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Abstract. This paper aims to introduce a large class of new general stabilization methods

in optimization and saddle point theory. The concept of well-posedness in several senses

is also investigated in metric and normed spaces. New variational asymptotic methods

and some variational approximation results have been displayed within the framework of

variational analysis and the theory of variational convergence of functions and operators.

INTRODUCTION

Approximation theory is a central subject in pure and applied mathematics. Notably it is

encountered in algorithmic optimization when we use various numerical methods to approxi-

mate a solution of class of extremum problems. In theoritical or parametric optimization, we

very often study the sensitivity analysis of an initial minimization or maximization problem

when the objective function and constraints are perturbed. Various types of perturbation

schemes can be investigated, for instance if we consider an intial hard or ill-posed paramet-

ric problem (Hθ0) :minx∈C(θ0)
f(x,θ0), it is possible to replace it by a sequence of simple

or well-posed problems (Hθ) :minx∈C(θ) g(x,θ) such that ”(Hθ) approximates (Hθ0)”, that is

the sequences of functions (g(.,θ))θ and sets (C(θ))θ converge in a certain sense to f(.,θ0)

and C(θ0) respectively when θ → θ0 (for instance see [3, 9, 34, 72, 74, 75, 78] and references

therein) , (θ, θ0) ∈A×B, where A, B are abstract index sets and the convergence θ → θ0 is

considered in a specified sense using the notion of filters, nets or grills in general topological

spaces [3, 31]. Under a class of hypotheses, it is possible to show that the solutions xθ of (Hθ)

have a cluster point x’ which is a solution of (Hθ0) (see [3, 9, 34, 75] and references therein).

If ((Hθ)θ are well-posed in a certain sense, it is possible to apply a large class of numerical

methods to each problem (Hθ) in order to derive a solution zθ for it (see [34] and references

therein).On the other hand the notion of well-posedness in optimization is strongly related to
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the regularization methods considered as a logistic support for the theory of small parameter

and asymptotic analysis. They play a crucial role in the stabilization and approximation of

the solutions of a wide class of problems in pure and applied mathematics. Well-posedness

has several definitions and characterizations in the literature [12, 13, 14, 34, 112, 113]. The

concept of regularization or stabilization goes back to the works of Tikhonov (for instance, see

[34, 100, 101, 102] and references therein) and has considerable applications as in variational

analysis and optimization [3, 28, 68, 82, 93] , partial differential equations and optimal con-

trol [30, 34, 50, 56, 63, 64, 65, 83], inverse problems [16, 21, 23, 38, 45, 51, 110], plasticity theory

[98], calculus of variations [34, 36, 42], variational inequalities [2, 22, 43, 66, 67, 75, 85], fixed

point theory and inclusion problems [41, 60, 62, 87, 103], minimax and saddle-value problems

[69, 86, 88, 94, 95]. Besides the classical stabilization methods used in variational analysis

and its related topics, other types of regularizations can be considered in functional analysis

and operator theory [19, 20, 39, 45, 54, 88, 108], in statistics [37, 53, 55, 99] and serve as a very

useful and flexible tool for establishing key results in these disciplines.

The central feature of problems we regularize is their ill-posedness. This means that the

solution fails to be unique or most importantly, small changes in data of the model, which

are closely related to the errors of experimental measurements or unexpected phenomena,

could lead to uncontrollable errors. In other words, the gap between the solutions (if any)

of the perturbed model and the ones of the original problem may be very large relatively

to a specified metric; accordingly meaningless interpretations may occur in the course of

physical or economical investigations or other fields of experimental sciences. A natural

idea is to replace the initial problem by a sequence of well-posed problems guaranteeing

robustness and stability of their solutions and providing a large choice of numerical methods

for approximating them. Roughly speaking, a model is said to be robust if its solutions and

performance results remain relatively unchanged when exposed to perturbations, random

phenomena and uncertainties. In Phillipe Vincke’s opinion [107] , the uncertainty sources

that have been considered as the most important are the following:

i)The decision problem specifications are usually very imprecise, unpredictable, not much

known and not well defined.

ii) The environment in which the decision has to be taken could affect the conditions under

which the decision could operate.

iii) The unstable and imprecise character of the value systems and the decision-maker

preferences has priority in deciding the feasibility and the relative interest of the potential

alternatives.

The terms robustness and stability are also very often used in many disciplines. For in-

stance, in statistics they refer to certain desirable characteristics of statistical processes. A

process is considered robust with respect to the deviations of the model hypothesis, when the

process continues working in a suitable way, even though some of the initial assumptions are
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not maintained [84]. In Hampel’s opinion [49]: Robust statistics is the statistics process sta-

bility theory. It studies systematically the deviation effects from the initial model hypothesis

to the known processes and, if necessary, it develops new and better processes. For more de-

tails about robustness and its philosophy see for instance [15, 17, 52, 57, 89, 92, 97, 105, 106] .

Before Hadamard’s theory on the stability in mathematical physics [29, 34, 47, 48, 59], most

analysts payed special attention to stable models and consider the others as inefficient or

enable to explain the results arising from experimental investigations in many areas of sci-

ences.This way of thinking and analysing is one of the main characteristics of the scientific

method prevailing during the 19th and the first half of 20th century, that of positive science

based on the Cartesian method and characterized by the attempt of reducing the complexity

to its elementary components. It turns out that this fabulous method which has brought great

advances in sciences and adapted perfectly to the study of stable systems is no longer appro-

priate when considering the organized complexity such as that found in complex biological

systems, physics, economics and sociology ... etc; and characterized by openness, fluctuation,

chaos, disorder, blur, creativity, contradiction, ambiguity, pradoxe and instability. All these

aspects that were once perceived as nonscientific by the prevailing positivisme are henceforth

considered as crucial prerequisites for understanding the complexity of real-world phenomena

and have been taken in consideration since the previous seventy years in a new approach so-

called systemic approach or mathematical modelling. As far as one is interested for instance

by stable or unstable characters of systems which may have many senses from phenomenon

to another, there exists actually a wide class of unstable problems covring a large field of ap-

plications in many areas of sciences and technology [10, 34, 59, 101, 102] , and their rigourous

mathematical analysis uses inescapably regularization methods adequately chosen for each

specified problem. First let us consider some examples of stability and instability in physics

and investigate by analogy the concept of stability in mathematical programming. Consider

the known problem in classical mechanics that of physical pendulum which is a solid body

of any shape form suspended from an horizontal axis at a support . Under the influence of

gravity, the body will swing back and forth freely from an initial exitation θ0. The position

K(θ) of the pendulum in the space can be described by the oscillation angles θ of the body

from its stable equilibrium position relatively to an appropriate vertical axis; and when θ

goes to 0 the body reaches its unique stable position K(0). From a purely mathematical

point of view, θ ∈ [−θ0, θ0] ⇒K(θ) ⊂ R3 describes a special multifunction K, and it is

easy to see that the sets K(θ) converge to the set K(0) in the sense of the classical Haus-

dorff metric [3, 34] when θ goes to 0, that is dH(K(θ), K(0))=max(e(K(θ), K(0)), e(K(0),

K(θ))) → 0 if θ → 0; where e(K(0), K(θ))=supx∈K(0)d(x,K(θ)). This expresses simply the

continuity of K at 0 relatively to the distance dH . Now if we consider a multifunction

of the kind u∈C1 [c,d] ⇒T(u)= {α ∈C[a,b] /
∫ b
a
α(t)K(x, t)dt = u(x),∀x ∈ [c,d]}, where

K:[c,d]× [a,b]→ R is a continuous kernel with a continuous partial derivitive ∂K
∂x

, it is well-

known that such multifunction models a large class of inverse problems as in signal theory,
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automatics, control problems (see for instance [101] and references therein). Assume that

for some u∈C1 [c,d] T(u) is nonempty; we know [101] that T is unstable at u in the sense

that there exist two sequences of functions (un)n, un ∈C1 [c,d] and (αn)n, αn ∈ C [a,b] such

that αn ∈T(un) with d1(un, u)→ 0 if n→ +∞ but d2(αnk , α) 9 0 if k→ +∞, for any sub-

sequence (nk)k and any α ∈T(u), where d1, d2 belong in a class of practical useful metrics.

This explains simply a type of discontinuity of T frequently encountered in many problems

and expresses that small changes un in data u cannot lead in general to solutions αn of the

integral equation
∫ b
a
αn(t)K(x, t)dt = un(x),∀x ∈ [c,d] ∀n ∈ N, which could be considered

as good approximations of α in a desirable sense.

The concepts of stability and instability can be also easily extended to optimization prob-

lems. If we deal for instance with unstable minimization problems of the kind (P): minx∈Cf(x)

with nonempty solution sets denoted by argmin(f, C), (i.e. there exists a sequence (xn)n in C

without any cluster point such that f(xn)→ minx∈Cf(x)) where f: X→ ]-∞,+∞] is a proper

convex lower semicontinuous function defined on a reflexive Banach space X renormed by

an equivalent norm ‖.‖ making it an E-space [34] and C is a weakly convex compact; we

can stabilize it by a sequence of strongly well-posed problems in the Tikhonov sense (Pn):

minx∈C(f(x)+εng(x)) where g: X→ [0,+∞[ is any lower semicontinuous uniformly convex

function; that is for each εn > 0, f+εng has a unique minimizer xn on C and every minimiz-

ing sequence of (Pn) converges srongly to xn [34] . Moreover, if εn → 0, ‖xn-x‖ → 0, where x

is a solution of (P) satisfying remarkable properties [34, 61] (see also [78, 79] if C is the whole

space X and g is a specified function). Consequently, every numerical method generating

a minimizing sequence for (Pn) leads to an approximation of xn and so to x for a suitable

choice of εn. In the last example, stability and instability characters may be interpreted in

terms of special multifunctions as follows: If we set for each fixed ε > 0 the multifunction:

α ∈ [0,+∞[ ⇒ Rε(α) = α. arg min(f + εg, C) = {x ∈ C/f(x) + εg(x) ≤ min(Pε) + α}
and Rε(0) = arg min(f + εg, C) = {xε}, we see that Rε(0) ⊂ Rε(α) and Rε is stable at

0 , that is, ∀ yα ∈ Rε(α), (yα)α converges to xε if α → 0. Now, if we consider the multi-

function ε ∈ [0,+∞[ ⇒ D(ε) = ε. arg min(f , C) and D(0)= argmin(f, C), we observe that

D is unstable at 0 because there exists a minimizing sequence (zε)ε , zε ∈ D(ε) without

any subsequence converging to a point in D(0); in other words, (P) is not well-posed in

the generalized sense of Tikhonov [34]. Other types of well-posedness can be found in the

literature as Levitin-Polyak well- posedness, Hadamard well-posedness,...etc [14, 34, 73, 74].

It is worth noting that the class of well-posed minimization problems enjoys many interest-

ing generic properties expressing in general that most problems are well-posed or may be

approximated in a certain sense by a sequence of well-posed problems involving specified

regularization functions [13, 34,91] . Also, it should be pointed out that the regularization

methods with their diversity and rich properties provide flexible tools for characterizing

classes of variational convergences for functions and operators [3, 11, 81] in approximation

theory and optimization. Finally, in the author’s opinion, the regularization methods used
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in mathematics for theoretical or numerical goals have a physical analogy with the methods

of correction and stabilization under the effects of turbulence and unpredictable phenomena

in advanced technology systems in order to make them more robust face to the conditions

of random nature, as in aerospace technology and ballistics [18, 27, 35] , in the theory of

machine regulation [1, 32, 40, 46, 90], or in the current problem of making more effective the

missile-antimissile shield in military defense [111 ] .

The layout of this paper is as follows: Section 1 is devoted to a new characterization of

well-posedness in metric and normed spaces. A new characterization via infimal-convolution

operations is also given. In section 2 we introduce a new generalized stabilization method

in a general topological space and prove a central theorem (Th 2.2) for a large class of

minimization problems under suitable hypotheses. Afterwards, we observe through special

cases of regularization functions that our assumptions are not restrictive and include most

classical regularizations and more. Section 3 is devoted to the study of the stability of

variational asymptotic developments by epi-convergence. Indeed, if the initial minimization

problem is not easy to deal with and can be approximated in a variational sense by a

sequence of simple problems (Pn)n, we apply the regularization technique in theorem 2.2

to each (Pn) and derive variational asymptotic developments for the last problem; so by

a diagonalization lemma established in [3] , we prove uniform asymptotic developments for

a subsequence (Pnk
)k and deduce the stability of the minimum of sum of functions under

consideration without having necessarily the stability of this sum by epi-convergence, even in

the nonconvex case. For the stability concept of sum of functions ( and sets ) by variational

convergences and its crucial role in variational analysis and optimization we refer the reader

to [4, 9, 12, 70, 72, 74, 75, 77, 78, 80] . In section 4, we investigate the convex case in reflexive

Banach spaces and give applications to asymptotic developments for the Legendre-Fenchel

transform. In section 5 we introduce new generalized regularizations of saddle functions

and state a fondamental theorem (Th.5.1) in which we provide some approximation results

and variational asymptotic developments for the regularizations of bivariate functions in

a Hausdorff topological space. An application is also given to the conjugacy of bivariate

functions. Well-posedness of such new regularizations is investigated in section 6. In section

7 we study the stability of variational asymptotic developments of the regularizations of

saddle functions by epi/hypo-convergence.

1. NEW CHARACTERIZATION OF WELL-POSEDNESS IN METRIC AND

NORMED SPACES

In this section, we will characterize some notions of generalized well- posedness in metric

spaces. Let (X,d) be a metric space, C be a nonempty subset of X and f:X→ [−∞,+∞] is

a function. We say that the minimization problem (f,C): minx∈Cf(x) is well-posed on in the

sense of Levitin-Polyak, if it has a unique minimizer x’∈C such that f(x’) is finite and every

sequence (xn)n of X verifying d(xn,C)→ 0 and f(xn)→f(x′) converges to x’. (f,C) is called
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well-posed in the Tikhonov sense if it has a unique minimizer t’∈C such that f(t’) is finite

and every sequence (xn)n of C such that f(xn)→f(t′) converges to t’ . For the interest of these

two notions in theoritical and algorithmic optimization see for instance [34] and references

therein. We say that (f,C) is strongly well-posed if it has a unique minimizer z’∈C such

that f(z’) is finite and every sequence (zn)n of X satisfying d(zn,C)→ 0 and limf(zn)≤f(z’)

converges to z’ [12, 14, 75]. In fact (f,C) may have many minimizers, so we need a generalized

definition of well-posedness. Then (f,C) is called well-posed in the Tikhonov generalized

sense [34] if the set of solutions denoted by argmin(f,C) is nonempty and every minimizing

sequence (xn)n of C has a subsequence converging to an element of argmin(f,C). We say that

(f,C) is well-posed in the generalized sense of Levitin-Polyak (resp.well-posed in the strong

generalized sense) (see [12, 14, 34, 75] and references therein), if argmin(f,C) is nonempty and

every sequence (xn)n of X verifying d(xn,C)→ 0 and f(xn)→minCf (resp. if argmin(f,C) is

nonempty and every sequence (zn)n of X satisfying d(zn,C)→ 0 and limf(zn)≤minCf ) has

a subsequence converging to an element of argmin(f,C). In what follows, we consider some

notations we use here: Cε = {x∈X: d(x,C)< ε}, υ(f,C) =inf{f(x):x∈C} assumed to be finite,

ε.argmin(f,C)={x∈C:f(x)≤ υ(f,C) + ε}, L(ε) = {x∈X:d(x,C)≤ ε, f(x)≤ υ(f,C)+ε},L’(ε) =

{x∈X:d(x,C)≤ ε, |f(x)-υ(f,C)| ≤ ε}.The Hausdorff distance between two nonempty subsets

A,B of X is denoted by dH(A,B)=max (e(A,B), e(B,A)) where e(A,B)=supx∈Ad(x,B).

DEFINITION 1.1. [34] . A function c:D→ [0,+∞[ ,D⊆ R is called a forcing function if

0∈D, c(0)=0 and an ∈D, c(an)→ 0 =⇒ an → 0.

DEFINITION 1.2. [34] .Let A be a bounded subset of X, the noncompctness degree of

A, is the Kuratowski number of A, defined by α(A) = inf{ε � 0 : ∃ (Ai)i=1,2...n A⊆
n⋃
i=1

Ai

and diamAi ≤ ε}.We can verify easly that α(A) ≤ α(B) if A⊆B, and α(A) = 0 if and only

if A is relatively compact.

PROPOSITION 1.3.Let (X,d) be a metric space, C be a nonempty closed subset of

X and f:X→ [−∞,+∞] is a function such that υ(f,C) is finite. Then (f,C) is well-posed in

the generalized sense of Levitin-Polyak (resp. well-posed in the strong generalized sense) if

and only if argmin(f,C) is compact and the multifunction ε ⇒L′(ε) (resp.ε ⇒L(ε)) is upper

semicontinuous at 0.

Proof. If (f,C) is well-posed in the generalized sense of Levitin-Polyak, it is clear that

argmin(f,C) is compact. Now if ε ⇒L′(ε) fails to be upper semicontinous (usc) at 0, there

exist an open subset θ of X containing L’(0), a sequence (tn)n of positive numbers converging

to 0 and a sequence (xn)n, xn ∈L’(tn) with xn /∈ θ.But , d(xn,C)→ 0 and f(xn)→ υ(f,C),

so (xn)n has a subsequence converging to an element of L’(0)= argmin(f,C); this is a con-

tradiction because xn /∈ θ.Conservely, let (xn)n be a sequence of X such that d(xn,C)→ 0,

f(xn)→ υ(f,C) and pick ε � 0.The usc at 0 implies that xn ∈ (L′(0))ε for all n sufficiently

large, so d(xn,argmin(f,C))→ 0 and by compactness of argmin(f,C), (xn)n has a subsequence
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converging to an element of argmin(f,C). In the same way we show the second equivalence

replacing L′(ε) by L(ε).

PROPOSITION 1.4. Let (X,d) be a metric space locally compact, C be a nonempty

closed subset of X and f:X→ ]−∞,+∞] is a proper semicontinuous function. Suppose that

for every ε � 0,L(ε) is connexe. The following assertions are equivalent:

(i) L(ε) is compact for some ε = ε0 � 0.

(ii) (f,C) is well-posed in the strong generalized sense.

(iii) argmin(f,C) is an nonempty compact.

Proof. First we point out that (f,C) is well-posed in the strong generalized sense if

and only if (g, X) is well-posed in the Tikhonov generalized sense with g(x)=max(f(x)-

υ(f,C),d(x,C)).

Afterwards, we apply proposition 1.4.2 of [75, p.23] (and references therein) and some

arguments of its proof to obtain the previous equivalences.

THEOREM 1.5.Let (X,d) be a metric complete space, C be a nonempty closed subset

of X and f:X→ R is a continuous function. Then (f,C) is well-posed in the generalized sense

of Levitin-Polyak if and only if α(L′(ε))→ 0 if ε→ 0.

Proof. If (f,C) is well-posed in the generalized sense of Levitin-Polyak, we claim that

L’(ε0) is bounded for some positive ε0; If this is not the case, L’(ε) is unbounded for every

positive ε,so there exists a sequence xn ∈L’( 1
n
) such that d(xn,x0) ≥n, where x0 is a fixed

point in X; this is a contradiction because (xn)n has a converging subsequence; accordingly

L′(ε) is bounded for every small positive ε and α(L′(ε)) exists. We remark also that (f,C) is

well-posed in the generalized sense of Levitin-Polyak if and only if (G,X) is well-posed in the

generalized sense of Tikhonov where G(x)=|f(x)-infCf|+d(x,K), x∈X. Then the conclusion

of the theorem is an immediate consequence of [34,Th.38, p.25] and the trivial inclusion

L’( ε
2
) ⊂ ε.argmin(G,X) ⊂L’(ε).

THEOREM 1.6.Let (X,d) be a metric complete space, C be a nonempty closed subset

of X and f:X→ R is a lower semicontinuous function. Then (f,C) is well-posed in the strong

generalized sense if and only if α(L(ε))→ 0 if ε→ 0.

Proof. It is clear that (f,C) is well-posed in the strong generalized sense if and only

if (g,X) is well-posed in the generalized sense of Tikhonov. On the other hand g is lower

semicontinuous and X is complete, then [34,Th.38, p.25] permits to conclude, because for

all ε, we have ε.argmin (g,X)=L(ε).

THEOREM.1.7. Let (X,d) be a complete metric space, C be a nonempty closed bounded

subset of X and f:X→ ]−∞,+∞] is a function.

1) If f is finite and continous,Then (f,C) is well-posed in the generalized sense of Levitin-

Polyak if and only if there exits a forcing function c such that for every bounded subset A

of X satifying supx∈A |f(x)| ≺ +∞ one has :

(1.1) c(α(A)) ≤max(supx∈A |f(x)-υ(f,C)| ,supx∈Ad(x,C))
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2) If f is lower semicontinuous, then (f,C) is well-posed in the strong generalized sense if

and only if there exists a forcing function c verifying for every bounded subset A of X such

that supx∈Af(x) ≺ +∞ :

(1.2) c(α(A)) ≤max(supx∈Af(x)-υ(f,C),supx∈Ad(x,C))

In particular (f,C) is well-posed in the strong generalized sense if there exits a forcing

function c such that:

(1.3) c(α(A)) ≤supx∈A(f(x)-υ(f,C))

for every bounded subset A of X such that A∩C 6= ∅ and supx∈Af(x) ≺ +∞.
Proof. 1). We will be inspired by the proof of theorem 39 of [34, p.26] .Assume that (f,C) is

well-posed in the generalized sense of Levitin-Polyak, then α(L′(ε))→ 0 if ε→ 0 by theorem

1.5.Set q(ε) = α(L′(ε)) and c(t)=inf{s:q(s)≥ t}. By [34,Lemma 20] ,c is an increasing forcing

function satisfying c(q(ε)) ≤ ε for every ε ≥ 0. Let A be a bounded subset of X such

supx∈A |f(x)| ≺ +∞ and consider p=max(supx∈A |f(x)-υ(f,C)| ,supx∈Ad(x,C)), we have p≥ 0

and A⊂L’(p), so c(α(A))≤c(α(L’(p))=c(q(p))≤p and then (1.1) is satisfied. Conservely if

(1.1) holds for every bounded subset A of X such that supx∈A |f(x)| ≺ +∞; set in particular

A=L’(ε) which is clearly bounded so c(α(L’(ε)) ≤ ε , accordingly α(L′(ε)) → 0 if ε →
0.Theorem 1.5 permits then to conclude.

2).This equivalence can be shown in the same way as point 1) using theorem 1.6. Now

suppose that (1.3) is satisfied for every bounded set such that A∩C 6= ∅ and supx∈Af(x)

≺ +∞. We will show that (1.2) is satisfied. Let B be a bounded set with supx∈Bf(x) ≺ +∞.
We may always assume that c is an increasing function. If B∩C 6= ∅, we have always

c(α(B)) ≤supx∈B(f(x)-υ(f,C))≤max(supx∈B |f(x)-υ(f,C)| ,supx∈Bd(x,C)) and (1.2) is satisfied.

If B∩C = ∅,we consider two cases: if there exists (a,b)∈C×B such that f(a)≤f(b), then set

B’=B∪{a}; we have c(α(B)) ≤c(α(B’)) ≤supx∈B’f(x)-υ(f,C)=supx∈Bf(x)-υ(f,C) and (1.2) is

satisfied. If for every (a,b)∈C×B f(b)≺f(a), set B(a)==B∪{a} for every a∈C such that f(a)

is finite, then by (1.3) we have c(α(B)) ≤c(α(B(a))) ≤
supx∈B(a)f(x)-υ(f,C)=f(a)-υ(f,C), so c(α(B)) = 0 and again (1.2) is satisfied which com-

pletes the proof. �

THEOREM.1.8.Let (X,d) be a metric space, C be a nonempty subset of X and f:X→ R is

a function. Assume that there exists a forcing function α:R→ R+ continuous at 0, α(0) = 0

such that α(f-υ(f,C)) is uniformly continuous. If (f,C) is well-posed in the generalized

sense of Levitin-Polyak then we have the following implication (P): for every sequence of

functions fn:X→ R converging uniformly to f on X and for every sequences (Cn)n, (Xn)n of

subsets of X such that dH(Cn,C) → 0, dH(Xn,X) → 0 and xn ∈argmin(fn+d(.,Kn), Xn)

then d(xn,argmin(f,C))→ 0 when n→ +∞.Conservely if the last implication is true and

argmin(f,C) is compact then (f,C) is well-posed in the generalized sense of Levitin-Polyak.

Proof. If (f,C) is well-posed in the generalized sense of Levitin-Polyak, it is easy to see

that (G,X) is well-posed in the generalized sense of Tikhonov and argmin(f,C)=argmin(G,X)

with G(x)=α(f(x)-υ(f,C))+d(x,C).By hypothesis G(x) is uniformly continuous, so (G,X) is
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well-posed in the generalized sense of Hadamard (see[75, p.26] and references therein) and (P)

is satisfied. Conservely if (P) is satisfied, let be a sequence (xn)n of X verifying d(xn,C)→ 0

and f(xn)→minCf. Set fn(x)=|α(f(x)-minCf)-α(f(xn)-minCf)| , Cn=C∪{xn} and Xn=X. It is

clear that (fn)n converges uniformly to α(f(x)-minCf) on X, dH(Cn,C) → 0, dH(Xn,X) =0

and xn ∈argmin(fn+d(.,Cn), X); so d(xn,argmin(f,C))→ 0 when n→ +∞ which completes

the proof. �

In what follows X will be a normed space with its norm‖.‖ and d(x,y)= ‖x-y‖ is its

associated metric.Considering two functions f:K→ ]−∞,+∞] , g:K’→ ]−∞,+∞] where K,K’

are two subsets of X. the fonction denoted by f∇g called the infimal-convolution (or epi-

sum) of f and g is defined on K+K’ by (f∇g)(z)=inf{f(x)+g(y)/ (x,y)∈K×K’ and z=x+y}. If

K=K’=X, we can also write (f∇g)(z)=infx∈X{f(x)+g(z-x)}. This notion of convolution plays

a crucial role in optimization and variational analysis (see for instance [58, 75, 76, 78] and

references therein). We say that f∇g is exact at a point z∈ K+K’if there exists (x,y)∈K×K’

such that z=x+y and (f∇g)(z)= f(x)+f(y).

THEOREM.1.9. The following assertions are equivalent:

(i) (f,K) anf (g,K) are well-posed in the Tikhonov sense with x0,y0 their unique solutions

respectively.

(ii) (f∇g, K+K’) is well-posed in the Tikhonov sense with solution z0 =x0+y0 and f∇g is

exact at z0.

Proof.(i)=⇒(ii). For every x∈K, y∈K′ one has f(x0) ≤f(x) and g(y0)≤g(y), so

( f∇g)(x0+y0 ) ≤f(x0)+g(y0)≤( f∇g)(z) ∀z ∈K+K’;

accordingly z0 =x0+y0 ∈argmin(f∇g,K+K’) and ( f∇g)(z0)=f(x0)+g(y0) i.e f∇g is exact

at z0. Now let (zn)n be a sequence of K+K’ such that ( f∇g)(zn) →( f∇g)(z0),then there

exists a sequence (un,vn) ∈K×K′ such that zn =un+vn and f(un)+f(vn)→f(x0)+g(y0) so

f(un)→f(x0) and f(vn)→f(y0) and (un,vn)→ (x0,y0 ) i.e zn →z0.

(ii)=⇒(i). The exactness of f∇g at z0 =x0+y0 implies that (f∇g)(z0)=f(x0)+g(y0)

≤( f∇g)(z) for every z∈K+K’, so f(x0)+g(y0)≤f(x)+g(y) ∀(x,y)∈K×K′ and x0 ∈argmin(f,K),

y0 ∈argmin(g,K’). Now considering a sequence (xn)n in K such that f(xn)→f(x0). For every

n, we have f(x0)+g(y0)≤ (f∇g)(xn+y0)≤f(xn)+g(y0) so (f∇g)(xn+y0)→ (f∇g)(z0) and by

hypothesis xn+y0 →x0+y0 i.e xn →x0 and (f,K) well-posed in the Tikhonov sense with x0 its

solution. In the same way (g,K) is well-posed in the Tikhonov sense with y0 its solution.

2. NEW GENERALIZED REGULARIZATIONS IN THE TIKHONOV

SENSE

The goal of this section is to introduce a new generalized regularization method in the

Tikhonov sense in a general topological space and generalize a result established in reflex-

ive spaces for convex functions [78, 79] and concerns the classical Tikhonov regularization
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method used in variational analysis and its related topics. More precisely, considering a re-

flexive space X renormed by a strictly convex norm ‖.‖ making it an E-space [3, 33, 34, 104].

Let F:X→ R
⋃
{+∞} be a proper convex lower semicontinuous function and set for each

ε > 0, Fε(x)=F(x)+ε ‖x-x0‖2where x0 is any given point in X. Assume that S=argmin(F,

X)={x ∈X/ F(x)=minx∈XF(x)} is nonempty, then we have the following result:

THEOREM 2.1 [78, 79] . (a) Fε has a unique minimizer xε over X for each ε; (b) the

sequence (xε)ε converges strongly to t0 = projS x0 when ε → 0; accordingly
F(xε)-F(t0)

ε
→ 0,

Fε(xε)-F(t0)−ε‖x0−t0‖2

ε
→0, if ε→ 0.

Throughout, unless otherwise stated, X stands for a general Hausdorff topological space,

f:X→ R
⋃
{+∞}, g: X→ R be two lower semicontinuous (lsc) functions with f is proper and

C be a nonempty closed subset of X. Along the paper we are concerned by the minimization

problem (P): minx∈C f(x). We will denote by S= Argmin(f ,C) the solution set of (P) assumed

to be nonempty and by domf={x∈X/ f(x)<+∞} the effective domain of f such that domf
⋂

C 6= ∅. Now consider a sequence hk:X→ R of functions such that rk =infx∈Chk(x) is finite for

all k≥k0. To (P) we associate the following generalized regularization problem (Pk): minx∈C

Fk(x) where Fk(x)= f(x)+εkg(x)+hk(x), εk > 0 and we suppose that εk → 0 if k→ +∞.
THEOREM 2.2. Assume that the following conditions hold:

(a) ik =infC Fk is finite for every k≥k0 and (zk)k be a sequence of C relatively compact

satisfying:

(2.1)
Fk(zk)-ik

εk
→ 0, k→ +∞

(b) (2.2) hk(s)−rk
εk

→ 0, k→ +∞ , ∀ s∈S

Then:

(1) any cluster point z ∈C of (zk)k verifies z ∈argmin(g , S).

(2) f(zk)→f(z) and g(zk)→g(z) when k→ +∞.
(3) there exist sequences (δk)k,(δ

′
k)k,(θk)k,(θ

′
k)k of scalars converging to 0 such that we have

the following asymptotic developments Fk(zk) = minx∈C f(x)+εkminx∈S g(x)+ inf x∈C hk(x)+

εkδk =minx∈C f(x)+εkminx∈S g(x)+inf x∈S hk(x) + εkδ
′
k; and infC Fk =minx∈C f(x)+εkminx∈S

g(x)+ inf x∈C hk(x) + εkθk =minx∈C f(x)+εkminx∈S g(x)+inf x∈S hk(x) + εkθ
′
k.

REMARK 2.3. In theorem 2.2, g is not necessarily positive as it is always supposed

in the literature. On the other hand, it is clear that we can find always a sequence (zk)k
in C such that Fk(zk)≤ ik + ε2k if ik is finite, so limk→+∞

Fk(zk)-ik
εk

= 0, but in general

(zk)k is not relatively compact . If (Pk) has a solution xk for each k≥k0 and we take zk=xk
then (a) is straightforward satisfied if (xk)k is relatively compact, so from (3) there exists a

sequence (αk)k of numbers converging to 0 such that Fk(xk)=minx∈C(f(x)+εkg(x)+hk(x))=

minx∈Cf(x)+εkminx∈S g(x)+infx∈C hk(x) + εkαk. The proof we display here is very different

from the one used in [78, 79] .

Proof. Pick ε > 0. By (2.1) we have for k large enough, Fk(zk)=f(zk)+εkg(zk) +

hk(zk) ≤infC Fk + εkε ≤f(s)+εkg(s)+hk(s)+ εkε ∀ s∈S. Then,
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(2.3) 0≤f(zk)-f(s)≤ εk(g(s)-g(zk))+hk(s)-rk + εkε , ∀ s∈S

Hence we deduce that

(2.4) g(zk)≤g(s)+hk(s)−rk
εk

+ ε , ∀ s∈S

and limkg(zk)≤ limkg(zk)≤g(s)+ε by (2.2) for every ε > 0 and s∈S. So,

(2.5) limkg(zk)≤ limkg(zk)≤g(s), ∀ s∈S

Now by lower semicontinuity of g and relative compactness of (zk)k we can find m∈ R
such that m≤g(zk) ∀ k. We derive from (2.5) that (g(zk))k is bounded and f(zk)→minx∈C
f(x) by (2.2) and (2.3); so by lower semicontinuity of f we get f(z) =minx∈Cf(x) for any

cluster point z ∈C of (zk)k i.e z ∈S. Since g is lower semicontinuous, (2.4) and (2.2) imply

that z ∈argmin(g, S). Again by lower semicontinuity of g, boundedness of (g(zk))k and

(2.5) we may check easily that (g(zk))k has the unique cluster point g(z) =mins∈Sg(s) to

which the sequence converges. This ends the proof of (1) and (2). Now take s= z in (2.3);

we have 0≤ f(zk)-minC f

εk
≤g(z)-g(zk)+

hk(z)−rk
εk

+ ε, hence αk =
f(zk)-minC f

εk
→ 0 when k→

+∞. Keeping in mind that hk(zk)≤hk(z)+εk(g(z)-g(zk))+εkε, we derive that 0≤ hk(zk)−rk
εk

≤
hk(z)−rk

εk
+g(z)-g(zk)+ε and then hk(zk)−rk

εk
→ 0 when k→ +∞ by (2.2) and (2). On the other

hand, Fk(zk)−f(zk)−rk
εk

= εkg(zk)+hk(zk)−rk
εk

= g(zk)+
hk(zk)−rk

εk
. Set ϑk = Fk(zk)−f(zk)−rk

εk
−g(z).

It is clear that ϑk and δk = ϑk + αk = Fk(zk)−f(z)−rk
εk

−g(z) converge to 0 if k→ +∞ and

Fk(zk) = f(z) + εkg(z) + rk + εkδk =minx∈C f(x)+εkminx∈S g(x)+infx∈C hk(x) + εkδk. From

(b) it is easy to see that infs∈S hk(s)−rk
εk

= dk → 0, k→ +∞ , so rk = infs∈S hk(s) − εkdk
and Fk(zk) =minx∈Cf(x)+ εkminx∈S g(x)+ infS hk +εkδ

′
k with δ′k = δk − dk. The asymptotic

development in infCFk is an immediate consequence of the last developments and (2.1) which

completes the proof of (3). �

REMARK 2.4. Hypothesis (b) in the above theorem is not restrictive. Indeed, consider

the wide class of functions hk given by hk(x)=
∑p

i=1 βk,igi(x) where gi: X→ R is any function

bounded below by a scalar mi on C, βk,i ≥ 0 for every k∈ N, 1≤ i ≤p and
βk,i
εk
→ 0 when k→

+∞, ∀ i. It is easy to see that rk ≥
∑p

i=1 βk,imi and 0 ≤ hk(x)−rk
εk

≤
∑p

i=1

βk,i
εk

(gi(x)-mi) which

goes to 0 when k→ +∞ for every x∈C, so (b) is satisfied. The regularization functions be-

come Fk(x)= f(x)+εkg(x)+
∑p

i=1 βk,igi(x). In particular one may consider the functions of the

kind hk(x) = εqkh(x), q> 1 with h:X→ R is any function such that infCh>-∞. If X is a normed

space we can use also the regularization functions Fk(x)= f(x)+εk ‖x-x1‖p1+
∑p

i=2 ε
i
k ‖x-xi‖pi

where xi is any given point in X and pi ∈ N. More generally, if we take in a general

topological space hk(x)=
∑p

i=1 βk,i gk,i(x) with gk,i:X→ R , βk,i ≥ 0,
βk,i
εk
→ 0 if k→ +∞,

∀ i=1,2...p and we assume that there exist scalars mk,i such that mk,i ≤gk,i(x), ∀ x∈C

with limk→+∞
∑p

i=1

βk,i
εk

(gk,i(x)-mk,i) = 0 for every x in C, then (b) is satisfied. In partic-

ular, one may consider the useful regularization functions hk(x)=
∑p

i=1qi(εk)e
ϕi(εk)(Aix−bi)+γi

where ϕi(εk) > 0, qi(εk) > 0 , γi ∈ R for every i=1,...p and k∈ N with qi(εk)
εk
→ 0 if k →∞,

bi ∈ R and Ai:X→ R is any lower semicontinuous operator. In this case the constraint set

is defined by C={x∈X/Aix-bi ≤ 0, ∀i} assumed to be nonempty. For the case qi(εk) = ε2k,
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ϕi(εk) = ε−2
k , γi = 0 and its importance in optimization, see for instance [28] where the

authors study the special regularizations Fk(x)=〈c,x〉 + ε2k
∑p

i=1eε
−2
k (Aix−bi) for solving the

linear program min{〈c,x〉: Aix-bi ≤ 0, i=1...p} in finite dimentional setting with Ai is a

linear operator. This kind of regularizations combines the interesting properties of the inte-

rior barrier method and of the exterior penalty method. It should be pointed out that we

can’t always ensure higher order asymptotic developments in theorem 2.2 even under strong

regular conditions on functions under consideration. For example consider the sequence

of regularization functions Fε(x)=x2 + εx+ε2x2, x∈C= R reaching their minimizers at the

points xε = −ε
2

(1 + ε2)−1. If we write Fε(xε)=
−ε2

4
(1 + ε2)−1 =minR x2 + εminS={0} x+ε2minR

x2 + ε2ϕ(ε) then ϕ(ε) = −1
4

(1 + ε2)−1 → −1
4

if ε → 0. Now take another example: Let

Fε(x)=f(x)+εx2 + ε2x3, 0< ε < 1 with f(x)= x-1 if x> 1, f(x)=0 if x∈ [−1, 1] and f(x)=

+∞ otherwise. Then S=argminf=[−1, 1] and the minimizer of Fε is attained at xε = 0. If

Fε(xε)=0 = minx≥−1 f + εminx∈S x
2 + ε2minSx3+ ε2ϕ(ε) then ϕ(ε) = 1.

Now we state two corollaries expressing that under suitable hypotheses, a sequence (zk)k in

C satisfying (2.1) is relatively compact. First recall that a function j: X→ R is inf-compact

[58] if {x∈ X/j(x) ≤ λ} is compact for each λ ∈ R . If for a subset A of X {x∈ A/j(x) ≤ λ}
is compact for each λ ∈ R , we say that j is inf-compact on A. If X is a metric space and

jk : X → R, k∈ N, we denote by e-limjk(x) = inf{(xk)k/xk→x}lim jk(xk) the epi-limit inferior

of the sequence (jk)k [3] .

COROLLARY 2.5. Let Fk be the functions considered in Th.2.2. Let (zk)k be a sequence

in C such that: (a1) ik =infC Fk is finite for every k≥k1 and limk→+∞
Fk(zk)-ik

εk
= 0; (a2)

hypothesis (b) of Th.2.2 is satisfied; (a3) {x∈ C/g(x) ≤ λ0}is compact for some scalar

λ0 >g(s0) and some s0 ∈S. Then (zk)k is relatively compact.

Proof. From the proof of Th.2.2, we see that limkg(zk) ≤g(s) for every s∈S. Let λ0 >g(s0)

for some s0 ∈S such that Lλ0 ={x∈ C/g(x) ≤ λ0} is compact . We have limkg(zk) < λ0 and

zk ∈Lλ0 for every k sufficiently large, so (zk)k k is relatively compact and the conclusions of

Th.2.2 hold.

COROLLARY 2.6. Let Fk be the functions considered in Th.2.2 such that hypothesis

(a1) of Corollary 2.5 is satisfied with limkFk(zk) < +∞ and g is bounded below on C by

a scalar m. Consider the following hypotheses (H1) and (H2) with (H1) : There exists

γ ∈ R such that rk ≥ γ, ∀k ≥ k2 and f is inf-compact on C; (H2) : X is a vector space

of finite dimension, hk : X → R are lsc and ∀λ ∈ R ∃ kλ ∈ N such that ∀k≥ kλ the set

{x∈ X/hk(x) ≤ λ} is connected (in particular this is true if hk is convex) and the function

x∈X→ e-limhk(x) is inf-compact. If (H1) or (H2) is satisfied then (zk)k k is relatively compact;

accordingly if hypothesis (b) of Th.2.2 is satisfied then the conclusions of Th.2.2 hold.

Proof. First we observe that there exist two scalars δ, β such that for all k sufficiently

large Fk(zk) ≤ δ and Fk(x)≥ f(x)+β+hk(x) ∀x∈C, so Fk(x)≥ f(x)+β+γ if (H1) is verified,

and then zk ∈ {x ∈ C/f(x) ≤ δ − β − γ} which is compact. On the other hand, it is clear

that there exists a number α such that Fk(x)≥ α+hk(x) for every x∈C and every k large
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enough. Now if (H2) is satisfied, by [109] the functions hk are uniformly inf- compact, in

particular there exist a compact K and k’∈ N such that ∀k ≥ k′, {x ∈ X/hk(x) ≤ δ−α} ⊆K,

so zk ∈K. The reminder follows wich completes the proof.

REMARK 2.7. Hypothesis (H2) in Corollary 2.6 is in particular satisfied if X is a

vector space of finite dimension and (hk)k is a sequence of convex functions from X into R
epi-converging to a proper inf-compact function h:X→ R

⋃
{+∞} [109] .

COROLLARY 2.8. Let f:C→ R
⋃
{+∞}, gi: C→ R, i=1,2...p, be lower semi-

continuous functions and assume that f is finite at a point of a compact C of X.Then,

limε→0+
minx∈C(f(x)+εg1(x)+

∑p
i=2 aiεgi(x))−minx∈Cf(x)

ε
=minx∈Sg1(x) for every sequences ( aiε)ε, i=2,

...p such that aiε ≥ 0 and limε→0+
aiε
ε

= 0 .

Proof. The proof is an immediate consequence of theorem 2.2, remark 2.4 and the fact

that limε→0+
infx∈C hε(x)

ε
= 0 with hε(x) =

∑p
i=2 ε

igi(x).

2.9. General Asymptotic Developments with Particular Regularizations

It is useful to provide general asymptotic developments with particular regularizations. In

the sequel we are concerned by the regularizations of the kind Fk(x)= f(x)+εkg(x)+
∑p

i=1 βk,igi(x)

as it is mentioned above with βk,i > 0,
βk,i
εk
→ 0 for every i when k→ +∞ . We as-

sume furthermore that all functions gi: X→ R are lsc with
βk,i+1

βk,i
→ 0 when k→ +∞ ,

∀i and C is compact.Then Si =argmin(gi ,C) is nonempty and gi(x) > mi ∀ x∈C for a

scalar mi. Our goal is to compute minCFk. In each following computation, assume that we

are within the framework of hypotheses of theorem 2.2 with functions under consideration.

We have minC(f+εkg+βk,1 g1)= minC f +εkminS g+ βk,1minC g1+ εkαk,1; minC(f+εkg+βk,1

g1 + βk,2 g2)=minC f +εkminS g+ βk,1minC (g1 +
βk,2
βk,1

g2) + εkαk,2 =minC f +εkminS g+

βk,1(minC g1+
βk,2
βk,1

minS1g2+
βk,2
βk,1

δk,2)+εkαk,2 =minC f +εkminS g+ βk,1minC g1+βk,2minS1g2+

βk,2δk,2 +εkαk,2. By the same argument we have minC(f+εkg+βk,1 g1 +βk,2g2 +βk,3g3) =minC
f +εkminS g+ βk,1minC g1+βk,2minS1g2+βk,3minC g3+βk,2δk,3+εkαk,3 and minC(f+εkg+βk,1
g1 +βk,2g2 +βk,3g3 +βk,4g4) =minC f +εkminS g+ βk,1minC g1 +βk,2minS1g2 +βk,3minC g3 +

βk,4minS3g4 +βk,2δk,4 +βk,4δ
′
k,4 +εkαk,4. Then the obvious generalization is minC(f+εkg+βk,1

g1+βk,2 g2+...+βk,p gp)=minC f +εkminS g+ βk,1minC g1+βk,2minS1g2+...+βk,pminSp−1gp+

dpk + εkvk,p if p is even and minC(f+εkg+βk,1 g1 + βk,2 g2 + ...+ βk,p gp)=minC f +εkminS g+

βk,1minC g1 + βk,2minS1g2 + ...+ βk,pminC gp + epk + εkwk,p if p is odd with vk,p ,wk,p ,
dpk
εk
,
epk
εk

converge to 0 when k→ +∞.

3. STABILITY OF VARIATIONAL ASYMPTOTIC DEVELOPMENTS BY

SEQUENTIAL EPI-CONVERGENCE

In this short subsection we investigate the stability of asymptotic developments under

epi-convergence, that is a variational convergence [3] which preserves the stability of the

minimum of functions if a relative compactness hypothesis is satisfied. In order to state our

result, we recall the definition of epi-convergence and its importance in variational analysis.

Let fn,f :X→ R be a sequence of functions. We say that (fn)n epi-converges sequentially to f
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on X and we write fn epi− seq−−−−−−→ f if: (1) ∀x, ∀xn →x, f(x)≤ limnfn(xn); (2)∀x, ∃xn →x such

that fn(xn) →f(x). Convergence in this sense has remarkable properties in the literature.

One of the crucial properties in a general topological setting is the following stability result:

THEOREM 3.1 [3] . Assume that fn epi− seq−−−−−−→ f and consider a sequence (xn)n in X such

that fn(xn) ≤infX fn + γn, γn → 0 with γn > 0 and infX fn ∈ R. Then for every converging

subsequence (xnk)k to an element x, we have x ∈ argmin(f, X) and fnk(xnk) →minX f when

k→ +∞.
Now return to problem (P) with C=X and assume that the lsc proper functions fn:X→ R

⋃
{+∞} epi-converge sequentially to f:X→ R

⋃
{+∞} and there exists a sequence (xn)n in

X having a subsequence xnp = yp → t and minX fn =fn(xn) ∀n. Denote by Fnk(x)=

fn(x)+εkgn(x)+hk(x) the regularization functions associated to fn with gn:X→ R is lsc and

suppose that hk epi− seq−−−−−−→ h with h:X→ R
⋃
{+∞} is proper. Assume also that there

exists a sequence (znk)k,n relatively compact such that for every k, n, ink =infXFnk is finite,
Fnk (znk )-ink

εk
→ 0, hk(s)−rk

εk
→ 0 when k→ +∞, ∀ s∈Sn =argmin(fn, X), ∀ n. Following theorem

2.2, there exists a sequence (δnk)k,n of scalars converging to 0 for each fixed n when k→ +∞
such that we have the following asymptotic development An

k =Fnk(znk) =minX fn+εkminSngn+

infXhk(x) + εkδ
n
k . The stability result is stated as follows:

THEOREM 3.2. There exists a subsequence (n′k)k satisfying

(A
n
′
k
k , δ

n
′
k
k ,

F
n
′
k

k (z
n
′
k
k )-i

n
′
k
k

εk
) → (minX f+minXh = f(t)+h(t),0,0) if k→ +∞ where t ∈argmin(f,

X)
⋂

argmin(h, X). In particular if znk =xnk ∈argmin(Fnk , X) we have minX(fn′k
+εkgn′k

+hk)→
minX(f+h)=minX f+minXh when k→ +∞.

Proof. Because dpk = hk(yp)−rk
εk

→ 0 when k→ +∞ ∀p, the diagonalization lemma [3]

shows that there exits a subsequence (pk)k (which can be computed) such that dpkk → 0 if

k→ +∞, so for a given ε > 0, hk(ypk) ≤ infXhk + εkε for k large enough, and by theorem

3.1 we conclude that infXhk →minXh and t ∈ argmin(f, X)
⋂

argmin(h, X). But for each

fixed p, (A
np
k , δ

np
k ,

F
np
k (z

np
k )-i

np
k

εk
) → (minX fnp+minXh, 0,0) if k→ +∞ and minX fnp →minX f

when p→ +∞; accordingly by the diagonalization lemma again, there exists a subsequence

(npk=n
′
k)k satisfying (A

n
′
k
k , δ

n
′
k
k ,

F
n
′
k

k (z
n
′
k
k )-i

n
′
k
k

εk
)→ (minX f+minXh ,0,0) if k→ +∞. The remaider

follows, which completes the proof. �

REMARK 3.3. It is worth pointing out that the stability result established here

holds regardless of the epi-convergence or not of the sequence ( fn′k
+εkgn′k

+hk)k to f+h! and

without having any information on the behavior of the sequence (εkgn′k
)k !.

4.THE CONVEX CASE

In this section we apply the above results to convex functions defined on a normed space

and derive asymptotic developments for the Legendre-Fenchel transform.
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PROPOSITION 4.1. Let X be a reflexive Banach space and f: X→ R
⋃
{+∞}, g,

hk : X→ R are convex proper lower semicontinuous functions. Let C be a nonempty closed

convex set of X such that S=argmin(f, C) is nonempty. Assume that:

(a) {x∈C/ g(x)≤ λ}is bounded ∀λ ∈ R;

(b) hk(s)−rk
εk

→ 0 if k→ +∞, ∀ s∈S.

Let (zk)k be a sequence of C such that
Fk(zk)-ik

εk
→ 0 when k→ +∞. Then (zk)k is weakly

relatively compact and the conclusion of theorem 2.2 holds. If argmin(g, S)={a} (particularly

when g is strictly convex ) then (zk)k has a unique weakly cluster point z=a and zk ⇀ a

where ⇀ denotes the weak convergence. Moreover if the conditions g(tk)→ g(t) and tk ⇀ t

imply that ‖tk − t‖ → 0, k→ +∞ one has ‖zk − a‖ → 0 when k→ +∞.
Proof. First, we point out that Lkλ = {x∈C/ Fk(x)≤ λ}⊂ {x∈C/g(x)≤ λ−minC f−rk

εk
} for

each k and λ ∈ R, so Lkλ is weakly compact and by a classical argument [58] , ik = minC Fk =

Fk(xk) for some xk ∈C. Now by reflexivity, convexity and Corollary 2.5, it is immediat that

(zk)k is weakly relatively compact.The remainder follows by an obvious verification. �

In the theorem below, we give sufficient conditions ensuring that the minimization problem

(Fk , C) is strongly well-posed in the Tikhonov sense. Given two functions p, q: X→ R
⋃

{+∞} and consider the following hypotheses:

(Hp): Aλ = {x∈C/p(x)-λ ‖x‖ ≤ 0}is bounded for every λ ∈ R.

(H
′
q): q(xn)→ q(x) and xn ⇀ x imply that ‖xn − x‖ → 0 when n→ +∞.

THEOREM 4.2. Let X be a reflexive Banach space and suppose that

Fk(x) =f(x)+εkg(x)+hk(x) is strictly convex on a closed convex subset C of X. Assume

that (Hp) and (H
′
q) hold simultaneously at least for two functions p, q (eventually identical)

belonging in the set {f,g,hk} where f: X→ R
⋃
{+∞}, g, hk : X→ R are convex proper lower

semicontinuous functions.Then (Fk, C) is well-posed in the Tikhonov sense.

Proof. Let Fk(x) =f(x)+εkg(x)+hk(x), εk > 0. Each function f, g, hk has a continuous

affine minorant, so if p∈{f,g,hk} then there exist α ≥ 0, β ∈ R such that Fk(x) ≥ −α ‖x‖+

β + γp(x) (γ = εk if p=g and γ=1 otherwise). It turns out that Lkλ ={x∈ C/Fk(x) ≤ λ}⊆
{x∈ C/p(x) − α

γ
‖x‖ + β

γ
≤ λ

γ
} which is bounded by (Hp) for every λ ∈ R; so Lkλ is weakly

compact and (Fk, C) has a unique solution xk. Now let (xn)n be a mimizing sequence for (Fk,

C). Since Fk(xn) →Fk(xk) ∈ R when n→ +∞, (xn)n belongs to a sublevel of Fk and (xn)n
is bounded. By lower semicontinuity of Fk, every cluster point z∈ C of (xn)n for the weak

topology satisfies Fk(z)=Fk(xk)) so z=xk and xn ⇀ xk . Set an = f(xn)+εkg(xn)+hk(xn)−
f(xk)− εkg(xk)− hk(xk)→ 0 if n→ +∞. We have f(xn)− f(xk) = an + εk(g(xk)− g(xn))+

hk(xk)−hk(xn) and limn(f(xn)− f(xk)) ≤ εk(g(xk)− limng(xn)) +hk(xk)− limnhk(xn) ≤ 0;

accordingly limnf(xn) ≤ f(xk) ≤ limnf(xn) and f(xn)→ f(xk). By the same argument one

has g(xn)→ g(xk) and hk(xn)→ hk(xk). From (H
′
q) we conclude that ‖xn − xk‖ → 0 when

n→ +∞. �
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Note that a reflexive Banach space may be always renormed by a strictly convex norm ‖.‖
such that (H

′
q) is satisfied with q(x)=‖.‖ [104] ; so one can take for instance in proposition

4.1 or in theorem 4.2, g(x)=‖x− x0‖r , r≥ 1 and x0 is any given point in X. In this case

the sequence (xk)k, where xk is the minimizer of Fk on C, converges strongly to projSx0 in

Proposition 4.1 (or in Theorem 4.2 if (b) is satisfied). Also we point out that, even though

(Hp)and (H
′
q) fail to be satisfied with p, q∈{f, g}which can be imposed by an algorithm, a

large choice of the ” negligible” terms hk may guarantee the verification of (Hhk)and (H
′

hk
).

It is worth noting that the only role of hypothesis (Hp) is to ensure the boundedness of

Lkλ. It can be replaced for instance by the following hypothesis: two functions of {f,g,hk}are

bounded below and the third is weakly inf-compact; for example f, g are bounded below and

hk is weakly inf-compact.

4.3. Application to Legendre-Fenchel Transform

In the sequel we are interesting by asymptotic developments of the Legendre-Fenchel

transform [58] (f+εk1g1 + εk2g2 + ...εkngn)∗(y) where y is a fixed point of the topological dual

X∗ of a locally convex space X and f: X→ R
⋃
{+∞} is a convex proper lower semicon-

tinuous function, gk : X→ R, k= 1, 2, ...n are convex continuous functions. Assume that

εki → 0, εki > 0 and
εki+1

εki
→ 0 if k→ +∞ ∀i = 1...n. For simplicity, take εki = εi and ε → 0.

If n=1 we have (f+εg1)∗(y) = supx∈X{〈x, y〉 − (f + εg1)(x)}. Set α1 = −(f+εg1)∗(y) =

infx∈X{f(x) − 〈x, y〉 + εg1(x)} and assume that there exists a class of hypotheses such

that Sy = arg minX(f(.) − 〈., y〉) is nonempty and α1 = minx∈X{f(x) − 〈x, y〉 + εg1(x)} =

minx∈X(f(x)− 〈x, y〉)+ εminx∈Sy g1(x) + εϕ1(y, ε) where ϕ1(y, ε) → 0 if ε → 0. But z∈Sy if

and only if f(z)-〈z, y〉 ≤ infx∈X f(x)-〈x, y〉 = −f∗(y) or equivalently, f(z)+f∗(y) ≤ 〈z, y〉, i.e

z∈ ∂f∗(y) the subdifferential in the sense of convex analysis of f∗ at y [58]. It turns out that

(f+εg1)∗(y) = f ∗(y) + ε(g1 + δ∂f∗(y))
∗(0)+ εϕ1(y, ε) where δ∂f∗(y)(z) = 0 if z∈ ∂f∗(y) and

δ∂f∗(y)(z) = +∞ otherwise. By [58,Th.6.5.8] , one has (g1 + δ∂f∗(y))
∗(0) = (g∗1∇δ∗∂f∗(y))(0) =

g∗1(t) + δ∗∂f∗(y)(−t) for some t∈ X∗ where the operation 5 stands for the infimal convo-

lution, called also epi-sum in the literature (for the importance of this operation in opti-

mization, see for instance [5, 58, 76] and references therein). Furthermore if f∗is finite and

τ(X∗, X) continuous at y then δ∗∂f∗(y)(w) = maxr∈∂f∗(y)〈w, r〉 = (f ∗)
′
(y, w) ∀w [58,Th.6.4.8].

Here (f ∗)
′
(y, w) = limλ→0+

f∗(y+λw)−f∗(y)
λ

is the directional derivative and τ(X∗, X) is the

Mackey topology on X∗. So (f+εg1)∗(y) = f∗(y)+ε(g∗1∇(f ∗)
′
(y, .))(0) + εϕ1(y, ε) = f ∗(y) +

ε(g∗1(t)+ (f ∗)
′
(y,−t)) + εϕ1(y, ε). For n=2, assume that under suitable hypotheses we have

minx∈X(f(x) − 〈x, y〉 + εg1(x) + ε2g2(x)) = minx∈X(f(x) − 〈x, y〉) + εminx∈Sy=∂f∗(y) g1(x) +

ε2infx∈X g2(x)+ εϕ2(y, ε), ϕ2(y, ε)→ 0 when ε→ 0. Hence, (f+εg1+ε2g2)∗(y) = f ∗(y)+ε(g1+

δ∂f∗(y))
∗(0) + ε2g∗2(0) + εϕ2(y, ε)=f∗(y)+ε(g∗1∇(f ∗)

′
(y, .))(0) + ε2g∗2(0)+ εϕ2(y, ε) if f∗is finite

and τ(X∗, X) continuous at y. For n=3 assume that there exist some assumptions under

which one has the following equalities: -(f+εg1 + ε2g2 + ε3g3)∗(y) = minx∈X(f(x)− 〈x, y〉 +
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εg1(x) + ε2(g2(x) + εg3(x))) = minx∈X(f(x)−〈x, y〉) + εminx∈∂f∗(y) g1(x) + ε2 minx∈X(g2(x) +

εg3(x)) + εk(y, ε)

= minx∈X(f(x)−〈x, y〉) + εminx∈∂f∗(y) g1(x) + ε2(minX g2) + ε3 minx∈∂g∗2(0) g3(x) + ε3γ(ε) +

εk(y, ε); then we compute (f+εg1 + ε2g2 + ε3g3)∗(y) =f∗(y) + ε(g1 + δ∂f∗(y))
∗(0) + ε2g∗2(0) +

ε3(g3 + δ∂g∗2(0))
∗(0) + εϕ3(y, ε) with ϕ3(y, ε) → 0 when ε → 0. If f∗and g∗2 are respectively

τ(X∗, X) continuous at y and 0 then (f+εg1 + ε2g2 + ε3g3)∗(y) =f∗(y) + ε(g∗1∇(f ∗)
′
(y, .))(0) +

ε2g∗2(0) + ε3(g∗3∇(g∗2)
′
(0, .))(0) + εϕ3(y, ε). A straightforward generalization shows that under

suitable hypotheses we have:

(f + εg1 + ε2g2 + ...+ εngn)∗(y) =f∗(y) + ε(g1 + δ∂f∗(y))
∗(0) + ε2g∗2(0) + ε3(g3 + δ∂g∗2(0))

∗(0) +

ε4g∗4(0)+ε5(g5+δ∂g∗4(0))
∗(0)+...ε2ig∗2i(0)+ ε2i+1(g2i+1+δ∂g∗2i(0))

∗(0)+...εϕn(y, ε)

(4.1) =f∗(y) + ε(g∗1∇(f ∗)
′
(y, .))(0) + ε2g∗2(0) + ε3(g∗3∇(g∗2)

′
(0, .))(0) + ....ε2ig∗2i(0) +

ε2i+1(g∗2i+1∇(g∗2i)
′
(0, .))(0) + ...εϕn(y, ε) with limε→0ϕn(y,ε)= 0.

THEOREM 4.4. Let X be a locally convex space and X∗ its topological dual. Let

f:X→ R
⋃
{+∞}be a convex proper lower semicontinuous function and gi:X→ R is convex

continuous ∀i. If f(.)-〈., y〉, (g2i)i≥1 are weakly inf-compact and (g2j+1)j≥0 are bounded below

for every i, j satisfying 2i, 2j+1≤ n then (4.1) holds.

Proof. Let mi ∈ R such that gi(x) > mi for every i and x∈X. We have Fε(x) =f(x)-

〈x, y〉+
∑n

i=1 ε
igi(x) >f(x)-〈x, y〉+

∑n
i=1 ε

imi > f(x) − 〈x, y〉 −1 for every ε ≤ ε0, so Fε is

weakly inf-compact and reaches its minimum at a point xε. Let a∈Domf; we have f(xε)-

〈xε, y〉+
∑n

i=1 ε
imi ≤f(a)-〈a, y〉+

∑n
i=1 ε

igi(a) and f(xε)-〈xε, y〉 ≤f(a)-〈a, y〉+
∑n

i=1 ε
i(gi(a) -mi) ≤

f(a)− 〈a, y〉+ 1 for every ε sufficiently small. Then (xε)ε is weakly relatively compact, and

by theorem 2.2 one has minXFk =minx∈X(f(x)-〈x, y〉)+ε minx∈Syg1(x)+infx∈X
∑n

i=2 ε
igi(x)+

εϕ(ε). Now by the same argument infx∈X
∑n

i=2 ε
igi(x) = ε2 infx∈X(g2(x)+εg3(x)+...εn−2gn(x)) =

ε2 minx∈X(g2(x) + εg3(x) + ...εn−2gn(x)) = ε2 minx∈X g2(x) + ε3 minx∈arg min(g2, X) g3(x)

+ ε4{infx∈X
∑n

i=4 ε
i−4gi(x)}+ ε3ϕ1(ε), and step by step we derive formula (4.1) by

[58,Th.6.4.8 , Th.6.5.8] and by the fact that the weak inf -compactness of f(.)-〈., y〉 and g2i

implies that f∗ and g∗2i are respectively τ(X∗, X) continuous at y and 0 [58,Th.6.3.9 and its

Corollary]. �

COROLLARY 4.5. Let X be a reflexive Banach space and X∗ its topological dual. Let

f: X→ R
⋃
{+∞} be a convex proper lower semicontinuous function and gi(x) = ‖x‖i for

every i=1,2...n. If f∗ is ‖‖X∗ −continuous at y then (4.1) holds with g∗2i(0) = 0 for every i≥ 1

such that 2i≤n .

Proof. It is clear that gi i=1,2...n satisfy all hypotheses in theorem 4.4 and the Mackey

topology τ(X∗, X) on X∗ is exactly the norme ‖‖X∗ topology, so the ‖‖X∗ − continuity of f∗

at y is equivalent [58] to the weak inf-compactness of f(.)- 〈., y〉. �

5. NEW GENERALIZED REGULARIZATIONS FOR SADDLE FUNCTIONS

AND ASYMPTOTIC DEVELOPMENTS
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In what follows we are concerned by new generalized regularizations of saddle functions

and their associated asymptotic developments. Consider two general topological Hausdorff

spaces X,Y and f:X×Y→ R, g:X×Y→ R, hε:X×Y→ R be three functions with ε > 0.

Each function f, g is assumed to be lower semicontinuous (lsc) at the first variable and up-

per semicontinuous (usc) at the second variable. Denote by h1
ε = supy∈Y infx∈X hε(x, y)

and h2
ε = infx∈X supy∈Y hε(x, y) which are supposed finite for every ε > 0 sufficiently

small. Assume that the set S={(a,b)∈X×Y/(a,b) is a saddle point of f } is nonempty.

Set Fε(x, y) = f(x, y) + aεg(x, y) +hε(x, y) with aε > 0 , aε → 0 if ε → 0. If hε = 0 and

g(x,y)= ai ‖x‖p−bi ‖y‖q with ai, bi are positive real numbers and p,q∈ N∗ then Fε reduces

to the classical Tikhonov regularization.

Using a similar technique considered in the proof of theorem 2.2 with more difficult and

sophisticated arguments we can state the following result:

THEOREM. 5.1. Let (xε,yε)ε be a relatively compact sequence such that αε =supyFε(xε,y),

βε =infxFε(x,yε), γε(t)= supyhε(t,y), δε(z) =infxhε(x,z) are finite for every ε sufficiently small

and every (t,z)∈X×Y. Assume that the following condition holds:

(5.1) limε→0
αε−βε
aε

=limε→0
γε(t)−δε(z)

aε
= 0 ∀(t, z) ∈ X × Y

Then:

(i) any cluster point (x, y) of (xε,yε)ε is a saddle point of f on X×Y and is a saddle point

of g on S. Furthermore for every α ∈ R, there exists a sequence (δαε , θ
1,α
ε , θ2,α

ε ) → 0R3 if

ε→ 0 depending on the scheme under consideration such that Fε(xε,yε)=f(x, y)+aεg(x, y)+

αh1
ε + (1− α)h2

ε + aεδ
α
ε and the sequence (g(xε, y), g(x, yε),

f(xε,y)−f(x,y)
aε

, f(x,yε)−f(x,y)
aε

, h
2
ε−h1ε
aε

)ε
converges to (g(x, y),g(x, y), 0, 0, 0) if ε→ 0;

(ii) Fiε = f(x, y) + aεg(x, y) + αh1
ε + (1 − α)h2

ε + aεθ
i,α
ε and limε→0

F 2
ε −F 1

ε

aε
= 0 where

F1
ε = supy∈Y infx∈X Fε(x, y) and F2

ε = infx∈X supy∈Y Fε(x, y).

REMARK 5.2. The first limit in (5.1) is straightforward satisfied if (xε,yε) is a saddle

point of Fε. Also we observe that there exists a wide class of functions hε :X×Y → R sat-

isfying the second limit in (5.1). Take for instance the functions of the kind hε(x, y) =∑n
i=1 b

i
εgi(x, y) where mi(y) ≤ gi(x, y) ≤ Mi(x) ∀(x, y) ∈X×Y. Here mi(y), Mi(x) are

real numbers and biε. ≥ 0 satisfying limε→0
biε.
aε

=0 ∀i. Then 0≤ supy∈Y hε(a,y)−infx∈X hε(x,b)

aε
≤∑n

i=1 b
i
ε.(Mi(a)−mi(b))

aε
and limε→0

∑n
i=1 b

i
ε.(Mi(a)−mi(b))

aε
= 0 ∀(a, b) ∈X×Y. In Particular one can

consider the classical functions used in many schemes of saddle point approximation meth-

ods gi(x, y) = αi ‖x− xi‖pi − βi ‖y − yi‖
qi where xi, yi are given points in the normed spaces

X, Y , pi, qi ∈ N∗ and αi, βi > 0 (For instance, see [88, 94] and references therein). More

generally one may take hε(x, y) =
∑n

i=1 b
i
εgεi(x, y) where there exist two real functions

mεi(y) and Mεi(x) such that for every (x,y) we have mεi(y) ≤ gεi(x, y) ≤ Mεi(x) and

limε→0

∑n
i=1 b

i
ε.(Mεi(a)−mεi(b))

aε
= 0 ∀(a, b) ∈X×Y then limε→0

supy∈Y hε(a,y)−infx∈X hε(x,b)

aε
= 0. For

example, see the regularization function considered in theorem 6.9.
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COROLLARY 5.3. Let X, Y be two convex compacts of Rn and Rm respectively.

Assume that Fε : X × Y → R is finite, convex-concave and continuous with hε(x, y) =∑p
i=1 b

i
εgi(x, y) where gi : X × Y → R, i=1...p are such that mi(y) ≤ gi(x, y) ≤ Mi(x)

∀(x, y) ∈X×Y. mi(y), Mi(x) are real numbers and aε > 0, biε. ≥ 0 satisfying limε→0
biε.
aε

=0

∀i, limε→0aε = 0. Then limε→0
minx∈Xmaxy∈Y (f(x,y)+aεg(x,y)+

∑p
i=1 b

i
εgi(x,y))−minx∈Xmaxy∈Y (f(x,y))

aε
=

minx∈Amaxy∈B(g(x, y)) where S = A×B.
Proof. By [96] , Fε has a saddle point (xε,yε) and the sequence ((xε,yε))ε is relatively

compact.The limits in (5.1) are obviously satisfied, so the conclusions of theorem 5.1 hold.

But for every (x,y)∈ X × Y we have
∑p

i=1 b
i
ε.mi(y)) ≤h1

ε ≤ h2
ε ≤

∑p
i=1 b

i
ε.Mi(x)) then

limε→0
h1ε
aε

=limε→0
h2ε
aε

= 0 which completes the proof.

5.4. Conjugacy of Bivariate Functions and Asymptotic Developments

Theorem 5.1 can provide an interesting tool for application to the conjugacy of bivariate

functions as follows: Assume that X,Y are normed spaces with their topological dual X* and

Y* respectively. Fix (x∗, y∗) in X*×Y* and set K(x∗, y∗) = supy infx(〈x∗, x〉+〈y∗, y〉+g(x, y))

(for instance see [96] for the importance of this function in saddle functions theory and con-

jugacy ), Kε(x
∗,y∗) = supy infx(f(x, y) + εg1(x, y) + ε2g2(x, y) + ...εngn(x, y)), ε > 0 where g,

gi: X×Y → R are given functions, i=1,2...n and f(x,y)=〈x∗, x〉 + 〈y∗, y〉 + g(x, y). Denote

by Sf and Sg2k respectively the sets of saddle points of f and g2k on X×Y assumed to be

nonempty. Under suitable hypotheses as in the previous theorem applied many times to f,

gi and to the regularized scheme under consideration with hε(x, y) = ε2(g2(x, y) + εg3(x, y) +

ε2g4(x, y) + ε3g5(x, y) + ...εn−2gn(x, y)) = ε2Hε(x, y), one can derive easily the following for-

mula: If n=2p+1 then Kε(x
∗,y∗) =f(x0, y0) + εg1(x0, y0) + ε2g2(x2, y2) + ε3g3(x2, y2) + ... +

ε2kg2k(x2k, y2k) + ε2k+1g2k+1(x2k, y2k) + ...ε2pg2p(x2p, y2p) + ε2p+1g2p+1(x2p, y2p) +
∑2p+1

i=1 εiγiε for

some γiε converging to 0 if ε→ 0. If n=2p and α ∈ R then Kε(x
∗, y∗) =f(x0, y0)+εg1(x0, y0)+

ε2g2(x2, y2)+ε3g3(x2, y2)+...+ε2kg2k(x2k, y2k)+ ε2k+1g2k+1(x2k, y2k)+..+ε
2p−2g2p−2(x2p−2, y2p−2)+

ε2p−1g2p−1(x2p−2, y2p−2)+ε2p(αg1
2p+(1−α)g2

2p)+
∑2p

i=1 ε
iriε with riε → 0 if ε→ 0. Here (x0, y0)

is a saddle point of f on X×Y and is also a saddle point of g1 on Sf . (x2k, y2k) ∈ Sg2k and is

a saddle point of g2k+1 on Sg2k .

6. WELL-POSEDNESS OF GENERALIZED REGULARIZATIONS FOR

BIVARIATE FUNCTIONS

In the sequel we investigate well-posedness of generalized regularizations of saddle func-

tions. Let X,Y be two reflexive Banach spaces renormed by strictly convex norms ‖.‖X , ‖.‖Y
making them E-spaces [3, 34] and f:X×Y→ R, g:X×Y → R, hε:X×Y → R be three functions

weakly lsc at the first variable for each fixed y and weakly usc at the second variable for

each fixed x. Consider Fε(x, y) = f(x, y) + εg(x, y) +hε(x, y) and assume that the follow-

ing hypotheses are satisfied for a function F:X×Y→ R, (H1) : ∀x ∈X, ∃y ∈ Y such that

F(x,y)>-∞, and (H2) : ∀y ∈Y, ∃x ∈ X such that F(x,y) <+∞. Set g(x)= supy∈Y F(x,y),

h(y)= infx∈XF(x,y). It is clear that ∀x ∈X g(x)>-∞, ∀y ∈Y h(y)<+∞ and the function
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w(x,y)=g(x)-h(y) is well defined on X×Y with w≥ 0. If (x, y) is a saddle point of F on X×Y,

then maxyminxF(x,y)=minxF(x,y)=maxyF(x,y)= minxmaxyF(x,y) =g(x) =h(y) =F (x, y)

is finite.

DEFINITION 6.1 [26] . A sequence (xn, yn)n in X×Y is called minimaximizing sequence

of F if w(xn,yn)→ 0 when n→ +∞.
The last definition is equivalent to the existence of εn > 0, εn → 0 such that F(xn, y) ≤

εn+F(x, yn) ∀(x, y) ∈X×Y. Note that a function does not always possess a minimaximizing

sequence [26] .

THEOREM 6.2 [26] . The following are equivalent: (a) F has a minimaximizing sequence

on X×Y; (b) infx supyF(x,y)=supy infxF(x,y);(c) inf(x,y)w(x,y)=0.

DEFINITION 6.3 [26] . We say that F has well- posed saddle problem on X×Y or

briefly (F, X×Y) is well- posed if F has a unique saddle point z = (x, y) on X×Y and every

minimaximizing sequence of F converges to z in the norm topology.

REMARK 6.4. For a stronger notion of well- posedness of saddle functions see for

instance [75] .

In what follows we state sufficient conditions ensuring that (Fε, X×Y) is well- posed.

THEOREM 6.5. Assume that f(x,y) sasisfies (H1) and (H2) and the following hypotheses

are verified: (i) Fε(., y) is strictly convex and lsc ∀y ∈Y; (ii)Fε(x, .) is strictly concave and

usc ∀x ∈X; (iii) ∃y0 ∈ Y such that for every λ ∈ R, Aλ = {x∈ X/Fε(x, y0) ≤ λ} is bounded;

(iv) ∃ x0 ∈X such that for every λ ∈ R, Bλ = {y∈ Y/Fε(x0, y) ≥ λ} is bounded; v)

∃(a,b)∈X×Y such that f(a,b) is finite. Then: (a) infx supyFε(x,y)=supy infxFε(x,y); (b) Fε
has a unique saddle point (xε, yε) and Fε(xε, yε) is finite; (c) every minimaximizing sequence

(xn, yn)n of Fε converges weakly to (xε, yε) if n→ +∞ and Fε(xn, yε), Fε(xε, yn),Fε(xn, yn)

converge to Fε(xε, yε) when n→ +∞. Moreover if there exist two functions p, q∈ {f, g, hε}
(eventually identical) such that p(xn, yε) → p(xε, yε) and xn ⇀ xε (⇀ denotes the weak

convergence) imply that limn ‖xn − xε‖ = 0 ; and q(xε, yn) → q(xε, yε) and yn ⇀ yε imply

that limn ‖yn − yε‖ = 0; then (Fε,X×Y) is well- posed.

Proof. (a). By (i), (iii), (v) and [8] one has infx supyFε(x,y)=supy infxFε(x,y). (b). Set

ϕε(x)=supyFε(x,y) which is convex lsc and ϕε(x)≥ Fε(x, y0), so {x∈ X/ϕε(x)≤ λ} is bounded

for every λ by (iii) and minxϕε(x)=ϕε(xε) [58] for some xε. Using (ii),(iv) and [58] , a sym-

metric argument shows that maxyψε(y) = ψε(yε) for some yε where ψε(y) =infxFε(x,y); then

by (a) ϕε(xε)=ψε(yε) i.e supyFε(xε,y)=infxFε(x,yε)=Fε(xε,yε) which is finite because f(x,y)

sasisfies (H1) and (H2); consequently (xε,yε) is a saddle point of Fε on X×Y. The unique-

ness is immediate from strict convexity of Fε(.,y) ∀y and strict concavity of Fε(x, .)∀x.
(c). First we observe by Theorem 6.2 and (a) that the set of minimaximizing sequences

of Fε is nonempty. Now let (xn, yn)n be a minimaximizing sequence of Fε . We have

Fε(xε, yε) ≤Fε(xn, yε) ≤Fε(x0, yn) + εn, εn > 0, εn → 0 and (yn)nis bounded by (iv). In the

same way Fε(xn, y0) ≤Fε(xε, yn) + εn ≤Fε(xε, yε) + εn and (xn)nis bounded by (iii). By weak

relative compactness of (xn, yn)n, semicontinuity and uniqueness of the saddle point (xε, yε),
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it is a routine to check that xn ⇀ xε and yn ⇀ yε. On the other hand, there exist three scalars

m, M, α such that m≤Fε(xn, yε) ≤ Fε(x0, yn)+εn ≤M and m≤Fε(xn, yε) ≤Fε(xε, yn)+εn ≤ α

for every n, so Fε(xn, yε) , Fε(xε, yn) are bounded ; and by a classical argument they have

a unique cluster point Fε(xε, yε) to which they converge. But Fε(xn, yε) − εn ≤Fε(xn, yn) ≤
Fε(xε, yn)+εn, then Fε(xn, yn)→Fε(xε, yε) when n→+∞. Since Fε(xn,yε)→Fε(xε,yε )=minxFε(x,

yε), Fε(xε,yn)→Fε(xε, yε)=maxyFε(xε, y), (xn)n and (yn)n are respectively minimizing and

maximizing sequences for the two last extremum problems; and as in the proof of Th.4.2 we

show that the sequence ( f(xn, yε), g(xn, yε), hε(xn, yε))n converges to

(f(xε, yε), g(xε, yε), hε(xε, yε)). A symmetric argument shows that

(f(xε, yn),g(xε, yn),hε(xε, yn))→ (f(xε, yε), g(xε, yε), hε(xε, yε)) when n → +∞; so (xn,yn)n
converges in the norm topology to (xε, yε) by hypothesis which completes the proof of the

theorem. �

As an immediate consequence of the previous theorem and the fact that (X, ‖.‖X), (Y,

‖.‖Y ) are E-spaces, we have the following corollaries:

COROLLARY 6.6. Assume that f:X×Y→ R is convex-concave lsc at the first variable

for each fixed y and usc at the second variable for each fixed x and there exist (x0,y0) in

X×Y and scalars m, M such that f(x,y0) ≥m, f(x0,y)≤M for every (x,y)∈X×Y. Set Fε(x,y)=

f(x,y)+
∑p

i=1 ϕ
i
ε(‖x− xi‖

pi)−
∑q

j=1 ψ
j
ε(‖y − yj‖

qj) where ε is a positive parameter, p,q,pi,qj
∈ N∗ and xi,yj, i=1,...p, j=1,...q are given points in X and Y respectively, ϕiε, ψ

j
ε : [0,+∞[→

R are continuous functions at 0, convex and strictly increasing such that for every λ ∈ R the

sets {x∈ X/
∑p

i=1 ϕ
i
ε(‖x− xi‖

pi) ≤ λ}, {y∈ Y /
∑q

j=1 ψ
j
ε(‖y − yj‖

qj) ≤ λ} are bounded, then

(Fε, X×Y) is well- posed.

COROLLARY 6.7. Assume that f:X×Y → R is convex-concave lsc at the first

variable for each fixed y and usc at the second variable for each fixed x. Set Fε(x,y)=

f(x,y)+
∑p

i=1 a
i
ε ‖x− xi‖

pi −
∑q

j=1 b
j
ε ‖y − yj‖

qj where ε, aiε, b
j
ε ∈ R∗+, p,q,pi,qj ∈ N∗ and xi,yj,

i=1,...p, j=1,...q are given points in X and Y respectively. If there exist (x0,y0) in X×Y and

scalars m, M such that f(x,y0) ≥m, f(x0,y) ≤M for every (x,y)∈X×Y, then (Fε, X×Y) is

well- posed.

COROLLARY 6.8. Assume that f:X×Y → R is convex-concave lsc at the first variable

for each fixed y and usc at the second variable for each fixed x. Set

Fε(x,y)= f(x,y)+
∑p

i=1 αiεe
1
ε
(‖x−xi‖pi+ci)+$i−

∑q
j=1 θjεe

1
ε
(‖y−yj‖qj+dj)+δj where ε, αi, θj ∈ R∗+,

ci,dj, $i, δj ∈ R, p,q,pi,qj ∈ N∗ and xi,yj, i=1,...p, j=1,...q are given points in X and Y

respectively. If there exist (x0,y0) in X×Y and scalars m, M such that f(x,y0) ≥m, f(x0,y) ≤M

for every (x,y)∈X×Y, then (Fε, X×Y) is well- posed.

Finally we end our investigation by the following theorem in finite dimensional setting

which combines the results of theorem 5.1 and the ones of theorem 6.5:

THEOREM 6.9. Let f:Rm × Rn → R, fi:Rm → R, gj:Rn → R,i=1...p, j=1...q be real-

valued functions such that f is continuous convex-concave and fi,gj are convex. Assume

that the sets X={x∈ Rm/fi(x) ≤ 0, i = 1...p}, Y={y∈ Rn/gj(y) ≤ 0, j = 1, ...q} are
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nonempty and bounded. Set Fε(x, y) = f(x, y) +aε(
∑r

k=1 αk ‖x-xk‖pk −
∑s

k=1 βk ‖y-yk‖
qk) +∑p

i=1 aiεriεe
1
riε

(fi(x))+hi(x)−∑q
j=1 bjεtjεe

1
tjε

(gj(y))+kj(y)
where aε, αk, βk, aiε, bjε, riε, tjε are real positive numbers such that

aε → 0 if ε → 0 , hi, kj are convex continuous functions defined on X, Y respectively such

that for every (x,y)∈ X × Y, hi(x) ≤ $i, kj(y) ≤ δj and limε→0

∑p
i=1 aiεriεe

$i+
∑q
j=1 bjεtjεe

δj

aε
= 0.

r, s, p, q, pk, qk ∈ N∗ and xk, yk are given points in Rm and Rn respectively. If z = (zi)i ∈
Rw, w ∈ {m,n} we denote ‖z‖ = (

∑w
i=1 z2

i )
1
2 the strictly convex norm of Rw. Then we have

the following results:

1) (Fε, X × Y ) is well-posed;

2) The conclusions of theorem 5.1 hold.

For its proof we need the following lemma:

LEMMA 6.10 [96, Corollary 37.6.2, p.397]. Let C and D be nonempty closed bounded

convex sets in Rm and Rn respectively, and K be a continuous finite convex-concave function

on C×D. Then K has a saddle point with respect to C×D.

Proof of theorem 6.9. 1).The proof of this point is an immediate consequence of lemma

6.10 (applied to K=Fε and C×D=X×Y) and various arguments used in the proof of theorem

6.5 and the fact that the norm ‖z‖ = (
∑w

i=1 z2
i )

1
2 is strictly convex, X, Y are convex compact

sets and the weak convergence reduces to the norm convergence in finite dimensional setting.

2). If (xε,yε) is the unique saddle point of Fε on X×Y, the sequence (xε,yε)ε is relatively

compact and the first limit in (5.1) is straightforward satisfied. On the other hand it is easy

to see that

-
∑q

j=1bjεtjεe
δj ≤ hε(x, y) ≤

∑p
i=1aiεriεe

$i

for every (x,y)∈X×Y, so

0≤ supy∈Y hε(x,y)−infx∈X hε(x,y)

aε
≤

∑p
i=1 aiεriεe

$i+
∑q
j=1 bjεtjεe

δj

aε

which goes to 0 if ε → 0 and the second limit in (5.1) is also satisfied which completes

the proof. �

7. STABILITY OF VARIATIONAL ASYMPTOTIC DEVELOPMENTS OF

BIVARIATE FUNCTIONS BY EPI/HYPO-CONVERGENCE

Let us consider two Hausdorff tpological spaces (X, τ) and (Y, σ) and a sequence Fn:X×Y →
R of bivariate functions. First recall [4, 6, 7, 9] that the hypo/epi-limit inferior of the sequence

(Fn)n denoted by hσ/eτ−liFn is the function defined by ( hσ/eτ−liFn)(x, y) =infV ∈Nσ(y) supU∈Nτ (x)

[limn(infu∈U supv∈V Fn(u, v))]. The epi/hypo-limit superior of (Fn)n denoted by eτ/hσ− lsFn
is defined by (eτ/hσ − lsFn)(x, y) =supU∈Nτ (x)infV ∈Nσ(y)

[
limn(supv∈V infu∈U Fn(u, v))

]
.

Here Nτ (x) is the class of all τ−neighbourhoods of x. A bivariate function F: X×Y → R
is said to be an epi/hypo-limit of (Fn)n if eτ/hσ − lsFn ≤ F ≤hσ/eτ − liFn and we write
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F=eτ/hσ−limFn. The limit F in this sense is not in general unique and this convergence

is in some sense minimal to obtain convergence of saddle points and saddle values (see for

instance [9] and references therein). For other type of convergences and their importance in

saddle point theory see for instance [6, 7, 24, 25, 31, 44] . When (X, τ) and (Y, σ) are metriz-

able, it is possible to give an easy representation of epi/hypo-limits in sequential terms [6, 9]

that turns out to be very useful in practice. In this case F=eτ/hσ−limFn if and only if

∀(x, y) ∈ X × Y : (i) ∀yn
σ→ y,∃ xn

τ→ x such that limnFn(xn, yn) ≤ F (x, y);(ii) ∀xn
τ→ x,

∃yn
σ→ y such that F(x,y)≤ limnFn(xn, yn). The sequence (Fn)n is said to epi/hypo-converge

in the extended sense to F [6, 9] if clx (eτ/hσ− lsFn) ≤ F ≤ cl
y

(hσ/eτ − liFn) where clx and

cl
y

are respectively the extended lower closure with respect to x for fixed y and the extended

upper closure with respect to y for fixed x [9].

This section concerns the stability properties of the asymptotic developments

(7.1) Fnk(xnk ,ynk)=fn(xn, yn) + akgn(xn, yn) + αh1
k + (1− α)h2

k + akδ
α
k,n

where (fn)n and (hk)k are two sequences of bivariate functions epi/hypo-converging in the

extended sense to f and h respectively and (xn, yn) is a saddle point of fn. Here Fnk(x, y) =

fn(x, y) + akgn(x, y) + hk(x, y) ∀(x, y) ∈ X × Y with ak > 0, ak → 0 and gn, hk: X × Y → R
are given functions. Our goal is to study the limit of Fnk(xnk ,ynk) when k,n → +∞. To this

end we state the following result:

LEMMA 7.1 [71]. Assume that the functions Fn:X×Y→ R epi/hypo-converge in the

extended sense to a function F: X×Y→ R and there exist a sequence (xn, yn)n of points in

X×Y and a subsequence (nk)k such that Fnk(xk, y) ≤ εk+Fnk(x, yk) ∀x, y where εk > 0 and

εk → 0 when k→ +∞ . If the sequence (xn, yn)n is relatively compact, there exist cluster

points x, y of (xn)n,(yn)n respectively such that (x, y) is a saddle point of:

(i) clxF(x,y) and Fnk(xk, yk) → clxF(x, y) when k→ +∞ if clxF(x,y) is usc at y for each

fixed x;

(ii) cl
y
F(x,y) and Fnk(xk, yk) → cl

y
F(x, y) when k→ +∞ if cl

y
F(x,y) is lsc at x for each

fixed y;

(iii) F if F(x,y) is lsc at x for each fixed y and usc at y for each fixed x with Fnk(xk, yk)→
F(x, y) if k→ +∞;

(iv) if (xn, yn)n converges to a point (x’,y’), any epi/hypo-limit G of (Fn)n in the ex-

tended sense, regardless of its semicontinuity, has (x’,y’) as a saddle point and Fnk(xk, yk)→
G(x′, y′).

REMARK 7.2. If (xn, yn)n converges, the above lemma generalizes theorem 2.6 in

[9, p.93] where the author supposes that (X, τ) and (Y, σ) are metrizable spaces and εk = 0.

It

should be pointed out that the proof of our lemma is very different from the one presented

in the last reference. If supyFnk(xk, y), infxFnk(x,yk) are finite for every k≥k0, hypothesis
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Fnk(xk, y) ≤ εk+Fnk(x, yk) ∀x, y is equivalent to supyFnk(xk, y) − infxFnk(x,yk) → 0 when

k→ +∞.
THEOREM 7.3. Let ( fn)n: X×Y→ R, (hk)k: X×Y→ R be two sequences of functions

epi/hypo-converging in the extended sense respectively to f and h which are assumed to

be lower semicontinuous at x, upper semicontinuous at y. Assume that the variational

asymptotic development (7.1) holds with (xnk ,ynk) and (xn, yn) are saddle points of Fnk and fn
respectively and (xn, yn)n is supposed to be relatively compact. Suppose furthermore that

supy∈Y hk(t, y) − infx∈X hk(x, z) → 0 if k → +∞, ∀(t, z) ∈ Sfn = {(a,b)∈X×Y/(a,b) is a

saddle point of fn},∀n. Then there exists a subsequence (nk)k such that

limk Fnkk (xnkk ,ynkk )=f(x, y)+h(z, t) where (x, y) and (z,t) are two saddle points of f and h

respectively.

Proof. First, fix an integer n∈ N and set supy∈Y hk(xn, y) − infx∈X hk(x, yn) = ωnk .Then

hk(xn, y)5 ωnk + hk(x, yn) for all (x,y)∈X×Y and h1
k ≤h2

k ≤ hk(xn, yn) + ωnk ≤ 2ωnk+h1
k;

so by lemma 7.1, limkh
1
k =limkh

2
k = h(xn, yn) and (xn, yn) is a saddle point of h; conse-

quently limkF
n
k(xnk ,ynk)=fn(xn, yn)+h(xn, yn), again by this lemma (xn, yn)n has cluster points

(x, y),(z, t) which are saddle points of f and h respectively such that fn(xn, yn)→ f(x, y) and

h(xn, yn)→ h(z, t) when n→ +∞. Diagonalization lemma [3] permits then to conclude. �

REMARK 7.4. In (7.1) and theorem 7.3 we don’t need any information neither on

the behavior of the sequence (gn)n nor on its mode of convergence.
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