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RATE OF CONVERGENCE BY A NEW CLASS OF STANCU GENERALIZED INTEGRAL
OPERATORS

B. KUNWAR, V.K. SINGH AND ANSHUL SRIVASTAVA

Abstract. In this paper we will study about a new family of Stancu generalized operators defined on the class
of all Lebesgue measurable functions f on [0, ). Here we obtain some direct results using Taylor’s expansion
and study rate of convergence of integral operators in simultaneous approximation. Here with the use of
differential operator we will also estimate moments for our operator.

1. INTRODUCTION
Motivated by the work of several authors [1] [2] [3] [4] [5] [6] [7] [8] on Szasz Mirakyan
operators and their various modifications, we define a new class of Stancu type
generalized operators, given by,

(Bourap )0 =45 S o kenn () J;7 Stnmrion OF () e
(B(na'g)f)(x) =m-DXz oK) (x)f S, ©f ("Ha) for r=20 (1.1)

Where o and § are two non-negative parametrs satisfying the condition 0 < a < f for
any non- negative integer n.

Here, k¢, ;)(x) = S:;)lt

S (@) = ("D + =D (1.2)
For «a =0, f =0, (1.1) becomes well known Szasz Mirakyan Baskakov opeators.

(Bno,oyf)(®) = (Bayf) (@) = (n = D) 20 k(@) f Sny (O F(B)dt (1.3)

Let L be the class of all lebesgue integrable functions f on [0,0) satisfying,

fo (Ilffgln dt < oo,forn €N

Also, we can see that,
D) XiZoSmp®) =1
(i) Jy Seni(®) = (n 5
(i) XZokmp(x) =1
(i) fy knp () ==
The aim of this paper is to study approximation properties of stancu generalized
operators. Here, we will estimate moments and study some direct results.
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2. ESTIMATION OF MOMENTS
Lemma 2.1. [9] For € N U {0}, we have,

o . m
H(n,a,pm) x) =XZo ki (x)((t/n) - X) (2.1)
For this, recurrence relation is given by,
Nh(n,apm+1) () = Xlh(n g gm) (%) + XMU(n 0, pm—1)(X) (2.2)

Here from [10] [11],

) H(na,p,m)(x) is a polynomial in x.

() Hpapmen@) =0 (n—[(m; 1>])

Here, [a@] denotes integral part of a.
Lemma 2.2. [12] Let the mth order moment be defined by,

nt+a m
Tornmap) () = Binrap) (n 5 x> X

(-1 = DI % b+ a .
= (n — 2)! Zi=0 k(n,i)(x) J(; S(n—r,i+r)(t) (n n '8 — x) dt

Then,

T(n,O,a,B) (x) =1
2n-np+2p)x+(1+a)n-2a
Ttn1,a8)(%) = T ,for n> 2, (2.3)
_ (n3+(B%-4p+6)n?+(128-5B%)n+6B%\ ,
T2 () = ( (243t (nt B)? )x
n (2n3+(6+4a—zﬁ—2aﬁ)n2+(6ﬁ+10aﬁ—12a)n—12aﬁ)
(C2+n)(—3+n)(n+B)? x
(2+a?+2a)n?—(6a+5a%)n+6a?
(-2+n)(-3+n)(n+p)?

(2.4)

Lemma 2.3.[2] [3] [13] Let f be p times differentiable on [0,00) such that
14
fP-0 (M) =0 ((M) ) for somey > 0ast — oo

n+p n+p
Then forp = 1,2,3, ... ... ... ... , we have,

M)?P(n—p-—2)I T o -
PP (B f)() = p(:— Z)T!l (nzfl- B)P Zi=o K(n,i) (X)L St (@) f® <7:1 = ;) dt

Proof. We have the following equalities,
Bmy(Dx) =1
1+nx
And By (t)(x) = )
Also, B 0,0,5)(1)(x) = By (D (x) =1

Bn,o,ap () (x) = (n%ﬂ)B(n)(t) (x) +

a

n+p)

By (1) (x)
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n 1+nx a
T (+p) [(n—z) (n+B) [
_ (@+nx+a)n—2a

(n—-2)(n+p)
) S
D*B(n,0,0,8)(t)(x) = (n—-2)(n+p)

_ (nx?+4x)n+2
Byt () =5

2 _n?  [(nx?+4x)n+2 2na [1+nx a?
Bnoam(t)() = (n+ﬁ)2[ m-2)(n-3) 1 * (n+p)? [(n—z) * g L1
_ x2nt+(4x+2a0)n3+(-6ax+a+2a+2)n?+(-5a%-6a)n+6a?
B (n-2)(n-3)(n+p)?

2n?

(n-2)(n—3)(n+p)?

D 2B(n,o,a:,ﬁ) (tz) (x) =
On similar lines, we will get the desired result.

Lemma 2.4 [14]. There exist polynomials ¥, , ) (x) independent of n and i such that,
l
x"D"((nx)!/e™) = Z nP (i — nx) Wiy (%) (Z%
2p+qsr
p,q=0
Lemma 2.5. For every x € [0, ) , we have,
lim
n — oo
lim
n — oo

nB(n,O,a,ﬂ)(t —x,x)=1+4+2x+a-— Bx

nBaoap (t—x)%x) = x* + 2x

3. DIRECT RESULTS
Theorem 3.1. [4] [15] [16] [17] Let f be any function bounded on every finite sub-intervalof

14
[0,00) and f P (x), f @ (x) exists at a fixed point x € [0, ). Let f (T::;:) =0 (1:::;) ast —

oo for some y > 0, then,

T Bl f ) = FOO] = 1+ 2x + @ = rIf D00 + () FO )
for f(x) = x2.

Proof. We can write this identity by using Taylor’s expansion and [18] [19] [20],
f®) = fG) = (t = 0f D) + 5 (¢ = D2 f P () + R(E, %) (t = x)?

Here, R(t, x) is Peano form of remainder and,

lim R(t,x) = 0 Now,
t—>x

n[(Bamoapf)x) — ()] = nf D x)Baoap)(t —x,x) + %f(z) (0)B(n,0,0,5)((t = x)?,x)
+nB(n,0,0,5)(R(t, %) (t — x)?,x)
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Using Cauchy-schwarz inequality, we have,
1

/2 1,
B(n,O,a,,B)(R(tr X)(t - x)Z) x) < (B(n,O,a,B) (R(t) x)zl x)) (B(n,O,a,ﬁ)((t - x)4, x)) (31)
Here, R?(x,x) =0,
We can see that,

lim
" o NBn0,0,5 Rt %)%, x) = R*(x,x) =0 (3.2)
Uniformly with respect to x € [0, A] , where, A > 0.

From (3.1), (3.2) and lemma 2.5, we have,

l
T MBlroam(R(EX(E —0)%2) =0
Hence,
li li
T a(Baoep/ )@ = @] = T [nf DBt —xx) +

2 FD®)Binoap ((t = 1)%,0)] +nlimoo [nBno,am (Rt x)(t — 1)%.%)]
= [1+2x+a—pBx]fPx)+ [xZ;—u]f(z)(x)

We can also see that from lemma 2.3,
x2n*+(ax+2ax)n’+(—6ax+a’+2a+2)n?+(-5a?-6a)n+6a?

B(n,O,a,ﬁ)(tz)(x) = (n-2)(n-3)(n+p)?
And hence,
lim
n — oo n(B(n,O,a,ﬁ)(tz)(x) - xz) = x(4+5x + 2a - ZX'B)

4, CONCLUSION
It is noted that our stancu generalized operators(B(n,a,ﬁ)f)(x) gives better results in

simultaneous approximation. From (2.3) and (2.4), we observe that,
Tornmap) (X) = O(n‘[(m+1)/2])

We see from Theorem 3.1, that our operator has improved result for f® (x) , f @ (x).
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