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THE ROLE OF RE-INFECTION IN MODELING THE DYNAMICS OF ONE-STRAIN 

TUBERCULOSIS INVOLVING VACCINATION AND TREATMENT 
 

GOODLUCK MIKA MLAY, LIVINGSTONE S. LUBOOBI, DMITRY KUZNETSOV, FRANCIS SHAHADA 

 

Abstract. In this article a continuous time deterministic model with vaccination and treatment strategies is 

formulated to assess the effect of reinfection on the transmission dynamics of Tuberculosis (TB). The 

involvement of reinfection in our model causes relapse and leads to the possibility of backward bifurcation at 

critical value of effective reproduction number 1
e

R  and hence the existence of multiple equilibria when 

effective reproduction number 1
e

R  . This indicates that even by reducing effective reproduction number 

e
R   below one is no longer a sufficient condition to eradicate the disease from community. An additional 

reduction of effective reproduction number 
e

R  below the saddle-node bifurcation value is required to 

eradicate disease from community provided that the disease free equilibrium is globally asymptotically stable. 

Numerical simulation results are presented to validate analytical results. We suggest that reinfection is an 

important feature of TB and has to be considered when modeling the complex dynamics of TB. 

 

 

1. INTRODUCTION 

Tuberculosis (TB) is a chronic bacterial infectious disease caused by pathogen 

Mycobacterium tuberculosis with more than one-third of the world human population as 

its reservoir [1, 9, 16]. A global annual estimate of 8.6 million people develop Tuberculosis, 

of which 1.3 million die from disease. It is reported in [24] that, the burden of disease 

caused by TB is high in developing world where poor nutrition, congested accommodation 

and emergency of HIV are manifested. The global estimates of incidence, prevalence and 

mortality rates per 100,000 population in 2012 were respectively 255, 303 and 26 and 

Tanzania incidence, prevalence and mortality rates per 100,000 population were 165, 176 

and 13 respectively as per [24]. It therefore raises a quest to find desirable means to curtail 

TB morbidity and mortality rates. 

Tuberculosis disease is mainly of two types: pulmonary and extra-pulmonary TB. 

Pulmonary TB is a common form of TB that affects lung while extra-pulmonary TB affects 

other parts of body and organs including central nervous system and bone [23]. This 

particular study focuses on pulmonary TB. Tuberculosis is an epidemic disease spreading 

in the air when the infectious person with pulmonary TB expel bacteria by coughing, 

singing, sneezing, speaking and so on [6]. An individual with active TB has usual symptoms 

which are general weakness or tiredness, fever, weight loss, loss of appetite and night 
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sweats. Further symptoms are coughing, coughing up of sputum and/ or blood, shortness 

of breath and chest pains if the infection in the lung get worse [7]. TB draws back 

economics of the world and Tanzania in particular as it affects men than women and 

especially the productive working group [23]. In absence of HIV a small proportion of 

about 10% of infected individuals with Mycobacterium tuberculosis develop TB and 

becomes infectious within two years upon infected [20]. Most become latent for the rest of 

their lives as long as their immune system is not compromised [6]. The recovered 

individuals from TB do not acquire the permanent immunity. Some of them they become 

latent again. Even with treatment interventions, the rates of reinfection TB are higher than 

those of new TB [20]. Mathematical modeling of epidemiology of Tuberculosis has recently 

become the powerful tool to study the complex dynamics of the disease and explore the 

role of various TB features such as reinfection and reactivation. [9] formulated 

mathematical model of TB with exogenous re-infection. The results of their work suggest 

that exogenous reinfection has drastic effect on qualitative dynamics of TB and it allows the 

possibility of subcritical bifurcation at critical value of basic reproduction number 
0

1R  . 

Buonomo and Lacitignola [3] applied bifurcation method introduced in Castillo-Chavez and 

Song [6] based on the use of center manifold theory [4] to derive conditions for existence of 

either forward or backward bifurcation for vaccination model introduced in [10]. They 

clearly explain the role of vaccination, treatment and transmission parameters for the 

occurrence of forward or backward bifurcation. Okuonghae and Aihie [19] examined the 

effect of Direct Observation Therapy Strategy (DOTS) on dynamics of TB against the 

fraction of active cases detected. They formulated mathematical model that involves the 

fraction of detected cases undergoing treatment under DOTS and other fraction not 

detected. The qualitative analysis of this model shows that in presence of exogenous re-

infection, reproduction number must be outside the bifurcation range for disease free 

equilibrium to be asymptotically stable. The parameter for case detection has shown to be 

important in reducing backward bifurcation range as well as reducing the reproduction 

number. They further argued that if the critical level for case detection parameter is not 

reached then TB persist in population and become endemic. [12] propose mathematical 

model of TB that includes exogenous reinfection in order to understand the recent increase 

of TB incidences in Korea. In their study, parameter for case finding effort was found to be 

significant impacting component on curbing active TB cases. They recommended that for 

dramatic reduction of TB incidences, the treatment of active TB cases should be 

accompanied by case finding (taking medication before the actual active TB has clinically 

diagnosed) effort than to take each measure alone. This paper concentrates on 

investigating the role of re-infection on the one strain TB model with vaccination and 

treatment and its impact on TB transmission dynamics. Bifurcation and stability analysis of 

equilibrium points are properly investigated. 
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2. MODEL FORMULATION 

Our population model is subdivided into six compartments and is developed from the basic 

SEIT (Susceptible-Exposed-Infectious-Treated) compartmental model. A compartment of 

Vaccinated population (V ) is added to form SVEIT model. In addition compartment of 

infectious population ( I ) is subdivided into two compartments which are severely infected 

population ( 1I ) and mildly infected population ( 2I ). Severely infected population ( 1I ) 

progresses faster to treatment group compared to mild infected population ( 2I ). In this 

model susceptible population will be recruited at a rate λ . Some susceptible individuals 

will come into contact with infectious individuals and being infected at a rate of β. A 

proportion, ρ  of babies will be vaccinated at birth while the remaining proportion  1 ρ  

will be left out of vaccination to join the susceptible population. Once vaccinated babies 

loose immunity they become susceptible at per-capita rate θ  , whereby 1/ θ  is the period 

after which a vaccinated baby looses immunity. The Latently infected individuals progress 

to active TB through endogenous reactivation. The proportion (1 )η  of Latently infected 

individuals progresses fast to severely infected class, 1I  while the remaining proportion, η  

progresses slowly to mildly infected class, 
2

I  at the same per-capita rate ε . Under usual 

circumstances mildly infected individuals take a long time to progress to treatment group, 

T  than severely infected individuals. That is a proportion,  of mildly infected individuals 

progresses to treatment group, T  while the remaining proportion,  1   progresses to 

severely infected class, 1I at the same per-capita rate ω . The severely infected individuals 

progress to treatment group at a rate of υ . The treatment group, T  is assumed to undergo 

exogenous re-infection and relapse back to Latent group with infection level, γ . The 

infectious individuals 1I  and 
2

I  are assumed to die at disease induced mortality rates of 
1
δ  

and 
2
δ  respectively while the rest die naturally at a rate of μ . All variables and parameters 

are assumed to be non-negative. 

In addition the following assumptions are taken into consideration during the formulation 

of the model: 

i. All individuals are born susceptible. 

ii. The members of population mix homogeneously. 

iii. Age, sex, social status, do not affect the probability of being infected. 

iv. Natural recovery is negligible and hence ignored. 

v. Vaccinated population looses immunity and become Susceptible. 

vi. No more Vaccination can be administered to an individual infected with TB 

or to someone who previously was vaccinated. 
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vii. Once recovered from Treatment an individual reverts to be Latent and may 

experience another episode of disease. 

viii. Once an individual is infected he/she will not recover if no treatment is given. 

The above description of model formulation together with the assumptions leads to 

compartmental diagram in Figure 1.The full description of variables and parameters used 

to formulate the model are in Table 1 and Table 2 respectively: 

 

Table 1: Description of variables of the model. 

Variable Description 

)(tS  The Susceptible who are at risk of being infected at time t . 

)(tL  The latently infected individuals at time t . 

)(tV  Vaccinated individuals at time t . 

)(1 tI  Individuals who are severely infected with TB at time t . 

)(2 tI
 

Individuals who are mildly infected with TB at time t . 

)(tT  Individuals Treated against TB at time t . 

Figure 1: Schematic flow diagram showing dynamics of tuberculosis, where 
1 2

.I I I   
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Table 2: Description of Parameters of the model. 

Parameter Description 

  Per capita birth rate. 

β   Per capita infection rate. 

ρ   Proportional of babies who are being vaccinated at birth. 

θ   The rate at which a vaccinated individual looses immunity. 

ε   The rate of progression from Latent class to both severely and mildly Infected 

classes. 
η   Proportional of Latently infected population progressing to mild infected class.  
μ   Per capita natural death rate. 

1  Per capita additional death rate of severely infected class. 

2  Per capita additional death rate of mildly infected class. 

  Proportional of mildly infected class who are treated. 

  The rate at which a mildly infected individual is transferred to both  severely 

infected and treatment classes. 

υ   The rate at which a severely infected candidate is transferred to treatment 

class. 
γ   The factor that reduces the level of reinfection. 

2.1 Equations of the Model. 

Basing on assumptions made and relationship that exists between variables and 

parameters shown in Figure 1 the system of six ordinary differential equations that 

describes the dynamics of tuberculosis in presence of vaccination and treatment is given by: 

 

 
 

 

   
 

   

 

 

1 2

1 2 1 2

1

2 1 1

2

2 2

1 2

1 2

1 2

1

1 1 ( )

.

I IdS
ρ N βS μS θV

dt N

dV
ρN μ θ V

dt

I I I IdL
βS γβT μ ε L

dt N N

dI
η εL ωI μ δ υ I

dt

dI
ηεL μ ω δ I

dt

I IdT
υI ωI μ γβ T

dt N

N S V L I I T


    

  

 
   

      

   

 
     

 

     

  (1) 

By adding the state equations in (1) we end up with rate of change of population, 
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   1 1 2 2

dN
λ μ N δ I δ I

dt
      (2) 

2.2 Normalization of the model. 

The model (1) can easily be analyzed after being normalized such that the total population 

is one. The normalization is done by scaling the population of each compartment by total 

population. We transform the actual proportions by setting: 

 1 2

1 2
, , , , ,

I IS V L T
s v l i i h

N N N N N N
        (3) 

   

where by 
1 2

1.s v l i i h       

Substituting (3) into (2) we end up with: 

  1 1 2 2

dN
λ μ δ i δ i N

dt
      (4) 

Upon differentiating the proportions in (3) with respect to time t  and make simplification, 

leads to the following dimensionless system:  

 

    

 

     

     

 

  

1 2 1 1 2 2

1 1 2 2

1 2 1 2 1 1 2 2

1

2 1 1 1 2 2 1

2

2 1 1 2 2 2

1 2 1 2 1 1 2 2

1 ,

,

,

1 1

  .

,

,

ds
ρ λ θv λ β i i δ i δ i s

dt

dv
ρλ λ θ δ i δ i v

dt

dl
βs i i γβh i i λ ε δ i δ i l

dt

di
η εl ωi λ δ υ δ i δ i i

dt

di
ηεl λ ω δ δ i δ i i

dt

dh
υi ωi λ γβ i i δ i δ i h

dt

       

    

       

        

     

      

  (5) 

subject to condition 
1 2

1.s v l i i h       It can be shown that all the feasible solutions of 

system (5) enter the region of biological interest defined by 

   6

1 2 1 2
, , , , , : 1s v l i i h s v l i i h


       Ω   

that is positive-invariant. It is enough to consider the dynamics of the flow generated by 

system (5) in Ω . In this region, the model (5) is considered to be both biologically and 

mathematically well posed [11]. 
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3. ANALYSIS OF A MODEL 

We analyze model (5) in order to get some insights on dynamics of TB disease and 

transmission. 

 

3.1 Existence and Local Stability of DFE 

Let  0 1 2
, , , , ,E s v l i i h       be a DFE point of model (5). We set zero to the right hand side of 

each equation in (5) and assume that in absence of disease attack, 
1 2

0l i i h     to solve 

the steady state solution. The disease free equilibrium point is therefore given by : 

 
 

0 1 2

1
, , , , , , ,0,0,0,0

θ λ ρ ρλ
E s v l i i h

λ θ λ θ

     
  

   
  

. Before we prove for local stability of 

DFE we define and determine the effective reproduction number, 
e

R  of model (5). 

Definition 1. The effective reproduction number, 
e

R  is defined as the measure of average 

number of infections caused by a single infectious individual introduced in a community in 

which intervention strategies (in our case is treatment and vaccination) are administered 

[18]. 

The effective reproduction number 
e

R is computed by using next generation operator 

method [22] and found to be: 

 

  
 

    

      

        
    

2

2 1 2

2 1

2 1

1 1 1

1 1 1

e

β θ λ ρ η λ ω δ ε ωηε ηε
R

λ θ λ ε λ ω δ λ δ υ λ ε λ ω δ

β θ λ ρ η λ ω δ ε ω λ δ υ ηε

λ θ λ ε λ ω δ λ δ υ

       
  

          

           
     

  (6) 

 Theorem 3.1. The disease free equilibrium of model (5), given the effective reproduction 

number, 
e

R  is locally asymptotically stable if 1
e

R   and unstable if 1
e

R  . 

We prove Theorem 3.1 for local stability of DFE by asserting that the trace and determinant 

of Jacobian matrix at DFE denoted by  0
J E  are strictly negative and positive respectively. 

Jacobian matrix evaluated at disease free equilibrium point is given by: 
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 

 
 

 
 

 

 
   

     

 

1

1

2

2

0

1

2

0 0

0 0 0

0 0 0

0 0 1 1 0

0 0 0 0

1

0 0

1

0

1

1

θ λ ρ θ λ ρ

λ θ λ θ

ρλ ρλ
λ θ δ δ

λ θ λ θ

θ λ ρ θ λ ρ
λ ε

λ

λ θ β δ β δ

J E
β β

θ

η ε λ δ υ ω

ηε λ ω δ

υ ω

θ

λ

λ

    
        
     
 
 
 
   

   

 


 

  
     
    
 

     
   


  



  







  

Trace and determinant of matrix  0
J E  denoted by   0

Tr J E  and    0
det J E  are 

respectively given by: 

     0 1 2
Tr 6 0J E λ θ ε υ ω δ δ           

and 

    

 
   

     

 

 

  
 

      

   

  
 

     
   

2 1

2

2

1

0 1

2

2 1

2

2

1

det

1 1

1
1 1

1 1 1

1 1

0

θ λ ρ θ λ ρ
λ ε

λ θ λ θ

λ θ

β θ λ ρ
η λ ω δ ε ω λ δ υ ηε

λ θλ θ

λ ε λ ω δ λ δ υ

β θ λ ρ η λ ω δ ε ω λ δ υ ηε

β β

J E λ η ε λ δ υ ω

ηε

λ θ λ ε λ ω δ λ δ υ

λ ω δ

λ

A

   
    

   

      

  

 


   


 



 
       



     

          
 

    


   

 








 

 

1

1 .
e

A R

 
 
  

 








  

where     2

1 2
0A λ λ θ λ ε λ δ υ λ ω δ        . 

We find that   0
Tr J E  is strictly negative and   0

det J E  is strictly positive if and only if 

1
e

R  . We therefore conclude that DFE is locally asymptotically stable.   

3.2 Global Analysis of DFE of a model with interventions 

We analyze the global stability of disease free equilibrium point of model (5) by using an 

approach presented in [5]. The model (5) can be written in the following format: 
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 

0 , 1

2

.

.

n

n E n i

i

i

dX
A X X A X

dt

dX
A X

dt


  


 


  (7) 

From (7), 
n

X  and 
i

X  are vectors of non-transmitting and transmitting compartments 

respectively. 
0 ,E n

X  is a vector at disease free equilibrium point 
0

E  of the same length as 
n

X . 

From model (5) we define: 

   
 

01 2 ,

1
,, , , , , , ,0 ?

T

T T

n i E n
X s v h X

θ λ ρ ρλ

λ θ λ
l i

θ
i X

 
   












 and  

 

0 ,

1

 
n E n

θ λ ρ

λ θ

ρλ

λ θ

s

X X v

h

 
 

 
 

   
 
 
 
 

 




. For global stability of DFE we need to show that matrix A  

has real negative eigenvalues and 
2

A  is a Metzler matrix (i.e. the off-diagonal elements of 

2
A  are non-negative, symbolically denoted by  2

0,
ij

A x i j   ). Using system (5), then 

the first and second equations in (7) can be written respectively in expanded form as: 

    
 

  

 

1 2 1 1 2 2

1 1 2 2

1 2 1 2 1 1 2 2

1 1

2

1

1

 

 

θ λ ρ

λ θρ λ θv λ β i i δ i δ i s
ρλ

ρλ λ θ δ i δ i v A
λ θ

υi ωi λ γβ i i δ i δ i h

s

l

v A i

i
h

 

       
 

     
      

  

 
 

   
   

    
    
 
 
 

  

and  

     
     

 

1 2 1 2 1 1 2 2

2 1 1 1 2 2 1 2 1

2 1 1 2 2 2 2

1 1

βs i i γβh i i λ ε δ i δ i l l

η εl ωi λ δ υ δ i δ i i A i

ηεl λ ω δ δ i δ i i i

         
   

            
          

. For compatibility, matrices 
1

,A A  

and 
2

A  should be of order 3 3 . By using non-transmitting elements from Jacobian matrix 

of system (5) and representation in (7) we find that: 

 

   

   

1

2

1 1

1

2

2

0 0

0 0 ,  0

0 0 0

λ θ β δ s β δ s

A λ θ A δ δ

λ υ

v v

γβ γβh δ ω h δ

      
  

      
        

 and, 
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     
      

  

1 2

1 1

2 2

2 2 1

1 2

1 1 1

1

λ ε δ l δ l

η ε λ δ i δ i

ηε δ i λ ω δ i

β s γh β s γh

A υ ω

 

 

    
 

      
 

     

 . We find that A  is upper triangular 

matrix whose eigeinvalues are located on its main diagonal. Therefore eigenvalues of A  (i.e. 

 ,  and λ λ θ λ    ) are real and negative. In addition 
2

A  is a Metzler matrix since its off-

diagonal elements are non-negative. That is 
1 2

0 , , , 1l i i h   and both  1
1 i  and  2

1 i  are 

strictly positive. Therefore DFE for system (5) is globally asymptotically stable in region Ω . 

We have established important theorem: 

Theorem 3.2. The disease-free equilibrium point is globally asymptotically stable in Ω  if 

1
e

R   and unstable if 1
e

R  . 

3.3 Existence of Endemic Equilibrium Point (EEP) of model with interventions 

Let  12

* * * *

2
, , , ,,E s v l i i h   be an endemic equilibrium point of model (5). The conditions of 

existence of endemic equilibrium point 
2

E  are obtained by setting the right hand side of 

each equation in (5) equal to zero and solve model (5) in terms of force of infection 

 * * *

1 2
f β i i   at steady state. Let * *

1 1 2 2
0λk δ i δ i   , for any pairwise choice of 

1
i   and 

2
i   

values at endemic equilibrium. An endemic equilibrium point in terms of force of infection 

is given by: 

 

  
  

           

          

         

          

    

2 2

2 1 1 2

2

1

2 1 1 2

1

2

1

1 1 1

1 1 1

1

λ θ k ρ
s

f k θ k

ρλ
v

θ k

λ ω δ k η ω δ k ωη θ k ρ γf k f
l

η f k θ k ε k ω δ k γf k δ υ k εγf υa a

λε η ω δ k ωη θ k ρ γf k f
i

f k θ k ε k ω δ k γf k δ υ k εγf υa a

ληε θ k ρ γf k δ υ k f
i







 



  

 



  

 



 


 




         


         

       


         

    

          

   

          
      

2 1 1 2

1 2

2 1 1 2

1 2 2 1

1

 we define, 1 1 ;  

f k θ k ε k ω δ k γf k δ υ k εγf υa a

λε θ k ρ υa a f
h

f k θ k ε k ω δ k γf k δ υ k εγf υa a

a η ω δ k ωη a ωη δ υ k

  





  



















         



  

         

         
  (8) 



11 / 23 
THE ROLE OF RE-INFECTION 

If we substitute representations of *

1
i  and *

2
i  from (8) into the force of infection, 

 * * *

1 2
f β i i   or  * * *

1 2
0f β i i   we find that: 

 
           

          
2 1

2 1 1 2

1 1 1
0

λε θ k ρ γf k f η ω δ k ωη η δ υ k
f β

f k θ k ε k ω δ k γf k δ υ k εγf υa a

 



  

               
          
 

 (9) 

Manipulating and simplifying (9) we end up with the following cubic polynomial: 

  2

1 1 1
0f A f B f C       (10) 

where by 

 

  

      

  

1

1 1 1

1 1 1

,

,

 .

A γ M υP Q θ k

B k M γ M υP Q θ k βa γ P δ υ k ηε

C k Mk βa P δ υ k ηε

     

          

      

  (11) 

Furthermore in terms of parameters of model (5) we define: 

    2 1
M θ k ε k ω δ k δ υ k       ;     2

1 1P η ω δ k ε ωηε      ; 

 1
Q ωηε δ υ k     and   1

1a λ θ k ρ   . We write 
1

C  in the following format: 

 
      11

2

2
1

e
θ k ε k ω δ k δ υ k k RC       

  (12) 

From (12),      2

2 1
0θ k ε k ω δ k δ υ k k        and 

e
R  is effective reproduction 

number as indicated in (6). 

From (10),  1 2
0f β i i      corresponds to Disease Free Equilibrium (DFE) that we have 

already discussed while 2

1 1 1
0A f B f C    , that can be also be written in the form: 

 
2

1 1 1 1*

1

4

2

B B AC
f

A

  
   (13) 

 Satisfies Endemic Equilibrium. The value of 
1

A  is strictly positive. Depending on the signs 

of 
1

B  and 
1

C  we have three cases to consider in order to have positive root of force of 

infection as follows: 

Case 1: In absence of re-infection we find that the parameter for level of reinfection, 0γ  . 

This implies from (11) that 
1

0A  . The polynomial  2

1 1 1
0A f B f C     becomes linear, i.e. 

1 1
0B f C    or * 1

1

C
f

B


 . If 

1
0B   then system (5) has stable endemic equilibrium when 

1
0C  . This equilibrium happens when 1

e
R  as interpreted from (12). In this case 

backward bifurcation is not possible due to absence of multiple equilibria. 
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Case 2: Exactly one endemic equilibrium point. From (13), suppose 
1

0B   and 
1

0C   or 

2

1 1 1
4 0B AC  . This means the polynomial has just one positive root and hence the system 

(5) has unique endemic equilibrium. 

Case 3: Two endemic equilibria 

If 
1

0B  , 
1

0C   and 2

1 1 1
4 0B AC  , then the polynomial 2

1 1 1
0A f B f C     has two 

positive roots. This means that the system (5) has two endemic equilibria and hence the 

possibility of backward bifurcation. These three cases are summarized under the following 

theorem: 

Theorem 3.3: The number of positive endemic equilibria of Tuberculosis model (5) is 

hereunder summarized as follows: 

i. If 
1

0C  , 1
e

R  , the system has a unique endemic equilibrium. 

ii. If 
1

0B   and 
1

0C   or 2

1 1 1
4 0B AC  ,  the system has exactly one endemic 

equilibrium. 

iii. If 
1

0B  , 
1

0C   and 2

1 1 1
4 0B AC  , the system has exactly two endemic equilibria. 

iv. Otherwise there are no endemic equilibria, i.e. when 
1 1

0AC    and 
1

0B  . 

From (iii), the critical point of effective reproduction number c

e
R   at which a backward 

bifurcation occurs is computed by setting the discriminant in (13) equals to zero. Thus, 
2

1 1 1
4 0B AC   implies that 

      2 2

1 1 2 1
4 1 0c

e
RB A θ k ε k ω δ k δ υ k k        and, 

    

2

1

2

1 2 1

1
4

c

e

B

A θ k ε k ω δ k δ υ k k
R

     
   . Thus backward bifurcation occurs in the 

range 1c

e e
R R  .  Furthermore, we note from (13) that disease will be endemic if force 

of infection is strictly positive (i.e. 0f   ) and both  
1

B  and 
1 1

AC  are strictly negative. Thus, 

1
0A   and       2

1 2 11 1
1 0

e
A θ k ε k ω δ k δ υ k kC A R         if and only if 1

e
R  . 

Therefore endemic equilibrium point  12

* * * *

2
, , , ,,E s v l i i h   is stable if and only if 1

e
R  . 

 

3.4 Stability of Endemic Equilibrium Point (EEP) of model with intervention 

The stability of an endemic equilibrium 
2

E  of model (5) is analyzed by using Centre 

Manifold theory [4] as described in Theorem 4.1 of Castillo-Chavez and Song [6]. We 

change the variables of model (5) by setting 
1 2 3 1 4 2 5 6
, , , , ,s x v x l x i x i x h x       such 
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that 
6

1

1
i

i

x


 . We define vector  1 2 3 4 5 6
, , , , ,

T

X x x x x x x  and  1 2 3 4 5 6
, , , , ,

T

F f f f f f f  in 

such a way that the model (5) is re-written in the form 
dX

F
dt

  as follows: 

 

    

 

     

     

 

1 1 2 4 5 1 4 2 5 1

2 2 1 4 2 5 2

3 3 1 4 5 6 4 5 1 4 2 5 3

4 4 3 5 1 1 4 2 5 4

5 5 3 2 1 4 2 5 5

6 6 4 5 4

1

?

,

1 1 ,

,

,

 

x f ρ λ θx λ β x x δ x δ x x

x f ρλ λ θ δ x δ x x

x f βx x x γβx x x λ ε δ x δ x x

x f η εx ωx λ δ υ δ x δ x x

x f ηεx λ ω δ δ x δ x x

x f υx ωx λ γβ x

        

     

        

         

      

       5 1 4 2 5 6
.x δ x δ x x










   

  (14) 

The Jacobian matrix  0
J E   of system (14) at disease free equilibrium 

0
E  presented in 

Section 3.1 is given by  

  

   

 

 

     

 

1 1 2 1

1 2 2 2

1 1

1

2

0

0 0

0 0 0

0 0 0

0 0 0

0 0 0 0

0

1

0

1

0

λ θ β δ r β δ r

λ θ δ r δ r

λ ε βr βr

η ε λ δ υ ω

ηε λ ω δ

υ

E

ω λ

J

     
 
 
 

  
 
 
 
  

 

 

    

  

 

  (15) 

From (15) we define 
 

1

1θ λ ρ
r

λ θ

 



 and 

2

ρλ
r

λ θ



. In particular case when basic 

reproduction number 1
e

R  , we choose our bifurcation parameter  be β  and consider our 

bifurcation to take place at β β . Solving β  from (6) when 1
e

R   we find that: 

 
    

        
2 1

2 1
1 1 1

λ θ λ ε λ ω δ λ δ υ
β β

θ λ ρ η λ ω δ ε ω λ δ υ ηε


     

 
           

  (16) 

The Jacobian of transformed system (14) at β β  has simple zero eigenvalue that allows 

us to study the dynamics of the system (5) at β β  using Centre Manifold theory [4].  The 

Jacobian of (14) denoted by  0
J E  at β β  has right eigenvector that corresponds with 

zero eigenvalue given by  1 2 3 4 5 6
, , , , ,

T

w w w w w w , where by:  
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         
 

   
 

 

  

1 1 1 2 1 1 1 2 2 2 1

1 5

1

1 2 2 1 2 2 1

2 5

1

2

3 5

2 1

4 5

1

5 5

6

0,

0,

0,

0,  free

,

.

k β rηε δ r θ β δ λ θ r β rηε δ r θ β δ λ θ r
w w

λ λ θ β rηε

δ r λ ε λ ω δ β rηε δ r β rηε
w w

λ θ β rηε

λ ω δ
w w

ηε

λ ε λ ω δ β rηε
w w

β rηε

w w

υ
w

   



 







          
 

 
 

     
  

  

 
 

    
  
 

 


  2 1 1

5

1

0.
λ ε λ ω δ β rηε ωβ rηε

w
λβ rηε

 



  








   



















   
  

 (17) 

From (17),    11 2
λ ε λ ω δ β rηεk      and 

 
1

1θ λ ρ
r

λ θ

 



. By using (16) we show that 

1
k   is strictly positive justifying that the components 

2 4 6
, , 0w w w    as follows: 

 

  

  
  

  
  

        

  
 

     

2 1

1

2

2

1 1

2

2 1

1

2

2 1

1

1

1
1 1 1

1 0.
1 1

λ ε λ ω δ β rηε

β rηε
λ ε λ ω δ

λ ε λ ω δ

λ θ λ δ υ rηε
λ ε λ ω δ

θ λ ρ η λ ω δ ε ω λ δ υ ηε

λ δ υ ηε
λ ε λ ω δ

η λ ω δ ε ω λ δ υ η

k

ε





   

 
         

   
     
             

  
      

         



  

Moreover, the Jacobian matrix  0
J E at β β has left eigenvector  1 2 3 4 5 6

, , , , ,
T

Ψ Ψ Ψ Ψ Ψ Ψ Ψ  

associated with zero eigenvalue satisfying the relation 1Ψ   , where by: 

 
    11

1 2 6 3 4 4 4 5 4

1 2

1
0, 0,  0,  0.

ω λ δ υλ δ υ
Ψ Ψ Ψ Ψ Ψ Ψ Ψ Ψ Ψ

β r λ ω δ

    
        

 
 (18) 

We compute the value of a  and b  that will govern totally the local dynamics of system (14) 

and determine whether it exhibits forward or backward bifurcation by employing Theorem 

4.1 of Castillo-Chavez and Song [6] and as restated in Theorem 3.4. 
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Theorem 3.4. Consider the general system of ordinary differential equations (14) with a 

parameter β  such that  , , : ndx
f x β f

dt
    and  2 nf   , where 0  is an 

equilibrium point of the system (i.e.  0, 0f β   for all β ) and 

1.    0,0 0,0i

x

j

f
A D f

f

 
     

 is Jacobian (linearization) matrix of the system around 

the equilibrium 0  with β   evaluated at 0 , 

2. Zero is a simple eigenvalue of A  and other eigenvalues of A  have negative real 

parts; 

3. Matrix A  has a right eigenvector   and a left eigenvector Ψ  corresponding to zero 

eigenvalue. 

 Let 
k

f  be the thk  component of f  and  
2

, , 1

0,0
n

k

k i j

k i j i j

f
a Ψ ww

x x




 
  and 

 
2

, 1

0,0
n

k

k i

k i i

f
b Ψ w

x β




 
  then the local dynamics of the system around the equilibrium 

point 0  is totally determined by the signs of a  and b . In particular, if 0a   and 

0b   then a backward bifurcation occur at 0β  . Signs of a  and b  play the vital 

role in describing the local dynamics of model (14) around equilibrium point 0  as 

follows: 

a) 0, 0a b  , when 0β   with 1β , 0  is locally asymptotically stable and there 

exists a positive unstable equilibrium, when 0 1β  , 0  is unstable and there 

exists a negative and locally asymptotically stable equilibrium. 

b) 0, 0a b  , when 0β   with 1β , 0  is unstable, when 0 1β , 0  is 

asymptotically stable and there exists a positive unstable equilibrium. 

c) 0, 0a b  , when 0β   with 1β , 0  is unstable and there exists a locally 

asymptotically stable negative equilibrium, when 0 1β , 0  is stable and a 

positive unstable equilibrium appears. 

d) 0, 0a b   when β  changes from negative to positive, 0  changes its stability from 

stable to unstable. Correspondingly, negative unstable equilibrium becomes positive 

and locally asymptotically stable. 

Computation of a  and b  

We compute the value of a  and b  that will govern totally the local dynamics of system (14) 

and determine the conditions for existence of backward bifurcation following the signs of 
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a  and b  by employing Theorem 4.1 of Castillo-Chavez and Song [6] and as implied in 

Theorem 3.4 of this article. 

Since the components of left eigenvector 
1 2 6

0= Ψ Ψ Ψ   (for 1,2k   and 6 ) we compute 

the values of a  and b for only 3,4,5k  . The only non-zero second order partial derivatives 

of (14) at DFE when β β  are: 

 
2 2 2 2 22

* *3 3 3 3 54

1 22 2

1 4 1 5 4 6 5 6 4 5

,  ,  ,  2 2 .
f f f f ff

β γβ δ δ
x x x x x x x x x x

    
     

         
  

By using  
2

, , 1

0,0
n

k

k i j

k i j i j

f
a Ψ ww

x x




 
 we compute a  as follows: 

 

 

   

     

 

* * * *

3 1 4 1 5 3 4 1 3 5 2 4 6 5 6

2 2

4 4 1 4 5 2 5 4 5 1 5 2

* *

3 1 4 5 6 3 4 5 4 1 3 3 4 4 5 5

5 2 3 3 4 54 5

 2

2

 2

2

.

Ψ ww β ww β w w δ w w δ w w γβ w w γβ

Ψ w δ w w δ Ψ w w δ w δ

Ψ β w w w w γΨ β w w w δ Ψ w Ψ w Ψ w

a

w δ Ψ w Ψ w Ψ w

    

   



      

  

  (19) 

On the other hand, the value of b  is computed by using the formula,  
2

, 1

0,0
n

k

k i

k i i

f
b Ψ w

x β





 
 . 

The associated non-zero second order partial derivatives of (14) at DFE when β β  and 

3,4,5k  are: 

 2 2

3 3

1

4 5

1θ λ ρf f
x

x β x β λ θ





  
  

    
  The value of b  is therefore given by: 

 
     

 3 4 5 3 4 5

1 1 1
0

θ λ ρ θ λ ρ θ λ ρ
Ψ w w Ψ w w

λ θ λ λ
b

θ θ

        
       

     
  (20) 

From (19), let  11

*

3 4 5
Ψ β w wζ w   and 

     *

2 6 3 4 5 4 1 3 3 4 4 5 5 5 2 3 3 4 4 5 5
2 2ζ w γΨ β w w w δ Ψ w Ψ w Ψ w w δ Ψ w Ψ w Ψ w        . It follows that 

the sign of a  depends on the value of 
1

w . If 
1

0w   or 
1

0w   and 
2 1
ζ ζ  then 0a  . We 

formulate the following theorem. 

Theorem 3.5: If 
1

0w   or 
1

0w   and 
2 1
ζ ζ , 0a   then model (5) exhibits backward 

bifurcation at 1
e

R  . If 0β   then there exists unstable positive endemic equilibrium point 

and correspondingly if 0β   then there exists a stable negative endemic equilibrium point. 

Therefore endemic equilibrium point is locally asymptotically stable if 1
e

R   but close to 1. 
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Figure 2:  Bifurcation diagram showing backward bifurcation with estimated parameters 

14β   ; 1.8γ  ; 0.8θ  ; ε 0.396 ; η 0.1 ; λ 0.9 ;
1
δ 0.3 ;

2
0.6;  0.1;  0.9; 0.2ω ρ ν δ   

ω=0.6;  and 0.1   for numerical simulation. 

Figure 2 shows the backward bifurcation of system (5) that occurs at threshold parameter 

1
e

R  , due to presence of multiple equilibria and re-infection. DFE stands for Disease Free 

equilibrium and EE stands for Endemic Equilibrium. In the neighborhood of 1 when  1
e

R   

then stable DFE coexists with two endemic equilibria: the small unstable EE (with smaller 

number of TB infectives) and larger stable endemic equilibrium with large number of 

infectives. This implies that even with classically reducing the threshold parameter to less 

than unity does not clear TB from community. That is why we say backward bifurcation is 

an undesirable feature of TB.  When 1
e

R   then we have two equilibria: unstable DFE and 

large stable EE. According to Buonomo and Lacitignola [3] if 
e

R  is nearly below one then 

disease control depends on initial sub-populations of the model under consideration.  That 

is reducing 
e

R  below the critical value 1c

e
R   eradicate disease from community given that 

the disease free equilibrium is globally asymptotically stable. 

 

3.5 Global Stability of Endemic Equilibrium Point of a model with intervention. 

In this section we prove the global stability of endemic equilibrium point 
2

E  of system (5) 

by using Lyapunov's direct method. Our Lyapunov function is constructed from suitable 

choice of logarithmic function. The global properties of endemic equilibrium point are 

studied by stating and proving the following theorem. 

Theorem 3.6 If 1
e

R   then the unique endemic equilibrium 
2

E  of system (5) is globally 

asymptotically stable in the interior of Ω . 
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Proof: We use approach of Korobeinikov [13] as it is used to most complicated 

compartmental epidemiological models, to construct the Lyapunov function from suitable 

choice of the following logarithmic function: 

   * ,ln
i ii i

W a y y y    

where 
i

a  are properly chosen positive constants, 
i

y  is population of compartment i  and 

i
y   is the equilibrium level. We define the function 

  1 2 1 2
: , , , , , : , , , , , 0W s v l i i h Ω s v l i i h    by: 

 
          

        

* * *

1 2 1 2 3

* * *

4 1 1 1 5 2 2 2 6

, , , , , ln ln ln

ln ln ln .

W s v l i i h A s s s A v v v A l l l

A i i i A i i i A h h h

     

     
  

The constants 
1 2 6
, ,A A A  are non-negative in Ω  and W  is Lyapunov function. The 

function W  together with its constants 
1 2 6
, , 0A A A   are chosen in such way that W  is 

continuous and differentiable in a space 1C  and on the interior of Ω , 
2

E  is global 

minimum of W  on Ω , and  * * * * * *

1 2
, , , , , 0W s v l i i h  . The time derivative of Lyapunov 

function W  computed along the solutions of system (5) is: 

 

** * *

1 1

1 2 3 4

1

* *

2 2

5 6

2

1 1 1 1

1 1 .

i dis ds v dv l dl
W A A A A

s dt v dt l dt i dt

i di h dh
A A

i dt h dt

      
             

       

   
      

 





  (21) 

At Endemic equilibrium point (EEP) we have: 

 

    

 

      

    

  

* * * * * *

1 2 1 1 2 2

* * *

1 1 2 2

* * * * * * * * *

1 2 1 2 1 1 2 2*

* * * *

1 2 1 1 2 2*

1

*

* *

2 1 1 2 2*

2

* * * * *

1 2 1 2 1 1 2*

1 ,

1
,

1
1

,

,

1 ,

1
 

ρ λ λ β i i δ i δ i s θv

ρλ λ θ δ i δ i v

λ ε βs i i γβh i i δ i δ i l
l

λ δ υ η εl ωi δ i δ i
i

ηεl
λ ω δ δ i δ i

i

λ υi ωi γβ i i δ i δ i
h

      

   

      

       

    

      *

2
.

  (22) 

We re-write W   by using (22) as follows: 



19 / 23 
THE ROLE OF RE-INFECTION 

 

     

   

         

*

* * * * * *

1 1 2 1 1 2 2 1 2 1 1 2 2

*

* * *

2 1 1 2 2 1 1 2 2

*

* * * * * * * * *

3 1 2 1 2 1 2 1 2 1 1 2 2 1 1 2*

 

1

s s
W A λ β i i δ i δ i s θv θv λ β i i δ i δ i s

s

v v
A λ θ δ i δ i v λ θ δ i δ i v

v

l l
A βs i i γβh i i βs i i γβh i i δ i δ i l δ i δ

l l

 
               

 

 
           

 

 
            

 



  

            

    

*

2

*

* * * * * *1 1

4 2 2 1 1 2 2 1 1 1 2 2 1 1*

1 1

*

* * * * *2 2

5 1 1 2 2 2 1 1 2 2 2 2*

2 2

*

* *

6 1 2 1 2*

1
1 1 1 1

1

1
 

i l l

i i
A η εl ωi η εl ωi δ i δ i i δ i δ i i i

i i

i i
A ηεl ηεl δ i δ i i δ i δ i i i

i i

h h
A υi ωi υi ωi γβ

h h

 
 
 

 
            

 

   
        

   

 
    

 
 
 

 
 

        * * * * * * *

1 2 1 1 2 2 1 2 1 1 2 2
i i δ i δ i h γβ i i h δ i δ i h h

 
       

 

 (23) 

Simplification of (23) results to: 

 
 

 
 

2 2
* *

1 2 1 2
, , , , ,

s s v v
W Aλ A λ θ P s v l i i h

s v

 
     . The function  1 2

, , , , ,P s v l i i h  

balances the right hand side of (23). The function  1 2
, , , , ,P s v l i i h  is non-positive following 

the approaches of McCluskey [15] and Mukandavire [17].  

That is 0P   for every 
1 2

, , , , , 0s v l i i h  . Thus ' 0W   for all 
1 2

, , , , , 0s v l i i h   and zero when 

* * * * * *

1 1 2 2
0 0 0, , , , , 0s s v v l l i i i i h h       . Therefore the largest compact invariant 

set in Ω  such that ' 0W   is the singleton  2
E  which is Endemic Equilibrium point of 

model (5). LaSalles's invariant principle [14] then implies that 
2

E  is globally asymptotically 

stable in the interior of the region Ω  if 1
e

R  and that completes our proof.   

 

4. NUMERICAL SIMULATIONS AND DISCUSSIONS 

In this section numerical simulation of normalized model (5) is carried out in order to 

illustrate the qualitative results by using available parameter values from existing 

literature as well as estimated ones. Unless otherwise stated parameter values appeared in 

Table 3 will be used during the simulation process. 
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Table 3: Parameter values for normalized model (5). 

Symbol Value/range ( 1
yr

  ) Source 

λ   0.05 Estimated. 

β   2.58 Estimated. 

ρ   0.4 Estimated. 

θ   0.1 Estimated. 

ε   0.03 [8] 
η   0.7 (0.7-0.95) [19] 
μ   0.01923 (0.01-0.04) [2] 

1
δ   0.3 (0.07-0.365) [21] 

2
δ  0.2 (0.07-0.365) [21] 

   0.6 Estimated. 

ω   0.2 Estimated. 

υ   0.3 Estimated. 
γ   0.2 Estimated. 

 

4.1 Numerical Simulation of a  model (5) in presence of intervention and  TB. 

 
Figure 3: Shows the dynamics of susceptible, vaccinated, latently infected, severely infected, 

mildly infected and treated population proportions in presence of interventions and TB 

with increasing time. 

Figure 3 shows dynamic behavior of susceptible, vaccinated, latently infected, severely 

infected, mildly infected and treated classes when 1.8519
e

R  . The plot is produced by 

MATLAB by using 
1

2.58; 0.2; 0.1; 0.03; 0.7; 0.05; 0.3; 0.2;β γ θ ε η λ δ ω         

2
0.4; 0.3; 0.2ρ ν δ   0.6   as estimated parametric values and whose definitions are 

given in Table 2. Starting with initial values        1
0 0.60, 0 0.05, 0 0.1, 0 0.1,s v l i     
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(0)=0.1, h(0)=0.05.

EEP=(0.4170, 0.1383, 0.3497, 0.0069,

0.0165, 0.0716)
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 2
0 0.1i   and  0 0.05h  , the system (5) attains the local asymptotic stability of endemic 

equilibrium point,    *

2

* * * * *

1 2
, , , , , 0.4170,0.1383,0.3497,0.0069,0.0165,0.0716E s v l i i h  . In 

presence of interventions and TB, susceptible population proportion initially decreases to 

lower levels and later increases to its carrying capacity with time as shown in Figure 3. 

Vaccinated population proportion initially increases to higher levels and stabilizes as time 

increases. On the other hand both latently infected and treated population proportions 

increase to higher levels and gradually decreases to their carrying capacities. However both 

mildly and severely infected population proportions decreases to their lowest endemic 

levels. Again even with intervention, disease does not clear from community since effective 

reproduction number is 1.8519 1
e

R   . Classically this result supports the theorem of local 

stability of endemic equilibrium. 

4.2 Phase portraits illustrating dynamical behavior of population proportions at EEP. 

In this section phase portraits to illustrate the dynamics of the model (5) at endemic 

equilibrium point for susceptible class versus vaccinated, latently infected, severely 

infected, mildly infected, and treated classes are plotted by using  parameter values 

indicated in Table 3. With different varying initial conditions, each solution curve in Figure 

4 tends to endemic equilibrium point 
2

E  presented in Section 4.1. Therefore we conclude 

that the system (5) is globally stable about endemic equilibrium point 
2

E  for the 

parameters displayed in Table 3. 

 
Figure 4: Shows Phase plane portraits for dynamics of susceptible population proportion 

and (A) vaccinated (B) latently infected (C) severely infected (D) mildly infected (E) 

treated population proportions showing endemic equilibrium point with varying initial 

values as time increases. 
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5. CONCLUSION 

In this article, a continuous time deterministic Tuberculosis model with vaccination and 

treatment as intervention strategies has been formulated and the role of reinfection on 

transmission dynamics of TB is critically assessed. In presence of reinfection and multiple 

equilibria the backward bifurcation occurs at effective reproduction number 1
e

R  . In this 

scenario stable disease free equilibrium coexists with two endemic equilibria: smaller 

unstable endemic equilibrium (with small number of infected individuals) and larger stable 

endemic equilibrium (with large number of infected individuals) in the neghbourhood of 1 

when 1
e

R  . This shows that even with classically reducing the threshold 
e

R  below one the 

disease still persist in the community.  We suggest that reinfection is  a real TB feature and 

an important aspect to consider when modeling the complex dynamics of TB.  
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