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ON STABILITY OF THE IN-HUMAN HOST AND IN-MOSQUITO
DYNAMICS OF MALARIA PARASITE

MOHAMED A. SELEMANI1,3, LIVINGSTONE S. LUBOOBI1,2 AND YAW NKANSAH-GYEKYE1

Abstract. Stability analysis of dynamical system is basic requirement for its applica-

tion in real-life settings. However, investigation for local stability is simpler than that

for global stability, though the latter is more preferable. In this study, we perform sta-

bility analysis of mathematical model for in-human host and in-mosquito dynamics of

malaria parasites, and establish the existence of two types of equilibrium: malaria-free

equilibrium (MFE) and malaria-infection equilibrium (MIE). Using linearization of sys-

tem, MFE is proved to be locally asymptotically stable. By Metzler matrix theory, the

MFE is reported to be globally asymptotically stable provided R0 < 1. By applying

Lyapunov functional method and LaSalle’s invariance theory, we established that MIE

is globally asymptotically stable, if R0 > 1. Numerical simulations are presented to

confirm the analytical solutions.

1. Introduction

Mathematical models play a remarkable role in undestanding the dynamics of infectious

diseases and suggest the control strategies. In the study of dynamical systems such as

epidemiological models, the main focus is not on finding detailed solutions, but to inves-

tigate some characteristics of the system such as existence and stability of equilibrium

points (Lungu et al., 2007). A vector x∗ is an equilibrium point of a dynamical system

ẋ = f(x, t) if f(x∗, t) = 0, ∀t > 0.

An equilibrium x∗ is said to be stable if an arbitrary point x0 of the system that starts

near x = x∗ remains near it, and unstable if x0 moves away from x∗. An equilibrium

is said to be locally stable if for all initial values, x0 that are in a neighborhood N (x∗)

of x∗, solution of the system remain near x∗ for all values of t. x∗ is said to be globally

stable, if it is stable for all initial values x0 ∈ Rn.

Moreover, x∗ is asymptotically stable if it is stable and for an arbitrary initial value

x0, the solution of the system converges to x∗ as time tends to infinity. It is locally

asymptotically stable if it is locally stable and all solutions that start in neighborhood

of x∗ converge to x∗ as t → ∞. The x∗ is globally asymptotically stable, if it is globally
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stable and for all initial values x0 ∈ Rn, the solution of the system tends to x∗ as t→∞.

Investigation of local stability is simpler than that of global stability, though the latter is

more preferable (Cull, 1981). Stability of system is basic requirement for its applicability

in real-life settings, since stability justify the convergence of solutions of system towards

a particular equilibrium point of the system (Chen, 2004). This tells us how the system

behaves if it a solution started relatively near, but not exactly at equilibrium point.

A number of techniques have been proposed in investigation of stability of equilibrium

points of epidemiological models (Mpeshe et al., 2014). Linearization (Mpeshe et al., 2014;

Li et al., 2011; Tumwiine et al., 2007a) is used on proving local stability, and Metzler

matrix theory is used for global stability of disease free equilibrium (Mpeshe et al., 2014;

Wang and Liao, 2012; Dumont et al., 2008; Kamgang and Sallet, 2008). Lyapunov fuctions

has been useful tool on the study of global stability of endemic equilibrium (Kajiwara

et al., 2015; Korobeinikov and Maini, 2004). Morever, some models are complex in such

a way that existence and stability of equilibria cannot be investigated explicitly. Instead

numerical simulations have been used to facilitate the purpose (Chiyaka et al., 2008).

In this study, we investigated the existance and stability equilibrium points of mathe-

matical model for the in-human host and in-mosquito dynamics of malaria parasites. We

applied linearization technique to establish the local stability of MFE. We used Metzler

theory to establish global stability of MFE. Global stability of MIE is established us-

ing Lyapunov function in combination with LaSalle’s invariance principle. Moreover, we

performed numerical simulations to prove the existence and stability of MIE.

This paper is organized as follows: Mathematical description and formulation of the

model for in-human host and in-mosquito dynamics of malaria parasites is presented in

Section 2. In Section 3, we present analysis of the formulated model, whereby existence

and stability of equilibrium points are discussed. In Section 4, numerical simulations are

presented to prove the analytical solutions. Lastly, conclusion and direction for the future

works is presented in Section 5.

2. Model Formulation

The model formulated in this study describes the in-human host and in-mosquito dy-

namics of malaria parasites. During the blood meal infected mosquito injects sporozoites

Sh, into human at rate abν, which then attack hepatocytic liver cells (HLCs) H, at a

rate β1ShH, and die at rate µsh where β1 is infection rate of sporozoites on HLCs. The

infected HLCs Ih, progress to hepatic-schizont Th, at a rate α1Ih, which eventually burst

at rate δ1Th, to release merozoites, M . The released merozoites, then attack the healthy

red blood cells (RBCs), R at rate β2RM , where β2 is infection rate of merozoites on

RBCs. The parasitized RBCs Ir, progress to erythrocytic-schizonts Tr, at rate α2Ir. The

Tr burst to release either new merozoites at rate pδ2Tr that attack other healthy RBCs or

gametocytes Gb, at a rate (1−p)δ2Tr. When uninfected mosquito bites an infected human
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ingests the gametocytes, Gb, which develop into gametes, Gm, at the rate ρqωGb, where

ρ is number of bites a mosquito made during its lifetime, ω is number of gametocytes in-

gested per bite and q is probability that a mosquito bite is infective to mosquito while Gb

is number of gametocytes in blood stream. In the mosquito’s midgut the microgametes

fuse with macrogametes, to develop into Oocysts C, at a rate α3Gm. Then, C burst to

release sporozoites Sm, at a rate δ3C, which migrates to salivary glands ready to infect a

new host. Death rates for H, Ih and Th are µh, µih and µth respectively. Death rates of

R, Ir and Tr are µr, µir and µtr respectively. Sh, Sm and M die at rates µsh, µsm and µm
respectively. The HLCs and RBCs are recruited from bone marrow at constant rates Λh

and Λr respectively. The variables of the model are presented in Table 1.

Table 1. List of state variables

Variable Descrption

Sh : number of sporozoites in human

H : number of uninfected HLCs

Ih : number of infected HLCs

Th : number of liver schizonts

Tr : number of blood schizonts

M : number of merozoites

R : number of uninfected RBCs

Ir : number of infected RBCs

Gb : number of gametocytes

Gm : number of gametes

C : number of Oocysts

Sm : number of sporozoites in mosquito

In formulation of this model, we make the following assumptions. A cycle starts by

a bite of infected mosquito onto uninfected human and we neglect a bite of infected

mosquito onto an infected human host. The HLCs and RBCs recruited at constant rates

from bone marrow and they are infected depending on their densities. Mosquito-human

infection is does not depend sporozoites’ density in salivary gland, while human-mosquito

infection dependent of density of gametocytes in blood stream (Da et al., 2015). We also

assume that death rates of infected cells is higher than that of uninfected ones. Also, it

has been assumed that each of injected sporozoite and released merozoite either die or

successfully infect HLCs and RBCs respectively. Similarly, ingested gametocytes either

die or successfully fuse.

Within each replication in erythrocytic cycle a constant proportion of asexual parasites

switches to gametocytes. Finally, we assumed that existence of mosquito depends on

human blood to develop their eggs. Based on the dynamics and assumptions stated

above, the in-human host and in-mosquito dynamics on malaria are presented in Figure

1.
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Figure 1. Model compartmental diagram for in-human host and in-mosquito

dynamics of malaria parasites
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The detailed biological descriptions of parameters are as presented in Table 2.

Table 2. Parameters estimates for the model (1a)-(1l)

Parameter Description Value Reference

a : probability that a bite infects human 0.75 (Tumwiine et al., 2007b)

b : number of mosquito bites per individual 15day−1 Estimated

ν : number of sporozoites injected per bite 10− 20 (Nelson and Williams, 2014)

β1 : infection rate of HLCs by sporozoites 0.001 µlcell−1day−1 Estimated

r1 : number of merozoites per liver schizont 10000 (Tumwiine et al., 2014)

α1 : progression rate of infected HCLs to schizonts 0.125 day−1 Estimated

δ1 : rupture rate of liver schizonts 0.0975 day−1 Estimated

Λh : the recruitmet rate of HLCs 3000 cellsday−1µl−1 Estimated

µh : natural death rate of uninfected HLCs 0.94 day−1 Estimated

µih : death rate of infected HLCs 0.95 day−1 Estimated

µth : death rate of liver-schizonts 0.029 day−1 Estimated

β2 : infection rate of RBCs by merozoites 2× 10−6 µlcell−1day−1 Estimated

δ2 : rupture rate of blood schizonts 0.115 day−1 Estimated

α2 : progression rate of infected RBCs to schizonts 0.145 day−1 Estimated

r2 : number of merozoites per blood schizont 16 (Dube et al., 2010)

q : probability that a bite is infectious to mosquito 0.09 (Agusto et al., 2012)

ω : number of gametocytes ingested per bite 10 Estimated

ρ : number of bites made by mosquito in its lifetime 3 Estimated

Λr : the recruitmet rate of RBCs 4.15× 104 cellsµl−1day−1 (Li et al., 2011)

µr : natural death rate of uninfected RBCs 0.02 day−1 (Dube et al., 2010)

µir : total death rate of uninfected RBCs 0.025 day−1 (Diebner et al., 2000)

µtr : death rate of blood-schizonts 0.185 Estimated

µm : death rate of merozoites 48 day−1 (Li et al., 2011)

µgb : death rate of gametocytes in bloodstream 6.25× 10−5day−1 Estimated

δ3 : rupture rate of Oocysts 0.05 day−1 Estimated

r3 : number of sporozoites per Oocyst 1000 (Nelson and Williams, 2014)

α3 : progresion rate of gametes to Oocysts 0.07 day−1 Estimated

µgm : death rate of gametes in mosquito’s midgut 0.052 day−1 Estimated

µc : death rate of Oocysts 0.024 day−1 Estimated

µsm : death rate of sporozoites in mosqouito 40 day−1 Estimated

µsh : death rate of sporozoites in human liver 1.2× 10−11 day−1 Estimated

p : proportion of asexual that differentiate to merozoites 0.926 Estimated
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From the compartmental diagram in Figure 1, the dynamics of the entire in-human and

in-mosquito malaria cycle we derive the model which is governed by the following set of

nonlinear ordinary differential equations:

dH

dt
=Λh − β1ShH − µhH(1a)

dIh
dt

=β1ShH − (α1 + µih)Ih(1b)

dTh
dt

=α1Ih − (δ1 + µth)Th(1c)

dM

dt
=r1δ1Th + pr2δ2Tr − β2RM − µmM(1d)

dR

dt
=Λr − β2RM − µrR(1e)

dIr
dt

=β2RM − (α2 + µir)Ir(1f)

dTr
dt

=α2Ir − (δ2 + µtr)Tr(1g)

dGb

dt
=(1− p)r2δ2Tr − (qω + µgb)Gb(1h)

dGm

dt
=ρqωGb − (α3 + µgm)Gm(1i)

dC

dt
=α3Gm − (δ3 + µc)C(1j)

dSm
dt

=r3δ3C − (aν + µsm)Sm(1k)

dSh
dt

=abν − β1ShH − µshSh(1l)

3. Analysis of the Model

In this section, we study the basic properties of the model system (1a)-(1l). For epidemi-

ological implications, we prove that the model system (1a)-(1l) has the solution that is

mathematically and biologically well-posed in the feasible region

Ω =

{
(H, Ih, Th,M,R, Ir, Tr, Gb, Gm, C, Sm, Sh) ∈ R12

+ : Nh(t) ≤ max

{
Nh(0),

Λh

µ1

}
,

Nr(t) ≤ max

{
Nr(0),

Λr

µ2

}
, M(t) ≤ max

{
M(0),

1

µm

[
r1δ1

Λh

µ1

+ pr2δ2
Λr

µ2

]}
,

Gb(t) ≤ max

{
Gb(0), (1− p)r2δ2

Λr

µ2

}
, Nm(t) ≤ max

{
Nm(0),

qρω

µ3

[
(1− p)r2δ2

Λr

µ2

]}
,

Sm ≤ max

{
Sm(0),

r3δ3

µsm

qρω

µ3

[
(1− p)r2δ2

Λr

µ2

]}
, Sh(t) ≤ max

{
Sh(0),

abν

µsh

}}
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where

µ1 = min{µh, µth + δ1}, µ2 = min{µr, µtr + δ2}, µ3 = min{µgm, µc},

Nh(t) = H(t) + Ih(t) + Th(t), Nr(t) = R(t) + Ir(t) + Tr(t), Nm(t) = Gm(t) + C(t),

and R12
+ is non-negative orthant of R12.

Conditions for existence and stability of equilibra of the model in this region are discussed

in next subsection.

3.1. Existence and Stability of Equilibra

In absence of infection, we obtain one equilibrium termed as malaria free equilibrium

(MFE),

E0 =

(
Λh

µh
, 0, 0, 0,

Λr

µr
, 0, 0, 0, 0, 0, 0, 0, 0

)
The stability of MFE is discussed in next subsection.

3.1.1. Local and Global Stability of MFE

We establish the local stability of E0 by investigating the signs of the real parts of the

eigenvalues of the Jacobian matrix of the system at E0. Jacobian matrix of system (1a)-

(1l) at E0 is given by

J(E0) =



−µh 0 0 0 0 0 0 0 0 0 0 −z1

0 −z2 0 0 0 0 0 0 0 0 0 z1

0 α1 −z3 0 0 0 0 0 0 0 0 0

0 0 r1δ1 −z4 0 0 pr2δ2 0 0 0 0 0

0 0 0 −z5 −µr 0 0 0 0 0 0 0

0 0 0 z5 0 −z6 0 0 0 0 0 0

0 0 0 0 0 α2 −z7 0 0 0 0 0

0 0 0 0 0 0 z8 −z9 0 0 0 0

0 0 0 0 0 0 0 ρqω −z10 0 0 0

0 0 0 0 0 0 0 0 α3 −z11 0 0

0 0 0 0 0 0 0 0 0 r3δ3 −z12 0

0 0 0 0 0 0 0 0 0 0 0 −z13


where

z1 =β1
Λh

µh
, z2 = α1 + µih, z3 = δ1 + µth, z4 = β2

Λr

µr
+ µm, z5 = β2

Λr

µr
,

z6 =α2 + µir, z7 = δ2 + µtr, z8 = (1− p)r2δ2, z9 = qω + µgb, z10 = α3 + µgm,

z11 =δ3 + µc, z12 = aν + µsm, z13 = β1
Λh

µh
+ µsh(2)
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The MFE is locally assympotically stable if and only if trace of J(E0) is strictly negative

and determinat of J(E0) is strictly positive. We obtain the following results,

trace(J(E0)) =− [(µh + µr) + (µth + µtr) + (µih + µir) + (α1 + α2 + α3) + (δ1 + δ2 + δ3)

+ (µm + µgb + µc + µsm +mush) +
β1Λh

µh
+
β2Λr

µr
+ (qω + µgm + +aν)] < 0(3)

and

det(J(E0)) =(β1Λh + µshµh)(δ1 + µth)(α1 + µih)(qω + µgb)(α3 + µgm)(δ3 + µc)(aν + µsm)

(µtr + δ2)(α2 + µir)(β2Λr + µmµr) [1−R0] > 0(4)

where

R0 =
β2Λr

β2Λr + µmµr
.

α2

(α2 + µir)
.

pr2δ2

(δ2 + µtr)

Equation (4) holds only if R0 < 1 ; and because of this requirement R0 is interpreted as

the basic reproduction number. This leads us to the following theorem.

Theorem 1. The malaria-free equilibrium, E0 is locally asymptotically stable when R0 <

1 and unstable otherwise.

3.1.2. Global Stability of MFE

We establish the global stability of E0 using the Metzler matrix theory technique used in

Castillo-Chávez et al. (2002); Kamgang and Sallet (2008); Mpeshe et al. (2014). In this

approach, we re-write the model system in the form:
dXn

dt
= A1(x)(Xn −XE0,n) + A12(x)Xe

dXe

dt
= A2(x)Xe

where Xn is the vector of uninfected classes and Xe is the vector of infected classes. For

our case, we have

Xn = (H, R) and Xe = (Ih, Th,M, Ir, Tr, Gb, Gm, C, Sm, Sh)(5)

(6) XE0,n =

(
Λh

µh
,

Λr

µr

)
and

(7) A1(x) =

(
−µh 0

0 −µr

)
,
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(8) A12(x) =

(
0 0 0 0 0 0 0 0 0 −β1H

0 0 −β2R 0 0 0 0 0 0 0

)

and

(9) A2(x) =



−w1 0 0 0 0 0 0 0 0 β1H

α1 −w2 0 0 0 0 0 0 0 0

0 r1δ1 −w3 0 pr2δ2 0 0 0 0 0

0 0 β2R −w4 0 0 0 0 0 0

0 0 0 α2 −w5 0 0 0 0 0

0 0 0 0 w6 −w7 0 0 0 0

0 0 0 0 0 ρqω −w8 0 0 0

0 0 0 0 0 0 α3 −w9 0 0

0 0 0 0 0 0 0 r3δ3 −w10 0

0 0 0 0 0 0 0 0 w11 −w12


where

w1 =α1 + µih, w2 = δ1 + µth, w3 =
β2Λr

µr
+ µm, w4 = α2 + µir,

w5 =δ1 + µtr, w6 = (1− p)r2δ2, w7 = qω + µgb, w8 = α3 + µgm,

w9 =δ3 + µc, w10 = aν + µsm, w11 =
abν

Sm
and w12 = β1H + µsh(10)

It can easily be seen from (7) that, all eigenvalues of A1 are real and negative.

So, the system

dXn

dt
= A1(x)(Xn −XE0,n) + A12(x)Xe

is globally assymptotically stable at XE0 . From (9) and (10) it can be observed that all

off diagonal elements of A2 are non-negative. Therefore, A2 is a Metzler stable matrix.

Thus, the MFE is GAS. To investigate under which conditions MFE is GAS, we need to

prove the following proposition .

Proposition 1. (Kamgang and Sallet, 2008; Dumont et al., 2008)

Let M be a square block decomposed Metzler matrix: M =

(
A B

C D

)
with A and D

square matrices. Then M is Metzler stable if and only if matrices A and D−CA−1A are

Metzler stable.
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For this case we have M = A2, and A =


−w1 0 0 0 0

α1 −w2 0 0 0

0 r1δ1 −w3 0 pr2δ2

0 0 β2R −w4 0

0 0 0 α2 −w5



B =


0 0 0 0 β1H

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

, C =


0 0 0 0 w6

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0



and D =


−w7 0 0 0 0

ρqω −w8 0 0 0

0 α3 −w9 0 0

0 0 r3α3 −w10 0

0 0 0 w11 −w12


immediately we have

D − CA−1B =



−w11 0 0 0
r1δ1α1α2w6ΛhΛrβ1β2

w1w2µh(w3w4w5µr − β2Λrpr2δ2α2)
w12 −w13 0 0 0

0 α3 −w14 0 0

0 0 w15 −w16 0

0 0 0 w17 −w18



Definition:

A Metzler matrix M is said to be stable if all of its diagonal elements are negative.

By that definition, A is Metzler stable matrix, and D−CA−1B is Metzler stable matrix

if and only if

(11)
r1δ1α1α2w6ΛhΛrβ1β2

w1w2µh(w3w4w5µr − β2Λrpr2δ2α2)
> 0

which holds only when

(12)
β2Λrpr2δ2α2

w3w4w5µr
< 1

Using w3, w4, and w5 as given in equation (10), we get

(13)

β2Λr

µr
α2pr2δ2(

β2Λr

µr
+ µm

)
(α2 + µir) (δ2 + µtr)

< 1
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equivalently,

R0 < 1.

This leads us to the following theorem.

Theorem 2. The MFE of the model system (1a)-(1l) is globally assymptotically stable

in Ω if R0 < 1 and unstable if R0 > 1.

3.2. Existence of MIE

The model has one positive malaria infection equilibrium E∗ which is given by

E∗ = (H∗, I∗h, T
∗
h ,M

∗, R∗, I∗r , T
∗
r , G

∗
b , G

∗
m, C

∗, S∗
m, S

∗
h)

where

H∗ =
Λh

β1S∗
h + µh

, I∗h =
β1ΛhS

∗
h

(α1 + µih)(β1S∗
h + µh)

, T ∗
h =

β1Λhα1S
∗
h

(δ1 + µth)(α1 + µih)(β1S∗
h + µh)

,

R∗ =
Λr

β2M∗ + µr
, I∗r =

β2Λ2M
∗

(α2 + µir)(β2M∗ + µr)
, T ∗

r =
R0(β2Λr + µrµm)M∗

pr2δ2(β2M∗ + µr)

G∗
b =

(1− p)R0

p(qω + µgb)

(β2Λr + µrµm)M∗

(β2M∗ + µr)
, Gm =

[
ρqω

α3 + µgm

] [
(1− p)R0

p(qω + µgb)

(β2Λr + µrµm)M∗

(β2M∗ + µr)

]
,

C =
α3

δ3 + µc

[
ρqω

α3 + µgm

] [
(1− p)R0

p(qω + µgb)

(β2Λr + µrµm)M∗

(β2M∗ + µr)

]
,

S∗
m =

r3δ3

aν + µsm

α3

δ3 + µc

[
ρqω

α3 + µgm

] [
(1− p)R0

p(qω + µgb)

(β2Λr + µrµm)M∗

(β2M∗ + µr)

]
,

S∗
h and M∗ are positive solutions of F (S∗

h) = 0 and G(M∗) = 0 respectively, where

F (S∗
h) = A3S

∗2
h + A2S

∗
h + A1, G(M∗) = B3M

∗2 +B2M
∗ +B1 and

A3 = β1µsh, A2 = β1(Λh − abν) + µshµh, A1 = −abνµh,
B3 = β2µm, B2 = − [(β2Λr + µmµr)(R0 − 1) + β2λ

∗] , B1 = −µrλ∗ and

λ(S∗
h) =

θS∗
h

β1S∗
h + µh

Now we need to determine necessary and sufficient conditions for existence of malaria-

infection equilibrium E∗ by proving the following theorem

Theorem 3. The model system (1a)-1l has a unique malaria infection equilibrium

E∗ = (H∗, I∗h, T
∗
h ,M

∗, R∗, I∗r , T
∗
r , G

∗
b , G

∗
m, C

∗, S∗
m, S

∗
h)

if R0 > 1, Λh > abν, A3S
∗2
h + A2S

∗
h + A1 = 0 and B3M

∗2 +B2M
∗ +B1 = 0 have roots

S∗
h > 0 and M∗ > 0 respectively.
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Proof:

Let E∗ = (H∗, I∗h, T
∗
h ,M

∗, R∗, I∗r , T
∗
r , G

∗
b , G

∗
m, C

∗, S∗
m, S

∗
h) be malaria infection equilibrium

of the system (1a)-(1l). Substituting the expression for H∗ into equation (1l), we have

abν − β1S
∗
hΛh

β1S∗
h + µh

− µshS∗
h = 0

which yields to

(14) β1µshS
∗2
h + [β1(Λh − abν) + µshµh]S

∗
h − abνµh = 0

Since A1 < 0 and A3 > 0, then the quadratic equation (14) has unique positive root S∗
h

given by

(15) S∗
h =
− [β1(Λh − abν) + µshµh] +

√
41

2β1µsh

where

(16) 41 = (β1(Λh − abν) + µshµh)
2 + 4β1abνµshµh

only if A2 > 0.

Hence, A2 = β1(Λh − abν) + µshµh > 0 only if Λh > abν (recruitment rate of uninfected

HLCs is greater than recruitment of sporozoites into human liver).

Substituting expressions for T ∗
h , T ∗

r and R∗ into equation (1d) gives

(17)
β1Λhα1r1δ1S

∗
h

(δ1 + µth)(α1 + µh + dh)(β1S∗
h + µh)

+
R0(β2Λr + µmµr)M

∗

(β2M∗ + µr)
− β2ΛrM

∗

β2M∗ + µr
− µmM∗ = 0

Letting θ =
β1Λhα1r1δ1

(δ1 + µth)(α1 + µh + dh)
equation (17) becomes

(18)
θS∗

h

(β1S∗
h + µh)

+
[R0(β2Λr + µmµr)− β2Λr − µm(β2M

∗ + µr)]M
∗

(β2M∗ + µr)
= 0

which can be further simplified to

(19) β2µmM
∗2 − [(β2Λr + µmµr)(R0 − 1) + β2λ

∗]M∗ − µrλ∗ = 0

where

λ∗ =
θS∗

h

(β1S∗
h + µh)

Equation (19) has a unique positive real root M∗ given by

(20) M∗ =
[(β2Λr + µmµr)(R0 − 1) + β2λ

∗] +
√
42

2β2µmµrλ∗
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where

42 = (R0 − 1)2(β2Λr + µmµr)
2 + 2β2λ

∗ [β2Λr + µmµr(R0 − 1)] + β2
2λ

∗2 + 4β2µmµrλ
∗

only if R0 > 1.

This is condition for the existence of malaria infection equilibrium.

Therefore, if R0 > 1, Λh > abν and quadratic equations A3S
∗2
h + A2S

∗
h + A1 = 0 and

B3M
∗2 +B2M

∗ +B1 = 0 have respectively positive roots S∗
h and M∗, with

S∗
h =
− [β1(Λh − abν) + µshµh] +

√
41

2β1µsh
and M∗ =

[(β2Λr + µmµr)(R0 − 1) + β2λ
∗] +
√
42

2β2µmµrλ∗

3.3. Global Stability of MIE

When R0 < 1, MFE is locally asymptotically stable. This suggests local stability of the

MIE when R0 > 1 (Van den Driessche and Watmough, 2002).

So we only investigate the global stability of the MIE. We adopted the techiniques used

by Pedro et al. (2014).

Theorem 4. if R0 > 1, the model described by equations (1a)-(1l) has unique positive

MIE, E∗, such that

S∗
hH

∗

ShH
≥ H∗

H
≥ 1, for 0 < Sh < S∗

h and 0 < H < H∗

S∗
hH

∗

ShH
≥ S∗

h

Sh
≥ 1 for 0 < Sh < S∗

h and 0 < H < H∗

R∗M∗

RM
≥ M∗

M
≥ 1 for 0 < M < M∗ and 0 < R < R∗

R∗M∗

RM
≥ R∗

R
≥ 1 for 0 < M < M∗ and 0 < R < R∗

Then, E∗ is globally asymptotic stable in Ω̊ ⊂ Ω.

Proof: To estabilish the global stability of MIE, E∗, we define the Lyapunov function of

the form

L(x) =
∑

zi(xi − x∗i ln
x

x∗
), for i = 1, 2, . . . 12

as proposed by Castillo-Chávez et al. (2002) where xi is a number of cells in the ith class,

x∗i are equilibrium values and zi are constants. This approach has been found useful for

more complex compartmental models of in vivo dynamics (Korobeinikov, 2004).
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Now, we constructed the following lyapunov function

L =z1

(
H −H∗ ln

H

H∗

)
+ z2

(
Ih − I∗h ln

Ih
I∗h

)
+ z3

(
Th − T ∗

h ln
Th
T ∗
h

)
+z4

(
M −M∗ ln

M

M∗

)
+ z5

(
R−R∗ ln

R

R∗

)
+ z6

(
Ir − I∗r ln

Ir
I∗r

)
+z7

(
Tr − T ∗

r ln
Tr
T ∗
r

)
+ z8

(
Gb −G∗

b ln
Gb

G∗
b

)
+ z9

(
Gm −G∗

m ln
Gm

G∗
m

)
+z10

(
C − C∗ ln

C

C∗

)
+ z11

(
Sm − S∗

m ln
Sm
S∗
m

)
+ z12

(
Sh − S∗

h ln
Sh
S∗
h

)
(21)

Using equations (1a)-(1l) evaluated at MIE into time derivative of (21) gives

dL

dt
=− z1µhH

[
1− H∗

H

]2

− z2(α1 + µih)Ih

[
1− I∗h

Ih

]2

− z3(δ1 + µth)Th

[
1− T ∗

h

Th

]2

− z4µmM

[
1− M∗

M

]2

− z5µrR

[
1− R∗

R

]2

− z6(α2 + µir)Ir

[
1− I∗r

Ir

]2

− z7(δ2 + µtr)Tr

[
1− T ∗

r

Tr

]2

− z8(qω + µgb)Gb

[
1− G∗

b

Gb

]2

− z9(α3 + µgm)Gm

[
1− G∗

m

Gm

]2

− z10(δ3 + µc)C

[
1− C∗

C

]2

− z11(aν + µsm)Sm

[
1− S∗

m

Sm

]2

− z12µshSh

[
1− S∗

h

Sh

]2

+ f(Ω)

where

f(Ω) =z1β1ShH

[
1− H∗

H

] [
S∗
hH

∗

ShH
− 1

]
+ z4β2RM

[
1− M∗

M

] [
R∗M∗

RM
− 1

]
+z5β2RM

[
1− R∗

R

] [
R∗M∗

RM
− 1

]
+ z12β1ShH

[
1− S∗

h

Sh

] [
S∗
hH

∗

ShH
− 1

]

and Ω = {(H, Ih, Th,M,R, Ir, Tr, Gb, Gm, C, Sm, Sh) > 0}
By hypothesis of Theorem 4, we have

z1β1ShH

[
1− H∗

H

] [
S∗
hH

∗

ShH
− 1

]
≤ 0, z4β2RM

[
1− M∗

M

] [
R∗M∗

RM
− 1

]
≤ 0

z5β2RM

[
1− R∗

R

] [
R∗M∗

RM
− 1

]
≤ 0, z12β1ShH

[
1− S∗

h

Sh

] [
S∗
hH

∗

ShH
− 1

]
≤ 0

where equality applies only when H = H∗, Sh = S∗
h, M = M∗, R = R∗ Therefore

f(Ω) ≤ 0 for all H = H∗, Sh = S∗
h, M = M∗, R = R∗.

Hence,
dL

dt
≤ 0 for all (H, Ih, Th,M,R, Ir, Tr, Gb, Gm, C, Sm, Sh) > 0 and

dL

dt
= 0 only

when H = H∗, Ih = I∗h, Th = T ∗
h ,M = M∗, R = R∗, Ir = I∗r , Tr = T ∗

r , Gb = G∗
b , Gm = G∗

m,

C = C∗, Sm = S∗
m, Sh = S∗

h, and E∗ is the only equilibrium state of the system on this

plane. Therefore, the largest compact invariant set in Ω such that
dL

dt
= 0 is the singleton

{E∗} which is the MIE. LaSalles invariant principle (LaSalle, 1976) guarantees that E∗

is globally asymptotically stable (GAS) in the interior Ω̊ of Ω.

4. Numerical simulations
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In this section, we perform some numerical simulations of the model (1a)-(1l), to illustrate

the dynamics of model using MATLAB symbolic package run in intel (R) Pentium (R)

CPU B980 2.40GHz, 2.40GHz, 4.00GB machine. The initial values used in simulation

of this model are largely assummed to allow computer executions, and their values are

listed in Table 3.

Table 3. Initial values of variables of the model (1a)-(1l)

Variable H Ih Th M R Ir Tr Gb Gm C Sm Sh

Initial values 3000 0 0 2000 500000 0 1000 3000 1500 1000 2000 2000

Although the decision on values of parameters for the in vivo dynamincs is challenging

(Chiyaka et al., 2008), the numerical values of parameters used in the numerical simula-

tion of this model are presented in Table 2. These values are either estimated or taken

from various articles among existing literature. The reason why some parameters values

have been estimated is that modelling of liver and mosquito stages dynamics of malaria

parasite have not been done or the parameter values found in existing literature are not

suitable in our model. Even those that have been taken from other related studies may

not be as accurate as we need for our mathematical forecasts. However, the main issue

here is the effect of these parameters on the basic reproduction number, which gives the

clues on how to eradicate or control the disease (Chiyaka et al., 2008).
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Figure 2. Variation of populations at Exo-erythrocytic cycle with time

It is observed from Figure 2 that population density for sporozoites, uninfected HLCs,

and infected HLCs vary with time and attain constant values (malaria infection point).

However, sporozoites injected into human starts by falling within very short time before
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starting to rise. This fall is probably due the fact that when sporozoites injected into the

human, they travel to the liver through bloodstream where they ingested by phagocytes

(Smyth and Wakelin, 1994) or they probably die due to change of environment from

mosquito’s salivary gland to human bloodstream. Then its population increases after they

succefully reach the liver and start the asexual replication (exo-erythrocytic schizogony)

within HLCs. In contrary to population of sporozoites, population of uninfected HLCs

decreases with time until it reaches its equilibrium value. This population decreases

because of infection of HLCs by sporozoites, which on other hand cause rise in population

of infected HLCs and liver schizonts.
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(a) Erythrocytic cycle
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Figure 3. Variation of populations at Erythrocytic and Sporogonic cycles with time

Figure 3b shows that the density of Gametes rises to its maximum value before falling

to its equilibrium value, while those of oocysts and in-mosquito sporozoites increase with

time until they attain constant values (values at malaria infection equilibrium). The

decrease of gametes may be it is due to the formation of ookinetes. Therefore from the

Figure 3, we conclude that the malaria-infection equilibrium, E∗ for this model exists.

Now let us assess for stability of E∗.

Using the parameters values given in Table 2, we obtained R0 = 1.59025 > 1. Thus, by

Theorem 4 implies that the malaria infection equilibrium E∗ is globally assymptotically

stable as depicted in Figures 4, 5 and 6. It has observed that with different initial values,

solutions trajectories for all state variables converge to malaria infection equilibrium.



IN-HUMAN HOST AND IN-MOSQUITO DYNAMICS OF MALARIA PARASITE 17

Time[days]
0 10 20 30 40 50 60 70 80

S
p

o
r
o

z
o

i
t
e
s
 
i
n

 
h

u
m

a
n

0

5000

10000

15000

(a) S0
h = 1000, 2000, 8000, 10000, 15000

3

Time[days]
0 10 20 30 40 50 60 70 80

I
n

f
e

c
t
e

d
 
H

L
C

s

0

2000

4000

6000

8000

10000

(b) H0 = 500, 3000, 5000, 7500, 10000

Time[days]
0 10 20 30 40 50 60 70 80

I
n

f
e
c
t
e
d

 
H

L
C

s

0

2000

4000

6000

8000

10000

(c) I0h = 0, 500, 3000, 5000, 10000

Time[days]
0 10 20 30 40 50 60 70 80

L
i
v
e
r
-
s
c
h

i
z
o

n
t
s

0

5000

10000

15000

(d) S0
h = 0, 500, 5000, 10000, 15000

Figure 4. Numerical simulation to show global stability of MIE for variables in

exo-erythrocytic cycle



18 MOHAMED A. SELEMANI, LIVINGSTONE S. LUBOOBI AND YAW NKANSAH-GYEKYE

Time[days]
0 10 20 30 40 50 60 70 80

M
e

r
o

z
o

i
t
e

s

×10 4

0

2

4

6

8

10

12

14

(a) M0 = 0, 2000, 15000, 30000, 100000

Time[days]
0 10 20 30 40 50 60 70 80

U
n

i
n

f
e
c
t
e
d

 
R

B
C

s

×10 5

0

1

2

3

4

5

6

(b) R0 = 10000, 20000, 50000, 150000, 500000

Time[days]
0 10 20 30 40 50 60 70 80

I
n

f
e

c
t
e

d
 
R

B
C

s

×10 5

0

0.5

1

1.5

2

2.5

3

3.5

(c) I0r = 0, 10000, 50000, 100000, 200000

Time[days]
0 10 20 30 40 50 60 70 80

B
l
o

o
d

-
s
c
h

i
z
o

n
t
s

×10 4

0

2

4

6

8

(d) T 0
r = 0, 1000, 5000, 20000, 35000

Time[days]
0 10 20 30 40 50 60 70 80

G
a

m
e

t
o

c
y

t
e

s

×10 5

0

1

2

3

4

(e) G0
b = 3000, 5000, 10000, 80000, 200000

Figure 5. Numerical simulation to show global stability of MIE for variables in

erythrocytic cycle
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Figure 6. Numerical simulation to show global stability of MIE for variables in

Sporogonic cycle

5. Discussion and Conclusion

The mathematical model for in-human host and in-mosquito dynamics of malaria para-

sites was developed and analyzed. The model involved three main phases in life cycle of

malaria parasites. We considered four, five and three compartments in the liver, blood

and mosquito stages respectively.

In analysis of the model, two steady states, malaria-free equilibrium (MFE) and malaria-

infection equilibrium (MIE) were determined. The threshold, R0, was obtained and found

to a function that depends only on parameters in erythrocytic phase. This implies that

the erythrocytic invasion may propagate without new infection from the liver (implying

that even when an individual is not bitten by the mosquitoes, s/he may maintain some

level of malaria in the blood).
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Stability (in terms of R0) of equilibrium points was established. The necessary condition

for stability of MFE was established using trace-determinant of jacobian matrix of the

model evaluated at this point showed that, MFE is locally assymptotically stable provided

R0 < 1 and unstable otherwise. The global stability of this equilibrium was investigated

using Metlzer matrix technique, and proven that MFE is globally asymptotically stable

when R0 < 1. MIE exists only if the recruitnent rate of sporozoites into human host

less than recruitment hepatocytes liver cells and R0 > 1. Global stability of this was

investigated using Lyaponuv function.

An insight of dynamics of malaria parasites within human host and within mosquito is

significant in development and assessment of transmission blocking intervetions (TBIs).

Merozoites play an important role in propagation of malaria infection in human, and

they initially procuded in the HLCs after invasion of sporozoites. This may suggest

that blocking this invasion to be one of the best targets for TBIs as it will significantly

inhibits the infection of HLCs, and eventually the production of merozoites from the liver

schizonts. Therefore, it reduces the possibility for infection of RBCs by merozites from

the liver. However, as it has been stated earlier that infection of RBCs by merozoites may

propagate without a new infection from the liver, but this would occur only when initial

invasion of RBCs by merozoites from the liver was successful. Therefore, implementing

the TBIs at liver stage will probably reduce possibility of having erythrocyte invasion of

merozoites and finally the human-mosquito transmission may be stopped.

This work provides a basic model for studying the in-human host and in-mosquito vector

dynamics of malaria parasite. At this time where malaria eradication is on world agenda,

this work may be used as starting point to examine how and which are new control

strategies of malaria can be established to overcome the disease. It will be useful to

study the effect of immune response and/or treatment in the extension of this model.
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