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Abstract. We analyze the performance of some greedy heuristics for the weighted version

of the stochastic matching (under the probe-and-commit with patience constraints model) as

introduced by Chen et al., [5]. As input a random subgraph H of a given edge-weighted graph

(G = (V,E), {we}e) (where each edge e ∈ E is present in H independently with probability

pe) is revealed (on a probe-and-commit basis meaning any edge e that is probed and found

to be present in H should be included irrevocably in the matching). It is also required that

the the number of probes involving a vertex v cannot exceed a nonnegative parameter tv

known as v’s patience. All of G, {we}e, {pe}e and {tu}u is revealed to the algorithm before

its execution. The performance of the algorithm is measured by the expected weight of the

matching it produces. For approximation measures, it is compared with the expected weight

of an optimal adaptive algorithm for the input instance.

We analyze a natural greedy algorithm for this problem and obtain an upper bound

of 2
p2
min

on the approximation factor of its performance. Here, pmin refers to mine∈E pe.

No previous analysis of any greedy algorithm for the weighted stochastic matching (under

the probe-and-commit model) is known. This also improves the previously best known

approximation ratio of any efficeint and adaptive algorithm when pmin > 1√
2
. We also

establish a lower bound of 2
pmin

on the worst-case value of the approximation ratio of the

greedy algorithm.

We also analyze a class of greedy heuristics and establish that the approximation ratio of

each such heuristic can become arbitrarily large even if we restrict ourselves to unweighted

instances.
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1. Introduction

The Greedy heuristic being one of the simplest algorithmic approaches has a unique place

in combinatorial optimization. It is always worth looking at its performance and gather to

know its power and limitations. In particular, the performance of the Greedy algorithm

for computing a large matching under different settings has been studied both for arbitrary

graphs (for its worst case perfomance) (see [12], [9]) and as well as for random instances (for

its average case performance) (see [6], [7], [3], [8]). In this paper we study the performance

of the greedy heuristics on the weighted stochastic matching problem, a natural stochastic

variant of the maximum matching problem.

A typical input instance of this problem is a 4-tuple (G = (V,E), {tu}u∈V , {pe}e∈E, {we}e∈E)

where G = (V,E) is an weighted graph, each tu is a nonnegative integer (known as the pa-

tience of u). Consider a random spanning subgraph H where each e ∈ E is present in H

independently with probability pe and where H is revealed on a probe-and-find basis. Our

goal is to design an efficient algorithm (possibly adaptive, possibly randomized) to find a

matching in H and which works by probing selectively edges of E for their presence in H

subject to obeying the following two constraints on probing : (i) commitment : include

an edge irrevocably in the matching if it is found to exist after it is probed, (ii) patience

: the number of probes involving a vertex cannot exceed its patience. The performance of

the algorithm is measured by the expected total weight of the matching it produces. For

approximation measures, it is compared with the expected weight of an optimal adaptive

algorithm for the input instance. An optimal strategy is one for which the expected weight

of the solution it produces its maximum over all adaptive strategies. We use interchangeably

the terms adaptive algorithm and strategy. Note that all edges of G need not be probed and

hence all edges of H may not be discovered by the algorithm.

The unweighted stochastic matching problem (with probing commitments) models some

practical optimization problems like maximizing the expected number of kidney transplants

in the kidney exchange program (see [5] for details). This problem was introduced by Chen et

al., [5] and they analyzed a greedy algorithm to solve it and proved that the greedy algorithm

produces a solution of expected size at least a quarter of the expected size of an optimal

strategy. This gives us a 4-approximate algorithm. It was also conjectured that greedy

algorithm is a 2-approximate algorithm. This was later affirmatively verified by Adamczyk

[1].

In this work, we study the offline, weighted version of the stochastic matching problem. In

the offline version, the algorithm, after processing the entire input information (G = (V,E),

{tu}u, {we}e and {pe}e) that is revealed before-hand, can choose any adaptive strategy to

probe the edges.

In this paper, we analyze several variants of the greedy approach to solve this problem. In

Section 3, we propose and analyze a natural greedy variant which always probes an edge with
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the highest expected weight it contributes (if probed) and establish that its approximation

ratio is at most 2
p2min

, where pmin = min{pe : e ∈ E}. This affirmatively confirms a claim

presented in [5] (without details) that the approximation factor of the greedy algorithm for

the weighted version can be unbounded. It also follows that approximation ratio is less than

4 on general weighted graphs if pmin >
1√
2
. Since this variant selects edges for probing based

on their individual expected contribution, it can be thought of as being greedy edge-wise and

denote it by GRD-EW Our result is the first analysis of a greedy heuristic for stochastic

matching on weighted graphs. The precise statement of our result is as follows.

Theorem 1. GRD-EW is a 2
p2min

-approximate algorithm for the weighted stochastic match-

ing problem.

We also show that the inverse dependence on pmin cannot be completely eliminated by a

more careful analysis even if we allow every vertex to probe all edges incident at it (that is

tu ≥ du for every u). Thus, we obtain a lower bound on the worst-case approximation ratio

of GRD-EW for the weighted case. This is stated in the following lemma whose proof is

provided in Section 3.

Lemma 1. There exists an infinite and explicit family {(Gn, tn)}n of weighted input instances

(with unlimited patience values) such that the expected weight of the solution produced by

GRD-EW is smaller than the expected weight of an optimal strategy by a multiplicative

factor of nearly 2
pmin

.

Since the algorithm works by probing edges, we model the execution of an algorithm as

a full binary decision tree as in [5, 1]. [1] presents a very careful analysis of the decision

tree to prove that the greedy algorithm is a 2-approximate algorithm for the unweighted

version. Our analysis is inspired by the analysis of [1] and we borrow some of the notions

and notations from this work. However, ours is not a straighforward generalization to the

weighted version and some non-trivial issues (arising for the more general weighted case)

have to be handled while analyzing the greedy heuristic.

In Section 4, we propose a simple variant GRD-VW of the greedy approach which can

be thought of as being greedy vertex-wise. Here we define a notion of revenue mu associated

with a vertex u. For a given set S of l edges incident at a vertex u, an optimal ordering

of S is any linear ordering σ over S such that if members of S are probed consecutively

as per σ, then the expected contribution ES,σ from these probings maximized. It can be

verified that an optimal ordering is any ordering obtained by sorting the edges in decreasing

order of their weights. For a vertex u, let mu denote the expected contribution one obtains

by probing edges of Su in an optimal order. Here, Su is the set of tu edges incident at u

having the k largest expected contributions wepe. The GRD-VW proceeds by choosing that

vertex u for which the revenue mu is maximized and then probes edges in Su an optimal
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order and decreases the tolerances appropriately after each probe. We prove that the worst-

case approximation ratio of GRD-VW can be unbounded even if we restrict ourselves to

the unweigted instances (the case for which GRD-EW is a 2-approximation algorithm).

Formally stated, we have the following result which is proved in Section 4.

Lemma 2. There exists an infinite and explicit family {(Gn, tn)}n≥1 of unweighted input

instances such that the expected size of the solution obtained by GRD-VW (Gn, tn) is smaller

than that of an optimal strategy by a multiplicative factor of nearly Ω
(

1
pmax

)
where pmax =

maxe pe.

The edge-wise and vertex-wise greedy heuristics GRD-EW and GRD-VW analyzed in

Sections 3 and 4 can both be thought of as special cases of a more generalized notion of a

greedy heuristic. Fix any function k : N → N satisfying k(n) ≤ n for every n. We define

a variant for every fixed choice of k and denote the variant by GRDk(G,w, p, t) or shortly

GRDk(G, t) if w and p are clear from the context. GRDk(, ) is exactly the same as the

vertex-wise variant GRD-VW but differs only in the definition of mv, more precisely, in

that mv is the expected contribution one obtains by probing consecutively min{k(|V |), tv}
heaviest available edges incident at v, with the edges being probed in decreasing order of

their weights. When k(n) = n for every n, we obtain that GRDk() is the same as GRD-VW

. When k(n) = 1 for every n, we obtain that GRDk() is the same as GRD-EW described

in Section 3. The following lemma establishes that GRDk() also has unbounded worst-case

approximation ratio for any fixed k = k(n) such that k →∞ as n→∞ even if restricted to

unweighted instances. The proof is presented in Section 5.

Lemma 3. For any k = k(n) such that (i) k ≤ n, (ii) k divides n and (iii) k →∞ and for

every sufficiently small ε > 0, there exists an infinite and explicit family {(Gn, tn)}n≥1 of un-

weighted input instances such that the expected size of the solution obtained by GRDk(Gn, tn)

is smaller than that of an optimal strategy by a multiplicative factor which is nearly Θ(k1−ε).

1.1. Motivation. Kidney transplantation is one of the most effective treatments for kidney

failure. Often it is the case that the patient donor pair is medically incompatible. Kidney

exchange between two such pairs might make the tranplation possible as donor of one in-

compatible pair might be eligible for the patient in some other incompatible pair and vice

versa. We consider the graph whose vertices are incompatible patient donor pairs with an

edge between any pair of vertices if mutual exchange is possible. This explains the deter-

ministic structure of the graph given as input. The randomness in the edges comes as a

result of some medical test [5], [14], [16] which really decides whether an edge is present or

absent. Since a patient-donor pair can only take part in a limited number of medical tests,

a patience restriction is imposed. There are several medical tests that decide the presence

of an edge. The decisive test viz crossmatch test is performed on the basis of the reports of

the other tests [5], [14] (which explains the probability associated with an edge) and once
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the crossmatch succeeds the transplantation takes place. This is the reason why an edge is

selected irrevocably when it is found to be present.

1.2. Related Work. The approximability of stochastic matching problem (with probing

commitments and patience constraints) has been studied in [1], [4], [5]. Generalizations of

the stochastic matching problem to stochastic probing (with probing commitments and pa-

tience and matroid constraints) have also been studied in [10], [2]. Other models of kidney

exchange problem have also been studied. From a mechanism design point of view, the

problem has been studied in [14], [16], [15], [17] and see the references therein.

One can view the stochastic matching problem as a generalization of the problem of

finding a matching in heterogenuous random graphs (those with independent and different

edge probabilities) subject to probing and patience constraints. In a related direction, there

is a huge literature [6], [7], [8], [3], [13] and [11] pertaining to greedy (without commitment

and patience constraints) analysis of matching in (homogenuous) random graphs. But these

works have mostly concentrated on the typical or expected size of the matching produced.

2. Preliminaries

Below, we present some conventions, assumptions and models we will be employing for the

rest of this work. Throughout, we consider an instance I = (G,w, p, t) where G = (V,E) is

an undirected graph, w : E → R+ is the weight function, t : V → N is the patience function

and p : E → [0, 1] is the edge probability function. For the sake of simplicity, we often

denote this collective input by the short notation (G, t) if the additional inputs {pe}e, {we}e
can be inferred from the context.

2.1. Convention : rationalization of patience values. We assume, without loss of

generality, that tu ≤ du for every u ∈ V , where du is the degree of u in G. Higher values

of tu are not going to lead to better solutions. Throughout the paper, we always enforce

this assumption (wherever it becomes necessary), by invoking a subroutine Rationalize(G, t)

which, for any vertex u with tu > du, redefines tu to be du. Enforcing this assumption helps

us to simplify the description of some greedy variants we will study in Sections 4 and 5.

Also, at any point, the current graph contains only those edges joining vertices with

positive patience values. This can be ensured by removing edges incident at vertices whose

patience has been exhausted.

2.2. Assumption : normalization of weights. Since multiplying each edge weight by a

common factor c does not really change the outcome (except multiplying its total weight

by c) of any algorithm, we can normalize all weights by replacing each we by we
wmax

where

wmax = maxewe. This normalization simplifies some of the expressions arising in the analysis.

In view of this, from now on, we assume without loss of generality that we ≤ 1 for each e.
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2.3. Modeling algorithms by decision trees. Our focus is on algorithms (possibly adap-

tive, possibly randomized) which are based on probing edges (with a commitment to inclu-

sion) and we analyze such algorithms using the decision tree model employed in the works

[5, 1]. The model is described as follows. Any algorithm ALG can be represented by a (pos-

sibly) exponential sized full binary tree also denoted by ALG. Each internal node represents

either probing an edge or tossing a (biased) coin. The coin tosses capture the randomness

(possibly) employed by the algorithm. For deterministic algorithms, each internal node will

correspond to only an edge probe. An internal node x probing an edge e will be labeled

with e and wx = we. An internal node x tossing a coin will be labeled by an empty string

and wx = 0. Conider an internal node x. If x involves probing an edge e and if the probe

is successful, then the algorithm will proceed further as per the strategy specified by the

left subtree of x and if it is unsuccessful, it will proceed as per the right subtree. Similarly,

if x correspnds to a coin toss, then the algorithm will proceed further as per the strategy

specified by the left (or the right) subtree of x depending on whether the toss is successful

or not. However, only internal nodes probing edges can make a positive contribution to the

weight of the solution found.

We give a recursive definition of a decision tree : The decision tree ALG corresponding

to an algorithm ALG on an instance I = (G, t) (ignoring the specification of we’s and pe’s

which are not going to change through the execution) is a rooted full binary tree T (with

root r) where

(1) r is labelled by the emptyset if G is an empty graph having no edges.

(2) r probes an edge e = αβ if G has at least one edge or r tosses a coin with bias pr.

(3) left edge out of r is labelled by pαβ if r probes αβ or is labelled by pr if r tosses a

coin.

(4) right edge coming out of r is labelled by 1− pαβ or by 1− pr depending on the case.

(5) the left subtree of r represents further execution of ALG on on the instance IL =

(G \ {α, β}, t) if r probes αβ. Otherwise, it represents further execution of ALG on

I.

(6) the right subtree of r represents further execution of ALG on the instance IR =

(G \ {αβ}, t′) where t
′
α = tα − 1, t

′

β = tβ − 1 and t
′
γ = tγ for all other vertices γ if r

probes αβ. Otherwise, it represents further execution of ALG on I.

Without loss of generality, we assume that the root r of an optimal tree OPT always probes

an edge.

We make use of the following notations. For any algorithm ALG and any node x in ALG,

let qx denote the probability of reaching x in an execution of ALG(G, t). Also, for a node

x representing an edge e, we use wx to denote the weight we. It can be verified that the

performance of ALG on (G, t) can be expressed as E[ALG] =
∑

x∈ALG qxpxwx where the

summation is over all internal nodes.
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3. Greedy heuristic for the weighted version

We focus on the offline version. This means that the input I consisting of the random

model (G = (V,E), {pe}e∈E) alongwith the additional inputs ({we}e∈E, t = {tu}u∈V ) will be

revealed to the algorithm before its execution. After some preprocessing, the algorithm can

choose to select and probe the edges in any order of its choice. We analyze the following

greedy algorithm for the above problem. We use Gr to denote both the greedy algorithm

and the corresponding decision tree. Let αβ be the first edge probed by Gr(G, t). This

means that wαβpαβ maximizes wepe over all edges e. We also use OPT to denote any

optimal strategy for I and also the associated decision tree. It also denotes the weight of

the matching produced by OPT when executed on I.

Algorithm 1 Greedy Algorithm Gr(G, t):

1: E ′ ← E. M ← ∅.
2: while E ′ 6= ∅ do
3: Choose an arbitrary edge e = uv ∈ E ′ which maximizes wepe.

4: Probe e and add e to M if e is found to be present.

5: If e ∈M , then set each of tu and tv to be zero; else decrement tu and tv.

6: Remove e from E ′.

7: Remove any edge in E ′ incident at u (v) if tu (tv) equals zero.

8: Rationalize(G, t).

9: endwhile

10: Output M.

To analyze the performance of Gr(G, t), we study the following two algorithms ALGL and

ALGR introduced and defined as in [1] to work on instances IL and IR respectively. By an

αβ-probe (α-probe or β-probe) of OPT (G, t), we mean probing edge αβ (probing edge αγ

for some γ 6= β or probing edge δγ for some δ 6= α).

The algorithm ALGL mimics the execution of OPT (G, t) except that it replaces each αβ-

probe, each α-probe and each β-probe by an appropriate coin toss. That is, whenever there

is such a probe (at a node x of OPT (G, t)) of an edge e incident at either α or β or both,

a coin with bias pe is tossed. With probability pe, ALGL mimics the left subtree of x and

with probability 1−pe it mimics the right subtree at x. Obviously, ALGL is a valid strategy

for the instance IL. If SL is the random variable denoting the total contribution of the

omitted probes in an execution, then it is easy to see that E[OPT (G, t)] = E[ALGL]+E[SL].

Similarly we define ALGR. Here the algorithm ALGR mimics the execution of OPT (G, t)

by replacing each αβ-probe, each tthα α-probe and each tthβ β-probe by flipping a coin of

suitable bias. As before it is easy to see that E[OPT (G, t)] = E[ALGR] +E[SR] where SR is

a random variable which denotes the total contribution of the probes omitted by ALGR.
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Before proceeding further, we introduce some definitions and notations. We use Wα to

denote the contribution that a α-probe (if any) makes to the weight of the solution that

OPT (G, t) produces. We useW tα
α to denote the contribution that a tthα α-probe (if it happens)

makes. Wβ and W
tβ
β are similarly defined. We use Oαβ to denote the event that OPT (G, t)

probes αβ. We also use Otα
αγ (γ 6= α) to denote the event that OPT (G, t) probes αγ in the

tα-th α-probe. It follows that

EOPT = EALGR + ESR(1)

= EALGR + Pr(Oαβ)E(SR|Oαβ)

+ Pr(Oαβ)
[
E(W tα

α |Oαβ) + E(W
tβ
β |Oαβ)

]
EOPT = EALGL + ESL(2)

= EALGL + Pr(Oαβ)E(SL|Oαβ)

+ Pr(Oαβ)
[
E(Wα|Oαβ) + E(Wβ|Oαβ)

]
Multiplying (1) by (1− pαβ) and (2) by pαβ we get

EOPT

= pαβEALGL + (1− pαβ)EALGR + Pr(Oαβ) [pαβE(SL|Oαβ) + (1− pαβ)pαβwαβ]

+ Pr(Oαβ)
[
pαβE(Wα|Oαβ) + (1− pαβ)E(W tα

α |Oαβ)
]

+ Pr(Oαβ)
[
pαβE(Wβ|Oαβ) + (1− pαβ)E(W

tβ
β |Oαβ)

]
(3)

Auxilliary Graph J: Recall our assumption that we ≤ 1 for each e. Now, for the sake of

the analysis, we define an auxiliary instance J which is the same as the original input I

except that edge weights are ze = 1−xe where xe = pewe for each e. Define pmin = mine∈E pe.

The following observation plays a role in the lemmas that follow.

Observation 1. For any edge e ∈ E, we + ze
pmin
≤ 1

pmin
.

First, we obtain the following lemmas whose proofs are provided later.

Lemma 4. (
1− xαβ
xαβ

)
E(W tα

α (I)|Oαβ) ≤ E(Wα(J)|Oαβ)

pmin

Lemma 5.

pαβE(Wα(I)|Oαβ) + (1− pαβ)E(W tα
α (I)|Oαβ) ≤ pαβ

pmin
(4)

An analogous inequality involving vertex β also holds.

pαβE(Wβ(I)|Oαβ) + (1− pαβ)E(W
tβ
β (I)|Oαβ) ≤ pαβ

pmin
(5)

We observe that wαβpαβ ≥ pmin. Also we have E(SL|Oαβ) ≤ 2 ≤ 2wαβpαβ
pmin

.
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Theorem 2. The greedy algorithm is a 2
p2min

-approximation algorithm.

Proof : We prove the theorem by induction on the number of edges in G. The base cases

of induction would be all those graphs G with µ(G) ≤ 1 where µ(G) is the maximum size

(= the number of edges) of any matching in G. It is easy to verify that for each of the base

cases, Gr(G, t) is itself an optimal strategy. Our inductive hypothesis is that the greedy

algorithm is a 2
p2min

-approximation to the optimal strategy for all graphs on lesser number of

edges. Using (3), (4) and (5), we have

EOPT (I) ≤ pαβEALGL + (1− pαβ)EALGR

+ Pr(Oαβ) [pαβE(SL|Oαβ) + (1− pαβ)pαβwαβ] + Pr(Oαβ)
2p2αβwαβ

p2min
≤ pαβEALGL + (1− pαβ)EALGR

+ Pr(Oαβ)

[
2p2αβwαβ

p2min
+

(1− pαβ)pαβwαβ
p2min

]
+ Pr(Oαβ)

2p2αβwαβ

p2min

≤ pαβEALGL + (1− pαβ)EALGR +
2p2αβwαβ

p2min
+

(1− pαβ)pαβwαβ
p2min

≤ pαβEALGL + (1− pαβ)EALGR +
2pαβwαβ
p2min

Using the last inequality and applying the inductive hypothesis to the smaller graphs, it

follows that (with OPT (IL) (OPT (IR)) representing the weight of the matching produced

by an optimal strategy for IL (IR))

EOPT (I) ≤ pαβEOPT (IL) + (1− pαβ)EOPT (IR) +
2pαβwαβ
p2min

≤ 2pαβ
p2min

E[Gr(IL)] +
2(1− pαβ)

p2min
E[Gr(IR)] +

2pαβwαβ
p2min

≤ 2

p2min
[pαβE[Gr(IL)] + (1− pαβ)E[Gr(IR)] + pαβwαβ] =

2

p2min
EGr(I)

It now follows from the recursive definition of the performance of a strategy that the greedy

strategy is a 2
p2min

approximation to the optimal strategy.

It only remains to prove Lemmas 4 and 5 and the proofs are presented below.
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3.1. Proof of Lemma 4.

1− xαβ
xαβ

E(W tα
α (I)|Oαβ) =

∑
γ 6=β

1− xαβ
xαβ

wαγpαγPr(Otα
αγ|Oαβ)

≤
∑
γ 6=β

1− xαγ
xαγ

wαγpαγPr(Otα
αγ|Oαβ)

≤ 1

pmin

∑
γ 6=β

(1− xαγ)pαγPr(Otα
αγ|Oαβ)

=
E(W tα

α (J)|Oαβ)

pmin
≤ E(Wα(J)|Oαβ)

pmin

The first inequality follows since 1−x
x

is a decreasing function of x in (0, 1] and xαβ is the

highest.

3.2. Proof of Lemma 5. For each γ 6= β, let Eαγ denote the event that αγ is probed and

the outcome is successful.

We have pαβE(Wα(I)|Oαβ) + (1− pαβ)E(W tα
α (I)|Oαβ)

≤ pαβE(Wα(I)|Oαβ) + (1− xαβ)E(W tα
α (I)|Oαβ)

≤ pαβE(Wα(I)|Oαβ) +
xαβ
pmin

E(Wα(J)|Oαβ) from Lemma 4

≤ pαβE(Wα(I)|Oαβ) +
pαβ
pmin

E(Wα(J)|Oαβ)

= pαβ

(∑
γ 6=β

(
wαγ +

1− xαγ
pmin

)
Pr
(
Eαγ|Oαβ

))

≤ pαβ

(∑
γ 6=β

Pr
(
Eαγ|Oαβ

)
pmin

)
≤ pαβ

pmin

The second last inequality follows from Observation 1.

3.3. Proof of Observation 1. We have

we +
1− xe
pmin

≤ 1− xe + wepmin
pmin

≤ 1 + wepmin − wepe
pmin

≤ 1

pmin

The last inequality follows as pmin ≤ pe.

3.4. Proof of Lemma 1. For each n, let Gn denote the graph G = (V,E) where V =

{u, v, a1, . . . , an, b1, . . . , bn} and E = {(u, v)} ∪ {(u, ai) : 1 ≤ i ≤ n} ∪ {(v, bi) : 1 ≤ i ≤ n}.
Let wuv = W and puv = 1 − 1

n
. Let p = pmin = 1√

n
and define W ′ by W ′p = W (1 −

1/n)2. Let pe = p and we = W ′ for every e 6= uv. Let u and v be both have a patience

parameter of n + 1 and let each of ai’s and bi’s have a patience parameter of 1. The

expected weight of the solution produced by the greedy algorithm can be shown to be at

most W (1− 1
n
) + 2W ′(1− (1− p)n)/n ≤ W

(
1− 1

n
+ 2√

n

)
= W [1 + o(1)]. Now consider the
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strategy which first probes each of the n edges (u, ai) and then probes each of the n edges

(v, bi) and then probes uv. The expected weight of the solution of this strategy is at least

2W ′ (1− (1− p)n) = 2W
√
n[1− o(1)].

4. A vertex-wise greedy variant

GRD-VW is one variant that naturally comes to one’s mind and this also does not possess

a good approximation ratio. This variant tries to be greedy vertex-wise. That is, it first

computes for each vertex v a value mv which is computed as follows. Let σ = (e1, . . . , etv) be

an optimal ordering (sorted in decreasing weights we) of the tv heaviest (in terms of expected

individual contributions wepe one obtains if probed) edges incident and available (for probing)

at v. mv denotes the expected contribution one obtains by probing edges as per σ. It can be

easily computed using the expression provided below. GRD−VW then chooses a vertex u

for which mu = maxvmv for probing incident edges. Here, tv and dv are the current values

of v’s patience and its degree. It can be verified that mv =
∑

i≤tv wipi

(∏
j<i 1− pj

)
. A

formal description of the algorithm is presented below. As before, the graph contains only

edges joining vertices with positive patience values.

Algorithm 2 GRD-VW MGr(G, t):

1: E ′ ← E. M ← ∅.
2: while E ′ 6= ∅ do
3: Choose any vertex u which maximizes mv

4: Let σu = (e1, . . . , etu), ej = (uvj), denote an optimal order of edges available for probing.

5: j ← 1.

6: while j ≤ tu and tu > 0 do

7: Probe ej and add ej to M if ej is found to be present.

8: If ej ∈M , then set each of tu and tvj to be zero; else decrement tu and tvj .

9: Remove ej from E ′. Increment j.

10: Remove any edge in E ′ incident at u (vj) if tu (tvj) equals zero.

11: Rationalize(G, t).

12: endwhile

13: endwhile

14: Output M .

The following theorem establishes a lower bound on the worst-case approximation ratio of

the greedy variant MGr(G, t) thereby establishing that the approximation ratio can become

unbounded even if we restrict ourselves only to unweighted instances. This is in contrast

to the edge-wise greedy heuristic which was shown to have an approximation ratio of 2 for

unweighted instances.
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Lemma 6. There exists an infinite and explicit family {(Gn, tn)}n≥1 of unweighted input

instances such that the expected size of the solution obtained by MGr(Gn, tn) is smaller

than that of an optimal strategy by a multiplicative factor of nearly Ω
(

1
pmax

)
where pmax =

maxe pe.

Proof of Lemma 6 : For each n, let Gn denote the graph G = (V,E) where

V = {u, a1, . . . , an, b1, . . . , bn}; E = {(u, ai) : 1 ≤ i ≤ n} ∪ {(ai, bi) : 1 ≤ i ≤ n}.

Let p = p(n) be any function such that p→ 0 and p = ω( 1
n
). Define q = q(n) := 2p

n
. Also, let

p(u,ai) = q for each i and p(ai,bi) = p for each i. We note that pmax = p. Let u have a patience

parameter of n and let each of ai’s and bi’s have a patience parameter of 1. Consider the

strategy which probes each of the n edges (ai, bi) and outputs the resulting matching. The

expected size of the solution of this strategy is exactly np. Hence the expected size of any

optimal strategy is at least np.

We now analyze MGr(, ). Notice that

mu = 1− (1− q)n = nq −Θ((nq)2) = 2p−Θ(p2)

and mai = mbi = p for each i. Hence mu > mv for each v 6= u. Without loss of generality,
assume that MGr(, ) probes edges in the order (ua1, . . . , uan). Using MGr to denote the
size of the solution produced by MGr(G, t), we have

E[MGr] =

n−1∑
j=0

(1− q)jq (1 + (n− j − 1)p)

= 1− (1− q)n +

n−1∑
j=0

(n− j − 1)(1− q)jpq

= 1− (1− q)n + pq(1− q)n−1

n−1∑
j=0

j(1− q)−j


= 1− (1− q)n + pq(1− q)n−1

(
(1− q)−1 − n(1− q)−n + (n− 1)(1− q)−n−1

q2(1− q)−2

)
= 1− (1− q)n + p

(
(1− q)n − n(1− q) + (n− 1)

q

)
= 1− (1− q)n + p

(
1− nq + Θ((nq)2)− n + nq + n− 1

q

)
= 2p−Θ(p2) +

n

2
·Θ(p2) = Θ(np2)

Hence the ratio E[OPT (G,t)]
E[MGr]

= Ω(p−1) where p = pmax. This establishes the lemma.

5. A generalized greedy variant

Proof of Lemma 3 : For each n, let Gn denote the graph defined in the proof of Lemma

6 with the same patience values and edge probabilities except that we redefine p and q as

follows. Define p = p(n) := kε

n
. It follows that p → 0 and p = ω( 1

n
). Define q = q(n) := 2p

k
.
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It follows that nq → 0. As shown before, the expected size of any optimal strategy is at

least np.

We now analyze Grk(, ). Recall our assumption that k divides n. Notice that

mu = 1− (1− q)k = kq −Θ((kq)2) = 2p−Θ(p2)

and mai = mbi = p for each i. Hence mu > mv for each v 6= u, as long as u has at least k

un-probed edges incident at it and hence Grk() will pick k of these edges and probe them

consecutively. Since k divides n, this means that Grk(, ) will probe all edges incident at u

and stop with that. Without loss of generality, assume that Grk(, ) probes edges in the order

(ua1, . . . , uan). Using Grk to denote the size of the solution produced by Grk(G, t), we have

(as shown before)

E[Grk] = 1− (1− q)n + p

(
(1− q)n − n(1− q) + (n− 1)

q

)
= 1− (1− q)n + p

(
1− nq + Θ((nq)2)− n+ nq + n− 1

q

)
= nq −Θ((nq)2) +

k

2
·Θ(k−2+2ε) = Θ(k−1+2ε)

Hence the ratio E[OPT (G,t)]
E[Grk]

= Θ( np
k−1+2ε ) = Θ(k1−ε) → ∞ as n → ∞. This establishes the

lemma.

6. Remarks

We analyzed some variants of greedy heuristic for both weighted and unweighted stochastic

matching instances. The following observations are relevant in this context and the last

question should be addressed to gather a better comprehension of greedy heuristics.

• For the greedy heuristic Gr(, ) applied to weighted instances, the upper and lower

bounds on the worst-case approximation ratio still differ by a multiplicative factor of
1

pmin
. It would be interesting to reduce this gap and obtain a tight upper bound on

the worst-case ratio.

• The assumption that k divides n can be weakened to n (mod k) = 0 or n (mod k) ≥
(1
2

+ δ)k for some fixed δ > 0.

• The multiplicative factor Θ(k1−ε) in the statement of Lemma 3 can be improved to

Θ( k
ω

) where ω = ω(n) is any sufficiently slow-growing function satisfying ω = o(k).

• The assumption of k → ∞ in the statement of Lemma 3 can be removed with a

corresponding replacement of the term Θ(k1−ε) by a suitable function f(k) (where

f(k)→∞ obviously if k →∞). This establishes that Grk is worse than an optimal

strategy by a factor of at least f(k).

• Does there exist (for every fixed k(n)), a function g(k) such that Grk(, ) produces

a solution whose expected size is within a multiplicative factor of g(k) from that of

an optimal solution (for all instances). In particular, we conjecture that for every



14 MUKHERJEE AND SUBRAMANIAN

c ≥ 1, there exists a value g(c) such that Grc(, ) is a g(c)-approximation algorithm

for unweighted instances. We know that g(1) = 2 from the work of [1].
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