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Abstract:  

Hepatitis C virus (HCV) is a source of chronic hepatitis C infection that can destroy the liver 

when proper therapeutic intervention is not executed early. For the purpose of studying 

the dynamics of the disease during acute infection, a deterministic mathematical model 

incorporating the effect of immune system and therapy has been formulated. The model is 

a system of non-linear ordinary differential equations. The disease-free equilibrium point 

0E  during therapy has been computed. Furthermore, the basic reproductive number 0R and 

effective reproductive number eR have been computed using the next generation operator 

method. The sensitivity indices of 
eR  relating to each parameter in the model were 

computed. It is found that eR is most sensitive to the drug inhibiting efficacy of viral 

replication parameter . Thus, it implies that an increase in the value of   will reduce the 

rate of viral replication leading to the decrease or eradication of the HCV morbidity. By 

using the estimated parametric values, we found that 0RRe  , which attests that 

therapeutic strategy is absolutely effective in reducing intensity of the disease and hence 

preventing evolution to chronic state. 

 

 

1. Introduction   

HCV is a small positive-stranded RNA microbe belonging to the Hepacivirus genus in the 

family Flaviviridae (Taxonomy, 2005), which mutates so rapidly that there is no vaccine 

(Colina et al., 1999). It is the source of hepatitis C virus infection (HCVI) that can destroy 

the liver if no proper therapeutic strategy is implemented. It is approximated that about 

130 to 170 million people are infected with HCV worldwide (Lavanchy, 2009). Usually, 

HCVI is categorized as acute hepatitis C infection (AHCI) and chronic hepatitis C infection 

(CHCI) depending on the disease evolution. The AHCI signifies the first 6 months of 

infection following acquisition of HCV whereas CHCI refers to a period subsequent to the 

AHCI phase, which is marked by the persistence of HCV RNA in the blood. This is 

irrespective of whether patients are symptomatic or asymptomatic during AHCI. It is also 
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evident that around 20% to 50% patients with AHCI spontaneously clear the virus within 6 

months (Kamal, 2008) while others progress to CHCI. It implies that more than 50% of 

AHCI cases undergo CHCI, which can be a source of evolution of cirrhosis and 

hepatocellular carcinoma to some of them. Many people with AHCI are asymptomatic, 

which makes the diagnosis of the disease become difficult while symptomatic patients most 

commonly show fatigue. 

 

The channels of HCV transmission are primarily dependent on exposure to infected blood, 

which incorporate vertical transmission (Owusu‐Ofori et al., 2005), needle stick injuries 

(Xia et al., 2008), intravenous drug use (IDU) (Tohme and Holmberg, 2010), sexual 

behaviors(Jafari et al., 2010) and body piercings (Lam et al., 2010). In developing countries 

(DCs), HCV is transmitted   mainly through contact with infected blood and blood products 

in healthcare provisions centers. In most developed countries, it results from IDU; it can be 

a risk source of the transmission in the DCs as well (Aceijas and Rhodes, 2007;Nelson et al., 

2011).  

 

We know that numerous antivirals have been clinically tested for therapy of HCV. The trials 

have revealed that therapy of CHCI with different antivirals results into different SVR rates. 

For instance, it was formerly treated using conventional interferon alpha that led to the 

SVR rate of at least 20% of patients after 48 weeks of therapy, which later was improved to 

the SVR of  38% to 43% of patients using interferon alpha-2b plus ribavirin combination 

therapy (McHutchison et al., 1998; Poynard et al., 1998).  Combination therapy with 

peginterferon alpha 2a or 2b plus ribavirin combination therapy further improved the SVR 

rate to approximately 50% of cases (Fried et al., 2002; Muir et al., 2004; Kanda et al., 2010), 

which has been the standard therapy for CHCI. Unlike AHCI, chronic hepatitis c is 

associated with a worsening prognosis, which requires more demanding therapy and 

longer therapy period leading to intolerability owing to developing side effects.  Conversely, 

drugs prescribed for therapy of CHCI can also be assigned to people with AHCVI although 

interferon-based monotherapy is just sufficient to produce SVR of more than 50% of cases 

(Jaeckel et al., 2001; Kamal et al., 2006). Monotherapy is far better tolerated due to fewer 

side effects, relatively cheaper, more suitable and takes shorter time than combination 

therapies for chronic CHCI  (Myers et al., 2001).Hence, therapy of patients with HCV during 

acute period of infection significantly reduces side effects and disease development to 

chronic hepatitis(Alberti et al., 2002). 

 

Although this paper presents a deterministic mathematical model for the effect of therapy 

on dynamics of HCV in vivo during acute phase of infection, patients with AHCI are diverse. 

It is very difficult to  identify patients who  require therapy owing to varying rates of 
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spontaneous clearance of the viruses and the presence of asymptomatic cases (Busch and 

Shafer, 2005). Spontaneous clearance of the virus can take place either during AHCI (Kamal, 

2008) or beyond this period (Grebely et al., 2014).Also, some patients are entirely 

asymptomatic having normal or slightly elevated serum alanine aminotransferase (ALT) 

levels despite HCV-RNA positivity after known exposure. Others show acute illness and 

have high serum ALT levels and noticeable jaundice. Thus, we have considered these 

challenges in the development of the model, i.e. a patient can either clear the virus 

spontaneously or not during acute infection. 

 

Certainly, mathematical modeling of viral dynamics with therapy provides us with 

understanding and quantifying biological processes that govern changes in the viral load 

and accompanying biomarkers such as ALT levels before and after treatment (Ribeiro et al., 

2003).For our case, mathematical models can help to provide answers to biological 

questions regarding pathogenesis, the dynamics of HCV, immune response and efficacy of 

drug therapy. Furthermore, we see that modeling HCV dynamics with therapy has 

deepened our understanding of the virus pathogenesis and guided drug development 

(Chatterjee et al., 2012). Various models have been formulated by several researchers in 

order to understand the efficacy of drug therapy on the dynamics of HCV. Thus, Neumann 

et al.(1998) formulated a simple model to investigate the dynamics of HCV during  therapy 

by adopting a model of human immunodeficiency viral infection (Wei et al., 1995; Perelson 

et al., 1996). The model had a system of three nonlinear differential equations which 

represented a constant population of target hepatocytes, infected hepatocytes and the virus, 

and it was used to approximate the rates of viral clearance and loss of infected hepatocytes 

by fitting to the model the decline of HCV RNA level within infected people in the first 14 

days of therapy. Since then modeling of the virus dynamics has been very important in 

examining the HCV RNA level decay during therapy, which is very well expounded by 

Perelson (2002) and Perelson et al.(2005). However, it could not include some observed 

HCV RNA dynamic profiles under therapy, i.e., it assumed that there is no proliferation of 

target and infected cells and no spontaneous recovery of infected hepatocytes. The 

extended model of Dahari et al.(2007) incorporated proliferation of target and infected 

hepatocytes without  spontaneous recovery of the infected hepatocytes. A model that 

includes proliferation and the spontaneous recovery of infected hepatocytes was used to 

investigate the dynamics of HCV for primary infection in chimpanzees (Dahari et al., 

2005).Nevertheless, these models do not include the role of immune response on the 

dynamics of HCV. 

 

The Neumann et al.(1998)  model and extended model of  Dahari et al.(2007) assumed that 

the drugs had two major effects on the dynamics of HCV: reduction of infections and 
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blockage of virus replication. We observe that the drug blocking efficacy of virus replication 

increases with drug dosage (Neumann et al., 1998), where at large values of blocking 

efficacies the drug does not directly reduce infections i.e. the drug efficacy in reducing 

infections becomes negligible. Thus, it is required to consider only blockage of the virus 

replication. In this paper, we extend the model of Ismail et.al, (2016) to investigate the 

effect of interferon alpha-2b monotherapy on the dynamics of HCV by adopting therapy 

regimen of Neumann et al.(1998). 

  

2. Model Formulation    

In this section, we formulate a deterministic model incorporating three different 

populations: hepatocytes population, Hepatitis C virus population and the CD8+ T cells 

population. But, we classify the hepatocytes population as susceptible and infected classes 

whereby the susceptible class is a group of hepatocytes (liver cells) exposed to the HCV 

infection, and are equally likely to be infected, while the infected class is a group of 

hepatocytes infected with HCV. Moreover, the HCV population refers to a group of viruses 

that is responsible for the infection whereas the CD8+ T cells population is a collection of T-

Lymphocytes of the immune system that is liable for the destruction of the infected 

hepatocytes. We have extended the model proposed by Ismail, et al. (2016) to include the 

effect of antiviral monotherapy. 

 

In order to achieve our goal, we make the following assumptions: 

(1) The model is formulated to describe the dynamics of HCV and immune system during 

acute phase of infection; (2) susceptible hepatocytes are equally likely to be infected by the 

viruses and infected hepatocytes; (3) the susceptible hepatocytes are generated by 

proliferation of existing hepatocytes and immigration (differentiation of liver  cells 

progenitor or bone marrow cell) at a constant rate; (4) these susceptible hepatocytes and 

infected hepatocytes have the same natural mortality rates; (5) the virions and the CD8+ T 

cells have different natural death rates; (6) the CD8+ T cells destroy the infected 

hepatocytes at a constant rate and die at a constant rate due to infection; (7)  the CD8+ T 

cells are produced at a constant rate  and (8)we assume that the person with HCV infection 

receives highly dosed interferon alpha-2b monotherapy that blocks viral replication within 

infected hepatocytes. (9) Also, we assume that the person with HCV infection can either 

clear the virus spontaneously by a noncytolytic process or not during therapy. 

All state variables and parameters are positive; they are introduced and concisely 

described in Table 1 and Table 2 respectively. 
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Table 1: State variables and their descriptions 

Variable Description 

)(tS  The susceptible hepatocytes at time t  

)(tI  The infected hepatocytes at time t  

)(tV  The hepatitis c viruses at time t  

)(tT  The CD8+ T cells at time t  

 

For brevity, we henceforth denote the susceptible hepatocytes sub-population by S ; the 

infected sub-population by I ; HCV viral population by V and the CD8+ T cells population by

T .The state variables and their descriptions are summarized in Table 1. 

 

Table 2: Parameters and their descriptions 

Parameter  Description 

     Per capita infection rate 

  Per capita production rate  of viruses from the infected hepatocytes 

  Rate at which the CD8+ T cells destroy the infected hepatocytes 

  Per capita production rate of susceptible hepatocytes   
g  Per capita production rate of the CDB+ T cells  

d  Per capita natural death rate of susceptible and infected hepatocytes 

c  Per capita natural death rate of  viruses 

b  Per capita natural death rate of CD8+ T cells 
q  Rate of spontaneous cure of infected hepatocytes by a noncytolytic 

process 
  Per capita death rate infected hepatocytes due to HCV infection 

    Fraction by which antiviral drug reduces viral production rate 

maxT
 

Maximum CD8+ T cells population level 

 

Healthy hepatocytes S are constantly produced at the rate   and die naturally at a 

constant rate d ; the S cells are infected at the rate that is proportional to the product 

SV ,with a constant of proportionality  .The infected hepatocytes I  have a constant 

natural mortality rate of d .The hepatitis C viruses V are produced from these infected cells 

at a constant  rate   viruses per infected cell per day, once produced they die naturally at 

the rate of c .Then the CD8+ T cells destroy the infected cells I  at the  rate proportional to 

the product I and T , with a constant of proportionality  . In the presence of HCV, the 

CD8+ T cells are instigated by the CD4+ T cells and constantly supplied at the rate g ,and 

die naturally at a constant rate b . When the person infected with HCV receives interferon 
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alpha-2b monotherapy, the drug inhibits virus production from infected hepatocytes I  by a 

fraction . 

   

 

2.1 Model Compartment and Dynamics 

If we consider the assumptions and the symbols representing the parameters and state 

variables from Table 1 and Table 2 respectively, we can illustrate the description of the 

model dynamics in the form of a compartmental diagram as in Figure 1. 

  

 
Figure 1: Compartmental diagram for the hepatitis C virus model with immune system 

including drug therapy.  

2.2 Equations of the model 

Based on the assumptions made and relationships that exist between the state variables 

shown in Figure 1, we formulate a system of four non-linear ordinary differential equations 

describing the dynamics of hepatitis c virus in the presence of drug therapy. 

 

dSSVqI
dt

dS
                                                                          (1.1)    

qIIdIITSV
dt

dI
                                                                 (1.2) 

cVI
dt

dV
  )1(                                                                                 (1.3) 

bT
T

T
gV

dt

dT
 )1(

max

                                                                                (1.4)                                                                           

where the initial conditions are   00 S ,   00 I ,   00 V and   00 T  
 

IS

T V

I

IT

(1-)I

cVbT

dS

dI

SV

qI


gV(1-T/T
max

)
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2.3 Basic properties of the model  

2.3.1 Invariant regions 

Since the system of equations (1.1)-(1.4) describes modeling of susceptible hepatocytes, 

infected hepatocytes, HCV and the CD8+ T cells with the effect of drug therapy, we assumed 

that all state variables and parameters used in the model are non-negative 0t . 

According to Figure 1, we observe that the hepatocytes population has two classes  tS and

 tI  which can be combined together to form )(tN , which denotes the total hepatocytes 

population. That is,  

                                                           )()()( tItStN                                                                 (2)                   

Then we can determine the appropriate feasible region where all state variables are non-

negative through the following theorem: 

Theorem 1: All forward solutions of the system (1) are contained in the region 4

 R , 

0t and 112

  RRRTVL
, where                           

  NISRISL   :, 2
 

1

 RVV  

1

 RTT
  

and  is the positive invariant region for the whole system. 

Proof: 

We prove the theorem by initially determining the invariant region within which the 

solution for each population are feasible 0t . 

 

Hepatocytes population 

We have to determine the invariant region L of the system (Hepatocytes) containing the 

feasible solutions 0t .   

Let   2,  RISL  be any solution of the system with non-negative initial conditions..            

From (2), we have:  

                                               
dt

dI

dt

dS

dt

dN
                                                                                       (3)

 
 

Substituting (1.1) and (1.2) into (3) produces 

][][ qIIdIITSVdSSVqI
dt

dN
                             

       IITNd                                                                (4) 

From (4), we have: 

Nd
dt

dN
                             
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 dN
dt

dN
                                                                               (5)           

The general solution of the first order ordinary differential inequality (5) is: 

 

                                                )exp()()( 0 dt
d

N
d

tN 





                                                       (6) 

where 0N  is the initial hepatocytes population size. 

From (6), we deduce that      

},max{)( 0
d

NtN


                                                                   (7)       

Thus, the feasible solutions for the hepatocytes population in the system (1) are positively 

invariant in the region: 

}},max{)(:)({ 0
d

NtNtNL


  

 

HCV population 

We have to determine the invariant region V of the system (HCV) containing feasible 

solutions 0t .  Let 1

 RVV be any solution with non-negative initial conditions.   

Since we know that 

From (2) and (7), we deduce that  

d
tI

d
NtI





 )(),max()( 0                                                     (8) 

 Substitution of (8) into (1.3) produces 

cV
ddt

dV





 )1(
  

d
cV

dt

dV 


 )1(
                                                                     (9) 

The general solution of the first order ordinary differential inequality (9) is 

)exp()
)1(

(
)1(

)( 0 ct
cd

V
cd

tV 








                             (10)  

where 0V  is the initial viral population size. 

From (10), we deduce that 

}
)1(

,max{)( 0
cd

VtV





                                                             (11) 

Thus, the feasible solutions for the viral population in the system (1) are positively 

invariant in the region: 
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}}
)1(

,max{)(:)({ 0
cd

VtVtVV





                    

 

CD8+ T cells population 

We have to determine the invariant region T of the system (CD8+ T cells) containing 

feasible solutions 0t .   

Let 1

 RTT
be any solution with non-negative initial condition 

From (11), we deduce that 

cd
tV




 )1(
)(                                                                              (12) 

Substitution of (12) into (1.4) produces: 

bT
T

T

cd

g

dt

dT



 )1(

)1(

max



 

cd

g
Tb

cdT

g

dt

dT 





 )1(
]

)1(
[

max

                                          (13) 

The general solution of the first order ordinary differential inequality (13) is 

          
])

)1(
(exp[)

)1(

)1(
(

)1(

)1(
)(

maxmax

max
0

max

max tb
cdT

g

bcdTg

Tg
T

bcdTg

Tg
tT 























      (14)                      

From (14), we deduce that 

}
)1(

)1(
,max{)(

max

0
bcdTg

g
TtT









 

Thus, the feasible solutions for the CD8+ T population in the system (1) are positively 

invariant in the region: 

}}
)1(

)1(
,max{)(:)({

max

0
bcdTg

g
TtTtTT









 

Thus 112

  RRRTVL , for  

         
}0,,max{)(:)({ 0 


 d

d
NtNtNL ,      

                                                      }}
)1(

,max{)(:)({ 0
cd

VtVtVV





 

           }}
)1(

)1(
,max{)(:)({

max

0
bcdTg

g
TtTtTT









   

From this, we conclude that the model system (1) is positively invariant in the region

 .Hence it is epidemiologically and mathematically realistic. 

 

2.3.2 Positivity of solutions 
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Since the system (1) refers to modeling of populations, where all state variables and 

parameters are assumed to be non-negative 0t , we have to solve each equation in the 

system to test for positivity. We achieve this thorough the following theorem: 

Theorem 2: If the initial values of a given system are 0})0(),0(),0(),0({
4
 RTVIS  then 

the solution set )}(),(),(),({( tTtVtItS consists of positive entities 0t . 

Proof: 

We test for positivity of each state variable. 

From (1.3), we have: 

cV
dt

dV
  

cdt
V

dV
                                                                                    (15) 

Integration of (15) produces 

KctV ln  

That is,                                     )exp()( 0 ctVtV                                                                           (16) 

where 0V  is the initial viral population size. 

From (16), we have: 

At 0t , 1)]0(exp[ c .So, 0)0( 0 VV .If 0t , 0)](exp[  tc since 0c .Thus, we find that 

0)exp()( 0  ctVtV , 0t  

From (1.1), we have:  

SdV
dt

dS
)(                                             

dtdV
S

dS
)(                                                                         (17) 

Integration of (17) produces: 

KtdVS  )(ln   

That is,                                    ]))((exp[)( 0 tdtVStS                                                            (18) 

From (18), we have: 

At 0t , 1)]0)()0((exp[  dV .So, 0)0( 0  SS .If 0t , then 0]))((exp[  tdtV since 

0)(  dtV . Thus, we find that 0])(exp[)( 0  tdVStS  , 0t  

From (1.4), we have: 

T
T

bTgV

dt

dT
)(

max

max
   

   dt
T

bTgV

T

dT
)(

max

max
                                                                  (19) 
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Integration of (19) produces:  

   Kt
T

bTgV
T 


 )(ln

max

max  

That is,  

   ])(exp[)(
max

max
0 t

T

bTgV
TtT


                                                     (20) 

From (20), we have: 

At 0t , 1)0)((exp[
max

max 



T

bTgV
.So, 0)0( 0 TT .If 0t then 0])(exp[

max

max 


 t
T

bTgV
since 

0
max

max 


T

bTgV
.Thus, we find that 0)](exp[)(

max

max
0 




T

bTgV
TtT , 0t  

From (1.2), we have: 

IqdT
dt

dI
)(  

 

dtqdT
I

dI
)(                                                                      (21)                                   

Integration of (21) produces: 

KtqdTI  )(ln 

  That is,                                     

])(exp[)( 0 tqdTItI                                                         (22) 

From (22), we have: 

At 0t , 1)]0)()0((exp[  qdT .So, 0)0( 0  II .If 0t , then 0]))((exp[  tqdtT

since 0)(  qdtT  Thus, we find that 0)](exp[)( 0  qdTItI  , 0t . 

Since the solution set )}(),(),(),({ tTtVtItS consists of positive entities 0t , we conclude 

that the model system (1) is epidemiologically and mathematically realistic(Hethcote, 

2000). 

 

3. Model Analysis  

In this section, we determine the disease free equilibrium point of the system (1) and the 

basic reproductive number in the absence of therapy. We also determine the effective 

reproductive number for the purpose of examining the impact of antiviral therapy on the 

HCV morbidity. 

   

3.1 Disease Free Equilibrium Point (DFE) 

We determine the disease free equilibrium point by setting the equations of the system (1) 

equal to zero. 
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0 dSSVqI                                                                (23.1)                                                                        

0 qIIdIITSV                                                   (23.2) 

0)1(  cVI                                                                         (23.3) 

0)1(
max

 bT
T

T
gV                                                                 (23.4) 

From equations (23.1), (23.3) and (23.4), we obtain 

                                 dV

qI
S











             )1( 



 cV

I            
max

max

bTgV

VgT
T







                  (24) 

At the disease free equilibrium point, 0V .Then, from (24), we obtain 

                    
dd

q
S









)0(

)0(


        0

)1(

)0(







c
I           0

)0(

)0(

max

max 




bTg

gT
T               (25)  

Hence the disease free equilibrium point of the system (1) exists and is given by     

                                                            
)0,0,0,(0

d
E


                                                                          (26) 

According to (26), the absence of hepatitis c virus implies absence of infected hepatocytes 

and therefore the CD8+ T cells are not activated to destroy the infected hepatocytes.                      

 

3.2 The Basic Reproduction Number, 0R   

Definition 1:The basic reproduction number , 0R ,is defined as the average number of 

secondary infections produced when an infected individual is introduced into a host 

population where all individuals are susceptible in the period of infection (Dietz, 1975; 

Diekmann et al.; 1990, Van den Driessche and Watmough, 2002).  

 

The basic reproduction number is a very important parameter as it can be used to 

determine whether the disease prevails in the community or dies out. If 10 R , the average 

number of new infected individuals produced by an infectious individual is less than one 

during its infectious period, implying that the infection cannot grow. Conversely, 10 R  

implies that the average number of new infections produced by an infectious individual 

greater than one, and therefore the disease spreads in the population. It is also very 

important in the process of analyzing sensitive parameters which drive the dynamics of the 

disease and stability analysis of the disease free equilibrium. 

 

To determine the basic reproduction number, we find it important to recognize new 

infections from all other changes in the population. To achieve this, we apply the next 

generation operator proposed by Van den Driessche and Watmough (2002). Then we 

consider the model system (1) without therapy, i.e. 0 . 
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Then in the absence of therapy, we have the system (1) reduced to the system (27) 

 


























bT
T

T
gV

dt

dT

cVI
dt

dV

qIIdIITSV
dt

dI

dSSVqI
dt

dS

)1(
max







                                                 (27) 

Let )(xf i
 be the rate of appearance of new infection in compartment i , )(xvi

  be the rate of 

transfer of individuals out of compartment i  and )(xvi

  be the rate of transfer of individuals 

into of compartment i  by all other means. Furthermore, we assume that each function is 

continuously differentiable at least twice in the region .The HCV model system comprises 

nonnegative initial conditions with the following equations: 

)()()(' xyxfxFx iiiI  , ni ,...,2,1   

where  
 iii vvv  

Then we consider equations (1.2) and (1.3) of the system (1) to determine the expressions 

for 
if and 

iv as follows: 











I

SV
f i




      







 


cV

IqdT
yi

)( 
 

Let F be a non-negative matrix nn  and Y be a non-singular N -matrix 

At the disease free equilibrium point
0E , we find that  













 







0

0)( 0





d
x

Ef
F

j

i   

                      








 







c

qd

x

Ey
Y

j

i

0

0)( 0


 

Then, we have 





















c

qdY
1

0

0
1

1    

We determine the next generation matrix 1FV  developed by Castillo-Chavez et al.(2002) 

as 
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























0

0
1

qd

cdFY







 

 

By Van den Driessche and Watmough (2002), the basic reproductive number is a spectral 

radius  of the next generation matrix 1FY .Henceforth, to determine the basic reproductive 

number
0R , we compute the spectral radius )( of this next generation matrix from   

                                                ),max()( 21

1

0   FYR ,  

where 1 and 2 are the eigenvalues of the next generation matrix 1FY     

Thus, the eigenvalues, lambda, of 1FY  are obtained by   

01  IFY   

That is,                                    
0















qd

cd
 

0
)(

2 





qdcd 




 
                      

Hence the basic reproductive number is given by 

)(
0

qdcd
R









                                                                  (28)

  
 

3.3 The Effective Reproduction Number,
eR  

Definition 2:The effective reproduction number,
eR ,is the average number of infections 

caused by a single infectious individual introduced in a community where intervention 

strategies (in our case therapy) are administered (Okuonghae and Korobeinikov, 2007; 

Okuonghae and Aihie, 2008). 

We compute the effective reproduction number eR of the system (1) by applying the 

method used for 0R ,where eR  is the spectral radius of 1FY denoted by )( 1 FYRe  .Thus 

the effective reproduction number is given by 

 

)(

)1(

qdcd
Re









                                                                  (29) 

From (29), we have: 

0)1( RRe                                                                              (30)  
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The drug blocking efficacy, , of viral replication can take any value in the interval 10  , 

whereby its role can be discussed in three sub-intervals: 0 , 10  and 1 .When 

0 , the result in (30) reduces to the form 0RRe  ,which implies that drug therapy has 

no impact on the HCV morbidity. Conversely, if 1 , it becomes 0eR , implying that the 

disease vanishes due to therapy, i.e. the drug is 100% effective in exterminating the disease. 

But, any value of    taken from the sub-interval 10   changes it into 0RRe  .This 

reflects therapy efficacy to reduce the impact of the disease. 

 

4. Numerical Sensitivity Analysis 

Mathematical epidemiology is a study that helps in understanding the dynamics of an 

infection in order to control it by focusing on some sensitive parameters. This can be 

achieved by performing sensitivity analysis based on the model parameters. The sensitivity 

analysis describes how each parameter influences eR .It helps to identify the most sensitive 

parameters. With small variations in the values of the parameters, we can identify the 

parameters that highly influence eR whereby  proper control measures can be taken(Chitnis 

et al., 2008). We accomplish this by computing the sensitivity indices of eR relating to all 

parameters in it. In this case, the estimated values of the parameters employed were 

adopted from some literatures and others were just estimated, which are altogether 

itemized in Table 3. 

 

Table 3: Estimated values of parameters used to compute sensitivity indices of eR  

Parameter Value Unit Source 

b  02.0  day-1 Avendano et al.(2002) 

c  10 day-1 Estimated 

d  00014.0  day-1 Estimated 
g  0003.0  day-1 Avendano et al.(2002) 
q  2  day-1 Estimated 

  00000001.0  virus cell-1day-1 Dahari et al. (2005) 
  486.0  day-1 Estimated 

  96.0   Neumann et al.(1998) 

  6  virus cell-1day-1 Estimated 

  00001.0  virus-1ml-1day-1 Estimated 

  100 cells ml-1day-1 Estimated 
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The normalized forward sensitivity index refers to the ratio of relative change of a variable 

to the relative change in a parameter. If the variable is a differentiable function of the 

parameter then the sensitivity index is defined as follows: 

 

Definition 3: The normalized forward sensitivity index of variable p that depends on 

parameter q is defined as: 

p

q

q

pp

q 



                                                                                (31) 

Replacing p  in (31) by eR , we obtain 

e

eR

q
R

q

q

R
e 




                                                                            (32) 

According to (32), the sensitivity indices of eR  are computed with regard to all parameters 

in it. This is achieved by replacing q  by a parameter to obtain 

0000.12





e

eR

R

R
e




 , 5000.0






e

eR

d
R

d

d

R
e  and so on 

The sensitivity indices of eR pertaining to all parameters are computed using the same 

approach and then summarized in Table 4. 

 

Table 4: Sensitivity indices of eR relating to all parameters 

Parameter  Sensitivity index 

  0000.12  

d    5000.0  
c  5000.0  
  5000.0  

  5000.0  

  5000.0  
q  4022.0  

  0977.0  
 

According to the sensitivity indices displayed in Table 4, we observe that the parameters 

for infection rate , the viral replication rate   and rate of recruitment of susceptible 

hepatocytes   are the most positively sensitive parameters. This implies that increasing 

the values of these parameters will increases eR  and vice versa. For example, increasing the 

value of  by 20% will increase eR by 10% while decreasing  by 20% will decrease eR  by 

10%.  
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The drug blocking efficacy of virus replication , the natural mortality rate of susceptible 

and infected hepatocytes d and the natural death rate of the virus c  are the most negatively 

sensitive parameters. This implies that increasing the values of these parameters will 

decrease eR and vice versa. For example, increasing   by 10% will decrease eR  by 120%. 

Also, we observe that the rate of spontaneous recovery of infected hepatocytes q and the 

death rate of infected hepatocytes due to infection   are less sensitive negative parameters.

  

5. Numerical Simulations and Discussion  

In this section we present the numerical simulations of the system (1).We performed 

simulations based on the estimated parametric values itemized in Table 3 and this was 

accomplished through the application of ode45 MATLAB's standard solver for ordinary 

differential equations (ODEs), which implements a Runge-Kutta technique with a variable 

time step for efficient computation. However, this was preceded by the assessment of the 

values of 0R and eR at 00001.0 , 6 , 10c , 00014.0d , 486.0 , 96.0 and

2q .We found that 3129.12626.0 0  RRe , implying that therapy reduces the HCV 

infection in vivo. 

 

According to Fig. 2, the simulation for the basic reproduction number 0R  shows that the 

HCV transmission is very high without therapy, regardless of variations of spontaneous 

recovery of infected hepatocytes q , for 20  q .In Fig.3, the numerical solution of eR  

shows four different cases: (1) when 0q and 0 , eR has the highest value, indicating 

the increase in the chance of disease  evolution to chronic state, implying that patients who 

do not spontaneously clear the virus and are not subjected to treatment will get chronic 

HCV infection in the long run; (2) when 0q and 0 , eR is still high although decreases 

with increasing value of  ,implying that patients who do not spontaneously clear the virus 

will only clear it through drug therapy. But, the drug will totally eradicate the disease with 

increase of blocking efficacy of the virus production; (3) when 0q and 0 , eR is 

relatively low, implying that patients who spontaneously clear the virus and are not 

subjected to therapy will cure from the disease at different times depending on the rate of 

clearance q and (4) when 0q and 0 , eR attains the lowest value and additionally 

decreases with increasing values of q and  , implying that patients who spontaneously 

clear the virus and are subjected to therapy will also cure from the disease. The numerical 

solution based on category 4 shows a very low value of eR , implying that the disease is 

eradicated very rapidly. However, this is practically not recommended as therapy of this 

group of patients is unnecessary due to spontaneous clearance of the virus they undergo. 
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Figure 2: Relative values of reproduction numbers 

0R and 
eR with respect to the rate of 

spontaneous recovery of infected hepatocytes )(q . 

 
Figure 3: Value of 

eR with respect to drug blocking efficacy of the virus production rate )(  , 

with variation in the rate of spontaneous cure of infected hepatocytes ( 2,1,0q ) 

 
Figure 4: Value of 

eR with respect to the rate of virus production rate )(  , with variation in 

the rate of spontaneous cure of infected hepatocytes ( 2,1,0q ) at 96.0  

 
Figure 5: Value of 

eR with respect to rate of virus production rate )(  , with variation in the 

rate of spontaneous cure of infected hepatocytes ( 2,1,0q ) at 81.0  
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Figure 6: Value of 

eR with respect to the rate of virus production rate )(  , with variation in 

the rate of spontaneous cure of infected hepatocytes ( 2,1,0q ) at 0  

 

Fig.4, Fig.5 and Fig.6 show that the value of eR  increases with the rate of virus production

 at 96.0 , 81.0 and 0 respectively, and it attains the lowest and greatest values at 

2q and 0q  respectively. It also reduces with increasing value of  .This implies that 

patients with different rates of viral production and who do not spontaneously clear the 

virus can remove it by means of only therapy; this is optimal if the dug blocking efficacy is 

approximately 100% (e.g %96 ). However patients with higher rates of viral production 

(e.g. 2 ) cure later than those with lower rates (e.g. 1 ).Conversely, patients who 

spontaneously clear the virus will do it faster with therapy. It will vanish in a short time if 

the drug is highly effective. Practically, therapy is necessary and so should be directed to 

only patients who do not spontaneously clear the virus. 

 

6. Conclusion 

In this paper, we have formulated a deterministic mathematical model on the dynamics of 

HCV and immune system with the effect of therapy in the acute phase of infection. We have 

shown that the numerical solution of the basic and effective reproductive number obtained 

validate that therapy has significant impact on the disease transmission, which implies that  

therapy reduces the number of secondary infections produced by an infectious hepatocyte 

during its infectious period, i.e. fewer hepatocytes are infected. From the sensitivity 

analysis, the parameter for the drug blocking efficacy is the most negatively sensitive 

parameter while the parameters for the rates of infections, virus production and 

recruitment of susceptible hepatocytes and mortality rate due to infection are the most 

positively sensitive ones. Thus, if the blocking drug efficacy of the virus production 

increases there is reduction of disease transmission, and eventually it dies out. 

 

Literatures reveal that therapy of acute HCV infection is associated with challenges such as 

unclear criteria of identification of patients who require therapy (to exclude those who are 

able to spontaneously clear the virus), initiation of therapy and therapy regimens. 

Available drugs for therapy of chronic infection have severe side effects due to combination 

therapies. Nevertheless, therapy of people with acute HCV infection is necessary to prevent 
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evolution of the disease to chronicity, which is a fatal period of infection. Current models 

describing the dynamics of HCV with therapy do not consider drug types, variation of 

blocking efficacy with dosage and the virus genotype concurrently. For example, 

individuals with genotype 1 and 4 HCV infections do not respond to most antivirals while 

those infected with genotype 2 and 3 HCV respond quite well to these antivirals, and 

therefore the mathematical models are only descriptive of the dynamics of HCV with 

therapy for the second category of patients. Hence, more mathematical models are needed 

to address all these anomalies concurrently. However, our model assumes that the drug 

blocking efficacy of virus production increases with drug dosage administered to a patient 

who is a responder to the drug and can either clear the virus spontaneously or not.  

 

Hence we recommend that more mathematical models should be formulated to describe 

viral dynamic profiles observed when new antiviral drugs are employed, test possible 

mechanisms for new biological or clinical phenomena and optimize therapy such as 

determining optimal drug dosages and therapy duration. The models should be used to 

give additional insight into the HCV pathogenesis and assist in the development of more 

effective therapeutic strategies. The virus genotype should be considered when modeling 

the HCV dynamics and immune system with therapy, as the current mathematical models 

assume that all patients are good responders to the available antivirals. Also, they should 

consider the dynamics of HCV in a patient with a graft organ such as kidney, liver or heart. 

Modeling the dynamics of HCV and immune system with drug therapy can be done to 

include co-infections such as HCV-HIV co-infection. 
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