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Abstract
In this note we study the binomial model applied to European, American and Bermudan type of derivatives.
Our aim is to give the necessary and sucient conditions under which we can dene a fair value via replicating
portfolios for any derivative using simple mathematical arguments and without using no arbitrage techniques.
Giving suitable denitions we are able to dene rigorously the fair value of any derivative without using concepts
from probability theory or stochastic analysis therefore is suitable for students or young researchers. It will be
clear in our analysis that if er𝛿 ∉ [d , u] then we can not dene a fair value by anymeans for any derivative while
if d ≤ er𝛿 ≤ u we can. Therefore the denition of the fair value of a derivative is not so closely related with the
absence of arbitrage. In the usual probabilistic point of view we assume that d < er𝛿 < u in order to dene the
fair value but it is not clear what we can (or we can not) do in the cases where er𝛿 ≤ d or er𝛿 ≥ u.
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Introduction

In this note we study the option pricing problem via replicating portfolios using the binomial model in the spirit
of [2] so one can refer to the literature for more details. Our aim is to dene the fair value of any derivative in
the binomial model setting without using probability theory and stochastic analysis. To do so we give suitable
denitions and using replicating portfolios we are able to dene the notion of the fair value. We see that this
denition is not so closely related with the absence of arbitrage. In this spirit but with much more generality
but also with much more mathematical complexity one can refer to [1] and the references therein.

We denote by X any derivative on [0,T ], such as a call option or a lookback option etc. We will work on a
discrete time setting, i.e. we divide [0,T ] into N time intervals of length 𝛿 > 0 so that N𝛿 = T . We suppose
that the holder of the derivative can exercise it at the times e0 < e1 < · · · < em = T where e0 > 0, that is the
holder has not the right to exercise the option at time zero. We denote by 0 = k0 < k1 < · · · < kl < T all
the other times in which the holder has not the right to exercise the option. We also denote by Sn the value
of the underlying stock of the derivative and by Xn the payo of the derivative at the time n which in general
is a function of S0 , · · · , Sn. Our goal in this note is to give necessary and sucient conditions to dene a fair
value for this derivative via replicating portfolios under the binomial model setting using simple mathematical
arguments (i.e. without using probabilistic and stochastic analysis arguments) and without using no arbitrage
techniques. For the probabilistic point of view one can see [1], [3], [8], [9], [10], [11] and [13].

We recall that in the binomial model one assumes that if the price of the underlying asset is Sn at time n
then at time n + 1 will be uSn or dSn for some u > 1 and d < 1.

We assume that one can invest in a risk free asset with continuously compounded interest rate r. That
means that if someone invest 1 Euro for time period 𝛿 then this amount of money will become er𝛿 Euros.
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One can construct portfolios investing at the underlying asset and at the risk free asset. For example, at
time zero one can buy a0 shares of the underlying asset and also invest b0 Euros at the risk free asset. Then,
the value of this portfolio, at time zero, isV0 = a0S0 + b0 and at the time n isVn = anSn + bn so we can denote
this portfolio by (an , bn).

Main Results

The writer of the option would like to sell the derivative X in a suitable priceV . What that means? If with that
amount of money the writer can construct a portfolio such that at the times en its value is greater or equal to
the value of the derivative, that isVen ≥ Xen , no matter what the value of the underlying asset is, then the writer
can always pay the holder of the option. That is the main idea behind the option pricing, i.e. how to construct
portfolios that replicates the derivative X .

Definition 1 We say that a portfolio (ak , bk) replicates the derivative X ifVen ≥ Xen , for n = 0, · · · , m. We say that
a replicating portfolio is acceptable by the writer if the portfolio replicates the derivative without the writer need to add
funds until the exercise time but allows consumption. Finally, we say that an acceptable replicating portfolio is a honest
portfolio if the holder can always exercise in a way that the value of the derivative equals to the value of this portfolio with
zero consumption until the exercise time, i.e. there exists some time en such thatVen = Xen and that

∑en
k=1 ck = 0 where ck

is the amount of money that the writer can consume at time k.

Is there any acceptable by the writer portfolio for the derivative X? If the writer constructs a portfolio at
time zero, i.e. V0 = a0S0 + b0 then at time 1 its possible values are V u

1 = auS0 + ber𝛿 and V d
1 = adS0 + ber𝛿 .

For given A, B ∈ ℝ we can construct a suitable portfolio at time zero such that its possible values at time 1 are
V u
1 = A andV d

1 = B. To do so we can choose a0 = A−B
(u−d)S0 and b0 = Bu−Ad

er𝛿 (u−d) and thusV0 = e−r𝛿 (qA + (1 − q)B)
where q = er𝛿−d

u−d .
It is well known that an acceptable by the writer portfolio with possible consumption cn is given by the

following

VN = XN

and for n = 0, · · · , N − 1 we set

Vn =

{
max{Xe j , e−r𝛿 (qV u

e j+1 + (1 − q)V d
e j+1) when n = e j , for some j = 0, · · · , m − 1

e−r𝛿 (qV u
ki+1 + (1 − q)V d

ki+1) , when n = ki for some i = 0, · · · , l

an =
V u
n+1 −V

d
n+1

(u − d)Sn
,

bn =
V d
n+1u −V

u
n+1d

(u − d)er𝛿 ,

cn =

{
max{Xen − e−r𝛿 (qV u

en+1 + (1 − q)V d
en+1) , 0}, when n = e j , for some j = 0, · · · , m − 1

0, when n = ki for some i = 0, · · · , l

Note that the above are related by the following equation Vn = anSn + bn + cn for n = 0, · · · , N − 1 while
VN = XN . IfVen = Xen > e−r𝛿 (qV u

en+1 + (1− q)V d
en+1) for some n and the holder do not exercise at that time then

the writer can consume the amount Xen − e−r𝛿 (qV u
en+1 + (1 − q)V d

en+1). The value Vn for n = 0, · · · , N of the

above portfolio is after the consumption of the amount
∑n−1
k=1 ck. We will prove later that the above portfolio is

always honest.

Definition 2 We call the above replicating portfolio fundamental and we denote it by (aX , bX ).
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Our aim is to dene a fair value for the option X . One candidate is the initial value of the fundamental
portfolio. But then one can ask if there is another acceptable portfolio with less initial value so one can dene
this as a fair value. We will next study this question and we will see that if er𝛿 ∈ [d , u] then there is not such a
portfolio so the initial value of the fundamental portfolio is in fact the minimum one therefore we dene the
fair value as the initial value of (aX , bX ). Moreover, if er𝛿 ∉ [d , u] we will see that we can not dene a fair value
of the derivative by any means.

Theorem 3 The amountV = e−r𝛿
(
qV u

n+1 + (1− q)V d
n+1

)
equals to the minimum value of the portfolio at time n such that

the possible values of the portfolio at time n + 1 are at leastV u
n+1 andV

d
n+1 if and if d ≤ er𝛿 ≤ u.

Proof.
• Suppose that d ≤ er𝛿 ≤ u and suppose that there exists some 𝜀 > 0 and 𝜀1 , 𝜀2 ≥ 0 such that with

the amount V − 𝜀 we can nd suitable a′, b′ with V − 𝜀 = a′Sn + b′ and a′uSn + b′er𝛿 = V u
n+1 + 𝜀1 and also

a′dSn + b′er𝛿 =V d
n+1 + 𝜀2. Note thatV = aSn + b where a =

V u
n+1−V

d
n+1

(u−d)Sn and b =
V d
n+1u−V

u
n+1d

(u−d)er𝛿 .
Then it follows that

a′ = a + 𝜀1 − 𝜀2

(u − d)Sn︸      ︷︷      ︸
V1

b′ = b + 𝜀2u − 𝜀1d
(u − d)er𝛿︸       ︷︷       ︸

V2

But

V − 𝜀 = a′Sn + b′ = aSn + b +V1Sn +V2 =V +V1Sn +V2

Substituting forV1 andV2 it follows that

𝜀1 (er𝛿 − d) + 𝜀2 (u − er𝛿)
(u − d)er𝛿 = −𝜀 (1)

But this can be true only if er𝛿 ∉ [d , u] and that is a contradiction.
• Suppose that the amountV = e−r𝛿

(
qV u

n+1 + (1− q)V d
n+1

)
is the minimum amount of money as we describe

above. We will prove that the inequality d ≤ er𝛿 ≤ umust hold. Suppose that er𝛿 < d. Then for every 𝜀 > 0 we
choose 𝜀2 = 0 and 𝜀1 = 𝜀

(u−d)er𝛿
d−er𝛿 and therefore the a′, b′ constructed as above denes a portfolio with at least

the desired values at time n +1 and therefore we have a contradiction. The same holds for the case u < er𝛿 .

Remark 4 In the case where the inequality d ≤ er𝛿 ≤ u does not hold then with any amountVn at time n (even negative)
we can construct a suitable portfolio with at least the desired values at time n + 1.

Definition 5 We denote by RX = {V (ak ,bk)
0 } where (ak , bk) is any acceptable by the writer replicating portfolio for the

derivative X .

Note that RX is nonempty because it containsV (aX ,bX )
0 where (aX , bX ) is the fundamental replicating port-

folio.

Corrolary 6 It holds that d ≤ er𝛿 ≤ u if and only if the set RX is bounded from below. In the case where RX is bounded
from below then the minimum is the amountV (aX ,bX )

0 .
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Proof.Note that the holder of the option do not have the right to exercise at time zero soV0 = e−r𝛿 (qV u
1 + (1−

q)V d
1 ).
• Suppose that d ≤ er𝛿 ≤ u. Then using Theorem 3 repeatedly backwards for n = N − 1, · · · , 0 it follows

that RX is bounded from below and the minimum is the amountV (aX ,bX )
0 .

• Suppose that RX is bounded from below. We will prove that the inequality d ≤ er𝛿 ≤ u holds. If it is not
then by Theorem 3 it follows that RX is not bounded from below and this is a contradiction.

In the case where RX is bounded from below then the inequality d ≤ er𝛿 ≤ u hold thus the minimum of
RX is the amountV (aX ,bX )

0 .

Definition 7 (Fair Value of the Derivative X) If d ≤ er𝛿 ≤ u then the amountV (aX ,bX )
0 is dened as the fair

value of the derivative X .

Note that if er𝛿 ∉ [d , u] then we can not dene a fair value for an option (by any means not only via
replicating portfolios) because we can replicate the derivative with any initial amount of money, even negative.
But we can dene a fair value if d ≤ er𝛿 ≤ u, i.e. even in the cases d = er𝛿 or u = er𝛿 in which there exists
arbitrage opportunities. In the usual probabilistic point of view we assume that d < er𝛿 < u in order to dene
the fair value but it is not clear what we can (or we can not) do in the cases where er𝛿 ≤ d or er𝛿 ≥ u. Therefore
the denition of the fair value of an option is not so closely related with the absence of arbitrage opportunities.

Remark 8 If d = er𝛿 with the amount e−r𝛿
(
qV u

n+1 + (1 − q)V d
n+1

)
, setting 𝜀 = 𝜀2 = 0, we can construct a portfolio at

time n with at least the desired values at time n +1 for every 𝜀1. Similarly in the case where u = er𝛿 . That is, in these two
cases (and of course in the case where er𝛿 ∉ [d , u]) with the amount of money e−r𝛿

(
qV u

n+1 + (1− q)V d
n+1

)
we can construct

acceptable by the writer replicating portfolios that are not honest.

Theorem 9 The fundamental replicating portfolio is always honest. In the binomial model it holds d < er𝛿 < u if and
if RX is bounded from below (in this case the minimum isV (aX ,bX )

0 ) and moreover with this amount of money we can not
construct an acceptable by the writer portfolio that is not honest.

Proof. Recall rst thatVek ≥ Xek for all k = 0, · · · , m. We will prove that the fundamental replicating portfolio
is honest proving that, in every possible path of the value of the asset, there exists some j = 0, · · · , m (which
depends on that path) such thatVe j = Xe j and with

∑e j
i=0 ci = 0. Denote by

j = min{k ∈ {0, · · · , m} :Vek = Xek }

By construction of the fundamental replicating portfolio we have thatVN = XN so e j ≤ em = N . For this j we
obviously have thatVe j = Xe j and that cn = 0 for n = 0, · · · , e j because for n = 0, · · · , e j either the holder do
not have the right to exercise orVn > Xn when it has the right. Thus, there always exist some j ∈ {0, · · · , m}
such thatVe j = Xe j and

∑e j
i=0 ci = 0.

• Let d < er𝛿 < u. By Corollary 6 we have that RX is bounded from below and the minimum isV (aX ,bX )
0 .

Moreover by the proof of Theorem 3 it follows that 𝜀 = 𝜀1 = 𝜀2 = 0 so with the amountV (aX ,bX )
0 we can not

construct other acceptable by the writer portfolio that is not honest.
• Suppose that RX is bounded from below, in this case the minimum isV (aX ,bX )

0 , and that with this amount
of money we can not construct an acceptable by the writer portfolio that is not honest. By Corollary 6 we
obtain the inequality d ≤ er𝛿 ≤ u. Suppose that d = er𝛿 or u = er𝛿 . Then by Remark 8 it follows that with the
amount V (aX ,bX )

0 we can construct an acceptable by the writer replicating portfolio that is not honest. So we
have a contradiction, that is strict inequalities should hold.

The time j as described in the proof of the previous theorem is called optimal exercise time in the literature.
Note that this does not mean that if the holder exercise at that time he/she will make the best prot. For a
discussion on this matter, i.e. the best possible prot of the holder, one can see [4].
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Remark 10 If we suppose that there exists some 𝜎 > 0 such that u = e𝜎
√
𝛿 and d = e−𝜎

√
𝛿 (which is not in general

the case) then we can choose small enough 𝛿 so that the inequality d < er𝛿 < u holds. In this case one can show that
V0 (𝛿) →V0 (see [14]) which is connected with the Black-Scholes equation. It is well known that the binomial model does
not admit arbitrage opportunities if and only if d < er𝛿 < u. So, by Theorem 9, it follows that the binomial model does
not admit arbitrage if and only if RX is bounded from below (in this case the minimum is V (aX ,bX )

0 ) and moreover with
this amount of money we can not construct an acceptable by the writer portfolio that is not honest.

Conclusion

In the binomial model setting we have given necessary and sucient conditions in order to dene the fair value
of any derivative via replicating portfolios. Our analysis uses simple mathematical tools but we have not use any
no arbitrage arguments. It is clear that if er𝛿 ∉ [d , u] then one can not dene a fair value by any means because
one can construct a replicating portfolio with any initial value. Moreover, we can dene a fair value even in the
cases where er𝛿 = d or er𝛿 = u and that means that the denition of the fair value is not so closely related with
the absence of arbitrage. Finally, we have related the absence of arbitrage opportunities in the binomial model
with the denition of the fair value of any derivative and with the construction of honest acceptable portfolios.

References

[1] M. Burzoni, M. Frittelli, Z. Hou, M. Maggis, J. Obloj, Pointwise arbitrage pricing theory in discrete time,
Math. Oper. Res. 43 (2019), 1034 - 1057.

[2] J. Cox, S. Ross, M. Runinstein, Option pricing: a simplied approach, J. Financial Econ. 7 (1979), 229-
263.

[3] D. Due, Dynamic Asset Pricing Theory, Princeton University Press, 2001.

[4] N. Halidias, An elementary approach to the option pricing problem, Asian Res. J. Math. 1 (2016), 1-18.

[5] H. He, Convergence from the discrete to continuous time contingent claim prices, Rev. Financial Stud.
3 (1990), 523-546.

[6] J. Hull, Options, Futures and Other Derivatives, Prentice Hall, 2010.

[7] R. Korn, E. Korn, Option Pricing and Portfolio Optimization, AMS, 2000.

[8] I. Karatzas, S. Shreve, Methods of Mathematical Finance, Springer, 1998.

[9] M. Musiela, M. Rutkowski, Martingale Methods in Financial Modelling, Springer, 2005.

[10] A. Pascucci, W. Runggaldier, Financial Mathematics, Springer, 2012.

[11] S. Shreve, Stochastic Calculus for Finance I and II, Springer, 2004.

[12] P. Wilmott, Paul Wilmott on Quantitative Finance, Wiley, 2007.

[13] L. Jiang, Mathematical Modeling and Methods of Option Pricing, World Scientic, 2005.

[14] L. Jiang, M. Dai, Convergence of binomial tree methods for European/American path-dependent op-
tions, SIAM J. Numer. Anal. 42 (2004), 1094-1109.

5


	Introduction
	Main Results
	Conclusion

