\mathfrak{X}}B^*$$

Where $I_{\mathfrak{X}}$ is the identity function on \mathfrak{X} .

Proof. Result of (2) in Remark 1.11 and Theorem 3.1 in [8].

Let $K \in Hom^*_{cl}(\mathfrak{X})$, in the following theorem we construct an *-K-g-frame using an *-g-frame.

Theorem 1.15. Let $K \in Hom_{\mathfrak{A}}^*(\mathfrak{X})$ an invertible element such that both are uniformly bounded and $\{\Lambda_i\}_{i \in I}$ be an *-g-frame in \mathfrak{X} with respect to $\{\mathfrak{X}_i : i \in I\}$ with bounds A, B. Then $\{\Lambda_i K\}_{i \in I}$ is an *- K^* -g-frame in \mathfrak{X} with respect to $\{\mathfrak{X}_i : i \in I\}$ with bounds A, B. The frame operator of $\{\Lambda_i K\}_{i \in I}$ is $S' = K^*SK$, where S is the frame operator of $\{\Lambda_i\}_{i \in I}$.

Proof. From

$$A\langle \xi, \xi \rangle_{\mathcal{A}} A^* \leq \sum_{i \in I} \langle \Lambda_i \xi, \Lambda_i \xi \rangle_{\mathcal{A}} \leq B\langle \xi, \xi \rangle_{\mathcal{A}} B^*, \forall \xi \in \mathfrak{X}.$$

We get for all $\xi \in \mathfrak{X}$,

$$A\langle K\xi, K\xi\rangle_{\mathcal{A}}A^* \leq \sum_{i\in I} \langle \Lambda_i K\xi, \Lambda_i K\xi\rangle_{\mathcal{A}} \leq B\langle K\xi, K\xi\rangle_{\mathcal{A}}B^* \leq \|K\|_{\infty}B\langle\xi, \xi\rangle_{\mathcal{A}}(\|K\|_{\infty}B)^*.$$

Then $\{\Lambda_i K\}_{i \in I}$ is an *-*K**-g-frame in \mathfrak{X} with respect to $\{\mathcal{Y}_i : i \in I\}$ with bounds A, $\|K\|_{\infty} B$.

By definition of *S*,we have $SK\xi = \sum_{i \in I} \Lambda_i^* \Lambda_i K\xi$. Then

$$K^*SK = K^* \sum_{i \in I} \Lambda_i^* \Lambda_i K\xi = \sum_{i \in I} K^* \Lambda_i^* \Lambda_i K\xi$$

Hence $S' = K^*SK$.

Corollary 1.16. Let $K \in Hom_{\mathcal{A}}(\mathfrak{X})$ and $\{\Lambda_i\}_{i \in I}$ be an *-g-frame. Then $\{\Lambda_i S^{-1}K\}_{i \in I}$ is an *-K*-g-frame, where S is the frame operator of $\{\Lambda_i\}_{i \in I}$.

Proof. Result of the Theorem 1.15 for the *-g-frame $\{\Lambda_i S^{-1}\}_{i \in I}$.

Theorem 1.17. Let $K \in Hom_{\mathscr{A}}(\mathfrak{X})$ bounded and surjective such that $K = K^*$, $\{\Lambda_i\}_{i \in I} \in Hom_{\mathscr{A}}(\mathfrak{X}, \mathcal{Y}_i)$ and $\sum_{i \in I} \langle \Lambda_i \xi, \Lambda_i \xi \rangle$ converge in the semi-norm for $\xi \in \mathfrak{X}$. Then $\Lambda = \{\Lambda_j\}_{i \in I}$ is a *-K-g-frame for \mathfrak{X} with respect to $\{\mathcal{Y}_i\}_{i \in I}$ if and only if there are two strictly nonzero elements $C, D \in \mathscr{A}$ and two constants m, M > 0 such that for every $\xi \in \mathfrak{X}$,

$$p\left((Cm^{\frac{1}{2}})^{-1}\right)^{-1}p(\langle\xi,\xi\rangle)p\left((Cm^{\frac{1}{2}})^{*-1}\right)^{-1} \le p\left(\sum_{i\in I}\langle\Lambda_i\xi,\Lambda_i\xi\rangle\right) \le p(D)p(\langle\xi,\xi\rangle)p\left(D^*\right).$$
(1.4)

Proof. Suppose that $\{\Lambda_i\}_{i \in I} \in Hom_{\mathfrak{A}}(\mathfrak{X}, \mathcal{Y}_i)$ is a *-*K*-g-frame for \mathfrak{X} with respect to $\{\mathcal{Y}_i\}_{i \in I}$, then by Corollary 2.3 in [1], there exist m > 0 such that $m\langle \xi, \xi \rangle \leq \langle K^*\xi, K^*\xi \rangle$. Then

$$\langle \xi, \xi \rangle \le (Cm^{\frac{1}{2}})^{-1} \left(\sum_{i \in I} \langle \Lambda_i \xi, \Lambda_i \xi \rangle \right) \left((Cm^{\frac{1}{2}})^* \right)^{-1}$$

and

$$\left(\sum_{i\in I} \left< \Lambda_i \xi, \Lambda_i \xi \right> \right) \le D \left< \xi, \xi \right> D^*$$

Hence, by Proposition 1.2

$$p(Cm^{\frac{1}{2}})^{-1})^{-1}p(\langle\xi,\xi\rangle)p(Cm^{\frac{1}{2}})^{*-1})^{-1} \le p\left(\sum_{i\in I} \langle\Lambda_i\xi,\Lambda_i\xi\rangle\right) \le p(D)p(\langle\xi,\xi\rangle)p(D^*)$$

Conversely, if we suppose that hold. Then we can define :

$$T: \mathfrak{X} \to \bigoplus_{i \in I} \mathfrak{Y}_i, \quad T(\xi) = \{\Lambda_i \xi\}_{i \in I}, \quad \forall \xi \in \mathfrak{X}.$$

as a linear operator, such that

$$\langle T\xi, T\xi \rangle = \sum_{i \in I} \langle \Lambda_i \xi, \Lambda_i \xi \rangle, \forall \xi \in \mathfrak{A}$$

We have $\bar{p}_{\mathfrak{X}}(T(\xi)) = \sqrt{\langle T\xi, T\xi \rangle}$,(3.3) implies

$$\bar{p}_{\mathfrak{X}}(T(\xi)) \le p(D)^{\frac{1}{2}} \bar{p}_{\mathfrak{X}}(\xi) p(D^*)^{\frac{1}{2}}$$

which implies that T is uniformly bounded. We write $T^*T = U$. Then $\langle T(\xi), T(\xi) \rangle = \langle T^*T(\xi), \xi \rangle = \langle U(\xi), \xi \rangle$. Therefore, U is positive. On the one hand we have, $U^* = T^*T$, then U is self-adjoint. On the other hand,

$$\left\langle U^{\frac{1}{2}}\xi, U^{\frac{1}{2}}\xi \right\rangle = \langle U\xi, \xi \rangle = \sum_{i \in I} \left\langle \Lambda_i \xi, \Lambda_i \xi \right\rangle$$

Then by Proposition 1.6 and (3.3), *U* is invertible and uniformily bounded. Hence by Proposition 1.6, we get:

$$\|U^{-\frac{1}{2}}\|_{\infty}^{-1}\langle\xi,\xi\rangle\|U^{-\frac{1}{2}}\|_{\infty}^{-1^{*}} \leq \langle U^{\frac{1}{2}}(\xi), U^{\frac{1}{2}}(\xi)\rangle \leq \|U^{\frac{1}{2}}\|_{\infty}\langle\xi,\xi\rangle\|U^{\frac{1}{2}}\|_{\infty}$$

For all $K \in Hom_A^*(\mathfrak{X})$ bounded and surjective such that $K = K^*$, we have

$$\langle K^*\xi, K^*\xi \rangle \le \|K\|_{\infty}^2 \langle \xi, \xi \rangle$$

Then

$$M^{-1} \| U^{-\frac{1}{2}} \|_{\infty}^{-1} \langle K^* \xi, K^* \xi \rangle (M^{-1} \| U^{-\frac{1}{2}} \|_{\infty}^{-1})^* \le \| U^{-\frac{1}{2}} \|_{\infty}^{-1} \langle \xi, \xi \rangle \| U^{-\frac{1}{2}} \|_{\infty}^{-1}$$

Therefore $\{\Lambda_i K\}_{i \in I}$ is an *-*K**-g-frame in \mathfrak{X} with respect to $\{\mathcal{Y}_i\}_{i \in I}$

Tensor Product

The minimal or injective tensor product of the pro- C^* -algebras \mathcal{A} and \mathcal{B} , denoted by $\mathcal{A} \otimes \mathcal{B}$, is the completion of the algebraic tensor product $\mathcal{A} \otimes_{\text{alg}} \mathcal{B}$ with respect to the topology determined by a family of C^* -seminorms. Suppose that \mathcal{X} is a Hilbert module over a pro- C^* -algebra \mathcal{A} and \mathcal{Y} is a Hilbert module over a pro- C^* -algebra \mathcal{B} . The algebraic tensor product $\mathcal{X} \otimes_{\text{alg}} \mathcal{Y}$ of \mathcal{X} and \mathcal{Y} is a pre-Hilbert $\mathcal{A} \otimes \mathcal{B}$ -module with the action of $\mathcal{A} \otimes \mathcal{B}$ on $\mathcal{X} \otimes_{\text{alg}} \mathcal{Y}$ defined by

$$(\xi \otimes \eta)(a \otimes b) = \xi a \otimes \eta b$$
 for all $\xi \in \mathfrak{X}, \eta \in \mathcal{Y}, a \in \mathcal{A}$ and $b \in \mathfrak{B}$

and the inner product

 $\langle \cdot, \cdot \rangle : (\mathfrak{X} \otimes_{\mathrm{alg}} \mathcal{Y}) \times (\mathfrak{X} \otimes_{\mathrm{alg}} \mathcal{Y}) \to \mathcal{A} \otimes_{\mathrm{alg}} \mathfrak{B}. \text{ defined by}$ $\langle \xi_1 \otimes \eta_1, \xi_2 \otimes \eta_2 \rangle = \langle \xi_1, \xi_2 \rangle \otimes \langle \eta_1, \eta_2 \rangle$

We also know that for $z = \sum_{i=1}^{n} \xi_i \otimes \eta_i$ in $\mathfrak{X} \otimes_{alg} \mathfrak{Y}$ we have $\langle z, z \rangle_{\mathfrak{A} \otimes \mathfrak{B}} = \sum_{i,j} \langle \xi_i, \xi_j \rangle_{\mathfrak{A}} \otimes \langle \eta_i, \eta_j \rangle_{\mathfrak{B}} \ge 0$ and $\langle z, z \rangle_{\mathfrak{A} \otimes \mathfrak{B}} = 0$ iff z = 0.

The external tensor product of \mathfrak{X} and \mathfrak{Y} is the Hilbert module $\mathfrak{X} \otimes \mathfrak{Y}$ over $\mathfrak{A} \otimes \mathfrak{B}$ obtained by the completion of the pre-Hilbert $\mathfrak{A} \otimes \mathfrak{B}$ -module $\mathfrak{X} \otimes_{alg} \mathfrak{Y}$.

If $P \in M(\mathfrak{X})$ and $Q \in M(\mathcal{Y})$ then there is a unique adjointable module morphism $P \otimes Q : \mathfrak{A} \otimes \mathfrak{B} \to \mathfrak{X} \otimes \mathcal{Y}$ such that $(P \otimes Q)(a \otimes b) = P(a) \otimes Q(b)$ and $(P \otimes Q)^*(a \otimes b) = P^*(a) \otimes Q^*(b)$ for all $a \in A$ and for all $b \in B$ (see, for example, [7]).

Let I and J be countable index sets.

Theorem 1.18. Let \mathfrak{X} and \mathfrak{Y} be two Hilbert pro- C^* -modules over unitary pro- C^* -algebras \mathfrak{A} and \mathfrak{B} , respectively. Let $\{\Lambda_i\}_{i\in I} \subset Hom_{\mathfrak{A}}(\mathfrak{X}, \mathfrak{Y}_i)$ be an *-K-g-frame for \mathfrak{X} with bounds A and B and frame operators S_Λ and $\{\Gamma_j\}_{j\in J} \subset Hom_{\mathfrak{A}}(\mathfrak{X}, \mathfrak{X}_i)$ be an *-L-g-frame for \mathfrak{Y} with bounds C and D and frame operators S_Γ . Then $\{\Lambda_i \otimes \Gamma_j\}_{i\in I, j\in J}$ is an *-K \otimes L-g-frame for Hibert $\mathfrak{A} \otimes \mathfrak{B}$ -module $\mathfrak{X} \otimes \mathfrak{Y}$ with frame operator $S_\Lambda \otimes S_\Gamma$ and bounds $A \otimes C$ and $B \otimes D$.

Proof. The definition of *-K-g-frame $\{\Lambda_i\}_{i \in I}$ and *-L-g-frame $\{\Gamma_j\}_{j \in J}$ gives

$$\begin{aligned} A \langle K^* \xi, K^* \xi \rangle_{\mathscr{A}} A^* &\leq \sum_{i \in I} \langle \Lambda_i \xi, \Lambda_i \xi \rangle_{\mathscr{A}} \leq B \langle \xi, \xi \rangle_{\mathscr{A}} B^*, \forall \xi \in \mathfrak{X}. \\ C \langle L^* \eta, L^* \eta \rangle_{\mathscr{B}} C^* &\leq \sum_{j \in J} \langle \Gamma_j \eta, \Gamma_j \eta \rangle_{\mathscr{B}} \leq D \langle \eta, \eta \rangle_{\mathscr{B}} D^*, \forall \eta \in \mathscr{Y}. \end{aligned}$$

Therefore

$$\begin{split} &(A\langle K^*\xi, K^*\xi\rangle_{\mathfrak{A}}A^*)\otimes (C\langle L^*\eta, L^*\eta\rangle_{\mathfrak{B}}C^*)\\ &\leq \sum_{i\in I}\langle\Lambda_i\xi, \Lambda_i\xi\rangle_{\mathfrak{A}}\otimes \sum_{j\in J}\langle\Gamma_j\eta, \Gamma_j\eta\rangle_{\mathfrak{B}}\\ &\leq (B\langle\xi, \xi\rangle_{\mathfrak{A}}B^*)\otimes (D\langle\eta, \eta\rangle_{\mathfrak{B}}D^*), \forall\xi\in\mathfrak{X}, \forall\eta\in\mathcal{Y}. \end{split}$$

Then

$$\begin{split} &(A \otimes C)(\langle K^*\xi, K^*\xi \rangle_{\mathfrak{A}} \otimes \langle L^*\eta, L^*\eta \rangle_{\mathfrak{B}})(A^* \otimes C^*) \\ &\leq \sum_{i \in I, j \in J} \langle \Lambda_i \xi, \Lambda_i \xi \rangle_{\mathfrak{A}} \otimes \langle \Gamma_j \eta, \Gamma_j \eta \rangle_{\mathfrak{B}} \\ &\leq (B \otimes D)(\langle \xi, \xi \rangle_{\mathfrak{A}} \otimes \langle \eta, \eta \rangle_{\mathfrak{B}})(B^* \otimes D^*), \forall \xi \in \mathfrak{X}, \forall \eta \in \mathcal{Y} \end{split}$$

Consequently we have

$$\begin{split} & (A \otimes C) \langle K^* \xi \otimes L^* \eta, K^* \xi \otimes L^* \eta \rangle_{\mathcal{A} \otimes \mathcal{B}} (A \otimes C)^* \\ & \leq \sum_{i \in I, j \in J} \langle \Lambda_i \xi \otimes \Gamma_j \eta, \Lambda_i \xi \otimes \Gamma_j \eta \rangle_{\mathcal{A} \otimes \mathcal{B}} \\ & \leq (B \otimes D) \langle \xi \otimes \eta, \xi \otimes \eta \rangle_{\mathcal{A} \otimes \mathcal{B}} (B \otimes D)^*, \forall \xi \in \mathfrak{X}, \forall \eta \in \mathcal{Y} \end{split}$$

Then for all $\xi \otimes \eta$ in $\mathfrak{X} \otimes \mathcal{Y}$ we have

$$\begin{split} & (A \otimes C) \langle (K \otimes L)^* (\xi \otimes \eta), (K \otimes L)^* (\xi \otimes \eta) \rangle_{\mathfrak{A} \otimes \mathfrak{B}} (A \otimes C)^* \\ & \leq \sum_{i \in I, j \in J} \langle (\Lambda_i \otimes \Gamma_j) (\xi \otimes \eta), (\Lambda_i \otimes \Gamma_j) (\xi \otimes \eta) \rangle_{\mathfrak{A} \otimes \mathfrak{B}} \\ & \leq (B \otimes D) \langle \xi \otimes \eta, \xi \otimes \eta \rangle_{\mathfrak{A} \otimes \mathfrak{B}} (B \otimes D)^*. \end{split}$$

The last inequality is satisfied for every finite sum of elements in $\mathfrak{X} \otimes_{alg} \mathcal{Y}$ and then it's satisfied for all $z \in \mathfrak{X} \otimes \mathcal{Y}$. It shows that $\{\Lambda_i \otimes \Gamma_j\}_{i \in I, j \in J}$ is an $*-K \otimes L$ -g-frame for Hilbert $\mathcal{A} \otimes \mathcal{B}$ -module $\mathfrak{X} \otimes \mathcal{Y}$ with lower and upper bounds $A \otimes C$ and $B \otimes D$, respectively.

By the definition of frame operator S_{Λ} and S_{Γ} we have

$$S_{\Lambda}\xi = \sum_{i \in J} \Lambda_i^* \Lambda_i \xi, \forall \xi \in \mathfrak{X}.$$
$$S_{\Gamma}\eta = \sum_{i \in J} \Gamma_j^* \Gamma_j \eta, \forall \eta \in \mathcal{Y}.$$

Therefore

$$\begin{split} (S_{\Lambda} \otimes S_{\Gamma})(\xi \otimes \eta) &= S_{\Lambda} \xi \otimes S_{\Gamma} \eta \\ &= \sum_{i \in I} \Lambda_{i}^{*} \Lambda_{i} \xi \otimes \sum_{j \in J} \Gamma_{j}^{*} \Gamma_{j} \eta \\ &= \sum_{i \in I, j \in J} \Lambda_{i}^{*} \Lambda_{i} \xi \otimes \Gamma_{j}^{*} \Gamma_{j} \eta \\ &= \sum_{i \in I, j \in J} (\Lambda_{i}^{*} \otimes \Gamma_{j}^{*}) (\Lambda_{i} \xi \otimes \Gamma_{j} \eta) \\ &= \sum_{i \in I, j \in J} (\Lambda_{i}^{*} \otimes \Gamma_{j}^{*}) (\Lambda_{i} \otimes \Gamma_{j}) (\xi \otimes \eta) \\ &= \sum_{i \in I, j \in J} (\Lambda_{i} \otimes \Gamma_{j})^{*} (\Lambda_{i} \otimes \Gamma_{j}) (\xi \otimes \eta). \end{split}$$

Now by the uniqueness of frame operator, the last expression is equal to $S_{\Lambda \otimes \Gamma}(\xi \otimes \eta)$. Consequently we have $(S_{\Lambda} \otimes S_{\Gamma})(\xi \otimes \eta) = S_{\Lambda \otimes \Gamma}(\xi \otimes \eta)$. The last equality is satisfied for every finite sum of elements in $\mathfrak{X} \otimes_{alg} \mathfrak{Y}$ and then it's satisfied for all $z \in \mathfrak{X} \otimes \mathfrak{Y}$. It shows that $(S_{\Lambda} \otimes S_{\Gamma})(z) = S_{\Lambda \otimes \Gamma}(z)$. So $S_{\Lambda \otimes \Gamma} = S_{\Lambda} \otimes S_{\Gamma}$.

References

- L. Alizadeh, H. Mahmoud, On frames for countably generated Hilbert modules over locally C*-algebras, Commun. Korean Math. Soc. 33 (2018), 527-533.
- [2] M. Azhini, N. Haddadzadeh, Fusion frames in Hilbert modules over pro-C*-algebras, Int. J. Ind. Math. 5 (2013), Article ID IJIM-00211
- [3] I. Daubechies, A. Grasmann, Y. Meyer, Painless nonorthogonal expansions, J. Math. Phys. 27 (1986), 1271-1283.
- [4] R. J. Duffin, A. C. Schaeffer, A class of nonharmonic fourier series, Trans. Amer. Math. Soc. 72 (1952), 341-366.
- [5] N. Haddadzadeh, G-frames in Hilbert pro-C*-modules, Int. J. Pure Appl. Math. 105 (2015), 727-743.
- [6] A. Inoue, Locally *C**-algebra, Memoirs of the Faculty of Science, Kyushu University. Series A, Mathematics 25 (1972), 197-235.
- [7] M. Joiţa, Countably generated Hilbert modules and stable isomorphisms of locally C*-algebras, Theta Ser. Adv. Math. Theta, Bucharest 9 (2008), 89-99.
- [8] Z. A. Moosavi, N. Akbar, Controlled *-G-Frames and *-G-Multipliers in Hilbert Pro-C*-Modules, Int. J. Anal. Appl. 17 (2019), 1-13.

- [9] N. C. Phillips, Inverse limits of C*-algebras, J. Oper. Theory 19 (1988), 159-195.
- [10] M. Rossafi, S. Kabbaj, *-K-g-Frames in Hilbert A-modules, J. Linear Topol. Algebra 7 (2018), 63-71.
- [11] Y. I. Zhuraev, F. Sharipov, Hilbert modules over locally C*-algebras, arXiv preprint math/0011053 (2000).