Fixed Point Theorem for (ϕ, MF) -Contraction on C^* -Algebra Valued Metric Spaces

Mohamed Rossafi¹, Hafida Massit², Samir Kabbaj²

¹LaSMA Laboratory Department of Mathematics Faculty of Sciences, Dhar El Mahraz University Sidi Mohamed Ben Abdellah, B. P. 1796 Fes Atlas, Morocco

²Laboratory of Partial Differential Equations, Spectral Algebra and Geometry Department of Mathematics, Faculty of Sciences, University Ibn Tofail, Kenitra, Morocco

Correspondence should be addressed to Hafida Massit: massithafida@yahoo.fr

Email(s): rossafimohamed@gmail.com, mohamed.rossafi@usmba.ac.ma (M. Rossafi); massithafida@yahoo.fr (H. Massit); samkabbaj@yahoo.fr (S. Kabbaj)

Abstract

This present article extends the new notion of mapping called (ϕ, MF) -contraction in the frame work of C^* -algebra valued metric spaces and establishing the existence and uniqueness of fixed point for them. Non-trivial examples are further provided to support the hypotheses of our results.

Keywords: Fixed point; C^* -algebra valued metric spaces; (ϕ, F) -contraction; (ϕ, MF) - C^* valued contraction.

Introduction

Many generalizations of the concept of metric spaces are defined and some fixed point theorems were proved in these spaces. In particular, C^* -algebra valued metric spaces were introduced by Ma et al. [5] as a generalization of metric spaces they proved certain fixed point theorems, by giving the definition of C^* -algebra valued contractive mapping analogous to Banach contraction principle. Various fixed point results were established on such spaces, see [3, 4, 8] and references therein.

In this paper, inspired by the work done in [6, 10], we introduce the notion of (ϕ, MF) —contraction and establish some new fixed point theorems for mappings in the setting of complete C^* -algebra valued metric spaces. Moreover, some illustrative examples are presented to support the obtained results.

preliminaries

Throughout this paper, we denote A by an unital C^* -algebra with linear involution *, such that for all $x, y \in A$,

$$(xy)^* = y^*x^*$$
 and $x^{**} = x$.

We call an element $x \in \mathbb{A}$ a positive element, denote it by $x \ge \theta$ if $x \in \mathbb{A}_h = \{x \in \mathbb{A} : x = x^*\}$ and $\sigma(x) \subset \mathbb{R}_+$, where $\sigma(x)$ is the spectrum of x.

Using positive element, we can define a partial ordering \leq on \mathbb{A}_h as follows:

$$x \le y$$
 if and only if $y - x \ge \theta$

where θ means the zero element in A.

We denote the set $x \in \mathbb{A} : x \ge \theta$ by \mathbb{A}_+ and $|x| = (x^*x)^{\frac{1}{2}}$.

Remark 1.1. When \mathbb{A} is an unital C^* -algebra, then for any $x \in \mathbb{A}_+$ we have

$$x \le I \iff ||x|| \le 1$$

The following definition was given by D. Wardowski in [9].

Definition 1.2. [11] Let \mathscr{F} be the family of all functions $F: \mathbb{R}_+ \to \mathbb{R}$ and Φ be the family of all functions $\phi: [0, +\infty[\to]0, +\infty[$ satisfying:

- (i) *F* is strictly increasing.
- (ii) For each sequence $\{x_n\}_{n\in\mathbb{N}}$ of positive numbers

$$\lim_{n\to 0} x_n = 0 \quad \text{if and only if} \quad \lim_{n\to \infty} F\left(x_n\right) = -\infty.$$

- (iii) $\lim \inf_{s \to \alpha^+} \phi(s) > 0$ for all s > 0.
- (iv) There exists $k \in [0, 1[$ such that $\lim_{x\to 0} x^k F(x) = 0$.

Definition 1.3. [11] Let (X, d) be a complete metric space. A mapping $T: X \to X$ is called a (ϕ, F) -contraction on (X, d) if there exists $F \in \mathcal{F}$ and $\phi \in \Phi$ such that

$$(d(Tx, Ty) > 0 \Rightarrow F(d(Tx, Ty)) + \phi(d(x, y)) \leq F(d(x, y))$$

for all $x, y \in X$ for which $Tx \neq Ty$

Definition 1.4. Let (X, d) be a metric space. A self-map $T: X \to X$ is said to be a MF- contraction if there exists $\tau > 0$ such for $x, y \in X$

$$M(Tx, Ty) > 0 \Rightarrow \tau + F(M(Tx, Ty)) \le F(M(x, y))$$

where

$$M(x, y) = \max\{d(x, y), d(x, Tx), d(y, Ty), \frac{d(x, Ty) + d(y, Tx)}{2}\}$$

and $F:(0,+\infty)\to(-\infty,+\infty)$ satisfies (i) and (ii) of definition 2.2

Definition 1.5. [12] Let the function $\phi: A^+ \to A^+$ be positive if having the following constraints:

- (i) ϕ is continous and nondecrasing
- (ii) $\phi(a) = \theta$ if and only if $a = \theta$
- (iii) $\lim_{n \to \infty} \phi^n(a) = \theta$

Definition 1.6. [12] Suppose that A and B are C^* -algebras.

A mapping $\phi: A \to B$ is said to be C^* - homomorphism if:

- (i) $\phi(ax + by) = a\phi(x) + b\phi(y)$ for all $a, b \in \mathbb{C}$ and $x, y \in A$
- (ii) $\phi(xy) = \phi(x)\phi(y)$ for all $x, y \in A$
- (iii) $\phi(x^*) = \phi(x)^*$ for all $x \in A$
- (iv) ϕ maps the unit in A to the unit in B.

Lemma 1.7. [7] Let A and B be C^* -algebras and $\phi: A \to B$ be a C^* -homomorphism, for all $x \in A$ we have

$$\sigma(\phi(x)) \subset \sigma(x)$$
 and $\|\phi(x)\| \leq \|\phi\|$.

Corollary 1.8. [12] Every C^* – homomorphism is bounded.

Corollary 1.9. [12] Suppose that ϕ is C^* -isomorphism from A to B, then $\sigma(\phi(x)) = \sigma(x)$ and $\|\phi(x)\| = \|\phi\|$ for all $x \in A$.

Lemma 1.10. [12] Every *- homomorphism is positive.

Main result

Aspired by Wardowski in [2], we introduce the notion of (ϕ, MF) -contraction on a C^* -algebra valued metric space.

Definition 1.11. Let

$$F: \mathbb{A}_+ \to \mathbb{A}$$

a function satisfying:

- (i) F is continuous and nondecreasing.
- (ii) $F(t) = \theta$ if and only if $t = \theta$.

A mapping $T:X\to X$ is said to be a (ϕ,MF) C^* valued contraction if there exists $\phi:\mathbb{A}_+\to\mathbb{A}$ an *-homomorphism such that

$$\forall x,y \in X; M(Tx,Ty) \geq \theta \Rightarrow F(M(Tx,Ty)) + \phi(M(x,y)) \leq F(M(x,y)) \ (1)$$

Where
$$M(x, y) = max\{d(x, y), d(x, Tx), d(y, Ty), \frac{d(x, Ty) + d(y, Tx)}{9}\}.$$

Example 1.12. Let X = [0, 1] and $\mathbb{A} = \mathbb{R}^2$ Then \mathbb{A} is a C^* - algebra with norm $\|.\| : \mathbb{A} \to \mathbb{R}$ defined by

$$||(x,y)|| = (x^2 + y^2)^{\frac{1}{2}}.$$

Define a C^* – algebra valued metric $d: X \times X \to \mathbb{A}$ on X by

$$d(x, y) = (|x - y|, 0)$$

With ordering on \mathbb{A} by

$$(a, b) \le (c, d) \Leftrightarrow a \le c \text{ and } b \le d$$

A mapping $T: X \to X$ given by $Tx = \frac{x}{3}$ is continuous with respect to \mathbb{A} . Let $F: \mathbb{A} \to \mathbb{A}$. Defined by

$$F(x, y) = ((x - y)^2, 0)$$

It is clear that F satisfies (i) and (ii).

Now
$$M(x, y) = d(x, y)$$
 and

$$M(Tx, Ty) = d(Tx, Ty) = (|Tx - Ty|, 0) = (|\frac{x}{3} - \frac{y}{3}|, 0)$$

We have
$$F(M(Tx, Ty)) = F(d(Tx, Ty)) = F(d(\frac{x}{3}, \frac{y}{3})) = F((\frac{x}{3} - \frac{y}{3}))^2, 0).$$

And

$$\left(\frac{x}{3} - \frac{y}{3}\right)^2 - (x - y)^2 \le -\frac{1}{3}(x - y)^2.$$

Therefore T is a valued (ϕ, MF) C^* -valued contraction with

$$\phi(M(x,y)) = (\frac{1}{3}(x-y)^2, 0).$$

Theorem 1.13. Let (X, \mathbb{A}, d) be a complete C^* -algebra valued metric space and let $T: X \to X$ be a (ϕ, MF) - C^* valued contraction mapping.

Then T has a unique fixed point.

Proof.: Let $x_0 \in X$ be arbitrary and fixed we define a sequence $\{x_n\}_{n \in \mathbb{N}}$, $x_{n+1} = Tx_n$ for all $n \in \mathbb{N}$. Clearly, if $x_{n+1} = x_n$, then x_0 is a fixed point of T and is unique.

We have

 $M(x_n, x_{n+1})$

$$= \max\{d(x_n, x_{n+1}), d(x_n, Tx_n), d(x_{n+1}, Tx_{n+1}), \frac{d(x_n, Tx_{n+1}) + d(x_{n+1}, Tx_n)}{2}\}$$

$$= \max\{d(x_n, x_{n+1}), d(x_n, x_{n+1}), d(x_{n+1}, x_{n+2}), \frac{d(x_n, x_{n+2}) + d(x_{n+1}, x_{n+1})}{9}\}$$

 $= max\{d(x_n, x_{n+1}), d(x_{n+1}, x_{n+2})\}.$

And

$$M(Tx_n, Tx_{n+1}) = max\{d(x_{n+1}, x_{n+2}), d(x_{n+2}, x_{n+3})\}.$$

If $d(x_n, x_{n+1}) \le d(x_{n+1}, x_{n+2})$ for all $n \in \mathbb{N}$, then

$$M(x_n, x_{n+1}) = d(x_{n+1}, x_{n+2})$$
 and $M(Tx_n, Tx_{n+1}) = d(x_{n+2}, x_{n+3})$.

Then

$$F(M(Tx_n, Tx_{n+1})) + \phi(M(x_n, x_{n+1})) \le F(M(x_n, x_{n+1}))$$

implies

 $F(d(x_{n+2}, x_{n+3}) \le F(d(x_{n+1}, x_{n+2}) - \phi(d(x_{n+1}, x_{n+2})) \le F(d(x_{n+1}, x_{n+2}))$ wich a contradiction. denote

$$d_n = d(x_{n+1}; x_n); n = 0; 1; 2; \dots$$

Suppose that $x_{n+1} \neq x_n$ for every $n \in X$ then $d_n > \theta$ for all $n \in \mathbb{N}$ and using (1) the following holds for every $n \in \mathbb{N}$

$$F(d_n) \le F(d_{n-1}) - \phi(d_{n-1}) < F(d_{n-1})$$
(2)

Hence F is non decreasing and so the sequence (d_n) is monotonically decreasing in A. So there exists $\theta \le t \in A$ such that

$$d(x_n, x_{n+1}) \to t \text{ as } n \to \infty$$

From (2) we obtain $\lim_{n\to\infty} F(d_n) = \theta$ that together with (ii) gives

$$\lim_{n\to\infty} d_n = \theta$$
 (3)

Now we shall show that $\{x_n\}$ is a Cauchy sequence in (X, \mathbb{A}, d) .

Let, $n, p \in \mathbb{N}$. Then

$$d(x_{n}, x_{n+p}) \leq d(x_{n}, x_{n+1}) + d(x_{n+1}, x_{n+p}) \leq d(x_{n}, x_{n+1}) + d(x_{n+1}, x_{n+2}) + d(x_{n+2}, x_{p})$$

$$\vdots$$

$$\vdots$$

$$\leq d(x_{n}, x_{n+1}) + d(x_{n+1}, x_{n+2}) + \dots + d(x_{n+p-1}, x_{n+p}).$$

Taking the limit as $n \to \infty$ we get $\lim_{n \to \infty} d(x_n, x_{n+p}) = \theta$.

Thus $\{x_n\}$ is a Cauchy sequence. Since the space is complete,

there exists $u \in X$ such that $\lim_{n\to\infty} x_n = u$.

Again T is continous. Therefore $\lim_{n\to\infty} Tx_n = Tu$ ie $\lim_{n\to\infty} x_{n+1} = u = Tu$.

Thus *u* is a fixed point of *T*. Again suppose $Tu \neq u$. So $d(Tu, u) > \theta$.

Since *F* is strictly increasing, we take the limit as $n \to +\infty$

$$F(lim_{n\to +\infty}M(Tx_n, Tu)) \leq F(lim_{n\to +\infty}M(x_n, u)).$$

Now

 $\lim_{n\to+\infty} M(x_n,u)$

$$= \lim_{n \to +\infty} \max\{d(x_n, u), d(x_n, Tx_n), d(u, Tu), \frac{d(x_n, Tu) + d(u, Tx_n)}{2}\}$$
$$= \max\{\theta, \theta, \theta, \theta\} = \theta$$

and

 $\lim_{n\to+\infty}M(Tx_n,Tu)$

$$= \lim_{n \to +\infty} \max \{ d(Tx_n, Tu), d(Tx_n, T^2x_n), d(Tu, T^2u), \frac{d(Tx_n, T^2u) + d(Tu, T^2x_n)}{2} \}$$

$$= \max \{ \theta, \theta, \theta, \theta \} = \theta$$

We get $F(\theta) \prec F(\theta)$ which a contradiction.

Thus Tu = u.

To show the uniqueness, let v be another fixed point of T.

Then by given condition

$$\begin{split} \phi(u,v) + F(M(Tu,Tv)) &\leq F(M(u,v)) \\ \Rightarrow \phi(u,v) + F(M(u,v)) &\leq F(M(u,v)) \\ \Rightarrow \phi(u,v) &\leq \theta. \end{split}$$

Which is a contradiction.

Therefore T has a unique fixed point in X.

Example 1.14. Considering the Example 3.2, we conclude that inequality (1) remains valid for F and T constructed as above and consequently by an application of Theorem 3.3, T has a unique fixed point. it is seen that 0 is the unique fixed point of T.

Corollary 1.15. (X, \mathbb{A}, d) be a complete C^* -algebra valued metric space and let $T: X \to X$ be a (ϕ, MF) - C^* valued contraction mapping.

Where

$$M(x, y) = max\{d(x, y), d(x, Tx), d(y, Ty)\}.$$

Then T has a unique fixed point.

Inspired by MF – contraction of Hardy Rogers type in a complete metric space [1] we give

Theorem 1.16. Let (X, \mathbb{A}, d) be a complete C^* -algebra valued metric space and let $T: X \to X$ be a (ϕ, MF) C^* -valued contraction of Hardy Rogers type where

 $M(x,y) = \alpha_1 d(x,y) + \alpha_2 d(x,Tx) + \alpha_3 d(y,Ty) + \alpha_4 d(x,Ty) + \alpha_5 d(y,Tx)$ and $\alpha_i \ge 0, i \in \{1,2,3,4,5\}$ and $\alpha_1 + \alpha_2 + \alpha_3 + 2\alpha_4 + 2\alpha_5 < 1$.

Then T has a unique fixed point in X.

Proof. Let x_n be a sequence in X with an initial approximation $x_0 \in X$ such that $x_{n+1} = Tx_n$ for all $n \in \mathbb{N} \cup \{0\}$. Clearly, if $x_{n+1} = x_n$, then x_0 is a fixed point of T and is unique. Now we show that $\lim_{n\to\infty} d(x_n, x_{n+1}) = \theta$. We have

$$\begin{split} M(x_n, x_{n+1}) &= \alpha_1 d(x_n, x_{n+1}) + \alpha_2 d(x_n, Tx_n) + \alpha_3 d(x_{n+1}, Tx_{n+1}) + \alpha_4 d(x_n, Tx_{n+1}) + \alpha_5 d(x_{n+1}, Tx_n) \\ &= \alpha_1 d(x_n, x_{n+1}) + \alpha_2 d(x_n, x_{n+1}) + \alpha_3 d(x_{n+1}, x_{n+2}) + \\ &\qquad \qquad \alpha_4 d(x_n, x_{n+2}) + \alpha_5 d(x_{n+1}, x_{n+1}) \\ &\leq (\alpha_1 + \alpha_2 + \alpha_4) d(x_n, x_{n+1}) + (\alpha_3 + \alpha_4) d(x_{n+1}, x_{n+2}), \end{split}$$

and

$$\begin{split} M(Tx_n, Tx_{n+1}) &= \alpha_1 d(Tx_n, Tx_{n+1}) + \alpha_2 d(Tx_n, T^2x_n) + \alpha_3 d(Tx_{n+1}, T^2x_{n+1}) + \\ & \alpha_4 d(Tx_n, T^2x_{n+1}) + \alpha_5 d(Tx_{n+1}, T^2x_n) \\ &= \alpha_1 d(x_{n+1}, x_{n+2}) + \alpha_2 d(x_{n+1}, x_{n+2}) + \alpha_3 d(x_{n+2}, x_{n+3}) + \\ & \alpha_4 d(x_{n+1}, x_{n+3}) + \alpha_5 d(x_{n+2}, x_{n+2}) \\ &\leq (\alpha_1 + \alpha_2 + \alpha_4) d(x_{n+1}, x_{n+2}) + (\alpha_3 + \alpha_4) d(x_{n+2}, x_{n+3}), \end{split}$$

If $d(x_n, x_{n+1}) \le d(x_{n+1}, x_{n+2})$, then

$$M(x_n, x_{n+1}) \le (\alpha_1 + \alpha_2 + \alpha_3 + 2\alpha_4)d(x_{n+1}, x_{n+2})$$

and

$$M(Tx_n, Tx_{n+1}) \le (\alpha_1 + \alpha_2 + \alpha_3 + 2\alpha_4)d(x_{n+2}, x_{n+3})$$

Then

 $F((\alpha_1 + \alpha_2 + \alpha_3 + 2\alpha_4)d(x_{n+2}, x_{n+3})) \le F(\alpha_1 + \alpha_2 + \alpha_3 + 2\alpha_4)d(x_{n+1}, x_{n+2}) - \phi((\alpha_1 + \alpha_2 + \alpha_3 + 2\alpha_4)d(x_{n+1}, x_{n+2}))$ Using the propreties of F and ϕ we have

$$F(d(x_{n+1}, x_{n+2})) \le F(d(x_n, x_{n+1})) - \phi(d(x_n, x_{n+1})).$$

Since $(\alpha_1 + \alpha_2 + \alpha_3 + 2\alpha_4) < 1$.

There exists $u \in \mathbb{A}$ such that $\lim_{n \to +\infty} d(x_n, x_{n+1}) = u$.

Taking $n \to +\infty$ in $F(d(x_{n+1}, x_{n+2})) \le F(d(x_n, x_{n+1})) - \phi(d(x_n, x_{n+1}))$ we have

 $F(u) \leq F(u) - \phi(u)$ which is a contradiction unless $u = \theta$.

Hence

$$\lim_{n\to+\infty} d(x_n, x_{n+1}) = \theta.$$

We can easily show as above in theorem 3.3 that $\{x_n\}$ is a Cauchy sequence.

Since the space *X* is complete, there exists an $a \in X$ such that $\lim_{n \to +\infty} x_n = a$.

Also T is continuous. So we have

$$\lim_{n\to+\infty} Tx_n = Ta$$
 i.e, $\lim_{n\to+\infty} x_n = a = Ta$.

Thus a is a fixed point of T.

Uniqueness. Now, suppose that $z, u \in X$ are two fixed points of T such that $u \neq z$.

Therefore, we have

$$d(u, z) = d(Tu, Tz) > \theta$$

We have

$$F(M(z, u)) = F(M(Tz, Tu)) \le F(M(z, u)) - \phi(M(z, u)) < F(M(z, u)).$$

It is a contradiction. Therefore u = z.

Corollary 1.17. Let (X, \mathbb{A}, d) be a complete C^* -algebra valued metric space and let $T: X \to X$ be a (ϕ, MF) - C^* -algebra valued of Banach -type, where

$$M(x, y) = \alpha d(x, y)$$
 and $0 < \alpha < 1$.

Then T has a unique fixed point in X.

Corollary 1.18. Let (X, A, d) be a complete C^* -algebra valued metric space and let $T: X \to X$ be a (ϕ, MF) -Kannan -type C^* -algebra valued contraction, where

$$M(x, y) = \alpha d(x, Tx) + \beta d(y, Ty)$$
 and $0 \le \alpha + \beta < 1$.

Then T has a unique fixed point in X.

Corollary 1.19. Let (X, A, d) be a complete C^* -algebra valued metric space and let $T: X \to X$ be a (ϕ, MF) -Chaterjea type C^* -algebra valued contraction, where

$$M(x, y) = \alpha d(x, Ty) + \beta d(y, Tx)$$
 and $\forall \alpha, \beta \ge \alpha + \beta < 1$.

Then T has a unique fixed point in X.

Corollary 1.20. Let (X, \mathbb{A}, d) be a complete C^* -algebra valued metric space and let $T: X \to X$ be a (ϕ, MF) - Reich type C^* -algebra valued contraction, where

$$M(x, y) = \alpha d(x, y) + \beta d(x, Tx) + \gamma d(y, Ty)$$
 and $\forall \alpha, \beta, \gamma \ge 0, \alpha + \beta + \gamma < 1$.

Then T has a unique fixed point in X.

Example 1.21. Let X = [0.2] and $d: X \times X \to \mathbb{R}^2$.

Suppose that d(x, y) = (|x - y|, |x - y|) for $x, y \in X$.

Then, (X, \mathbb{R}^2, d) is a C^* - algebra valued metric space.

 $T: X \to X$ be given by $Tx = \frac{1}{3}x$ and F is given by $F(x, y) = (x^2, 0)$.

Suppose y < x.

Then

$$M(x,y) = \max\{d(x,y), d(x,Tx), d(y,Ty)\} = \max\{(|x-y|, |x-y|), (\frac{2}{3}|x|, \frac{2}{3}|x|), (\frac{2}{3}|y|, \frac{2}{3}|y|)\}.$$

If
$$|x-y| \le \frac{2}{3}|x|$$
, thus $M(x,y) = (\frac{2}{3}|x|, \frac{2}{3}|x|)$ and $M(Tx, Ty) = (\frac{2}{9}|x|, \frac{2}{9}|x|)$.

Therefore
$$F(M(x,y)) = (\frac{x^2}{9}, 0)$$
 and $F(M(Tx, Ty)) = (\frac{4x^2}{81}, 0)$.

Taking

$$\phi(M(x,y)) = (\frac{5x^2}{81}, 0).$$

Therefore by Corollary 3.5 T has a unique fixed point 0.

If
$$\frac{2}{3}|x| \le |x-y|$$
, then $M(x,y) = (|x-y|, |x-y|)$ and $M(Tx, Ty) = (\frac{1}{3}|x-y|, \frac{1}{3}|x-y|)$. Therefore,

$$F(M(x, y)) = F(|x - y|, |x - y|) = (|x - y|^2, 0)$$

and

$$F(M(Tx,Ty)) = F((\frac{1}{3}|x-y|,\frac{1}{3}|x-y|)) = ((\frac{1}{9}|x-y|^2,0))$$

Taking,

$$\phi(M(x,y)) = (\frac{4}{9}|x-y|^2, 0)$$

Therefore by Corollary 3.5 T has a unique fixed point 0.

Acknowledgments

It is our great pleasure to thank the referee for his careful reading of the paper and for several helpful suggestions.

References

- [1] D. Barman, K. Tiwary, Fixed point theorems for generalized F-contraction on metric space, Sarajevo J. Math. 17 (2021), 119-128.
- [2] N. Hussain, M. A. Kutbi, P. Salimi, Fixed point theory in α -complete metric spaces with applications, Abstr. Appl. Anal. 2014 (2014), Article ID 280817.
- [3] M. Jleli, B. Samet, A new generalization of the Banach contraction principle. J. Inequal. Appl. 2014 (2014), 38.
- [4] Z. Kadelburg, S. Radenovic, On generalized metric spaces: a survey, TWMS J. Pure Appl. Math. 5 (2014), 3-13.
- [5] Z. Ma, L. Jiang, H. Sun, C^* -algebra-valued metric spaces and related fixed point theorems, Fixed Point Theory Appl. 2014 (2014), 206.
- [6] H. Piri, S. Rahrovi, H. Marasi, P. Kumam, F-contraction on asymmetric metric spaces. J. Math. Comput. SCI-JM. 17 (2017), 32-40
- [7] S. Sakai, C^* -Algebras and W^* -Algebras, Spring, Berlin, 1971.
- [8] B. Samet, Discussion on "A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces" by A. Branciari. Publ. Math. Debrecen, 76 (2010), 493–494.
- [9] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for $\alpha \psi$ –contractive type mappings, Nonlinear Anal. 75 (2012), 2154-2165.
- [10] A. Taheri, A. FarajzadehA. A New Generalization of α -Type Almost-F-Contractions and α -Type F-Suzuki Contractions in Metric Spaces and Their Fixed Point Theorems. Carpathian Math. Publ. 11 (2019), 475-492.
- [11] D. Wardowski, Solving existence problems via F-contractions, Proc. Amer. Math. Soc. 146 (2018), 1585-1598.
- [12] K. Zhu, An Introduction to operator Algebras, CRC Press, Boca Raton, FL, USA, 1961.