ADDENDUM TO "ON COMPLETENESS AND BICOMPLETIONS OF QUASI b-METRIC SPACES"

M. APHANE* AND S.P. MOSHOKOA

Department of Mathematics and Statistics, Tshwane University of Technology, Pretoria, 0008, South Africa

*Correspondence: aphaneM@tut.ac.za

ABSTRACT. Related to the paper "On completeness and bicompletions of quasi *b*-metric spaces" we introduce strong quasi *b*-metric spaces and show that every strong quasi *b*-metric space admits a Cauchy bicompletion which is unique up to isometry.

1. INTRODUCTION

In the literature one find a rich theory on completeness of metric spaces, quasi metric spaces and quasi uniform spaces. Our basic reference for quasi uniform spaces and quasi metric spaces is [3].

Recall that:

Definition 1.1. [3] A quasi metric space is a pair (X, d) where the mapping $d : X \times X \rightarrow [0, \infty)$ satisfies the following for all $x, y, z \in X$:

a) d(x,y) = d(y,x) = 0 if and only if x = y;

b) $d(x,y) \le d(x,z) + d(z,y).$

Definition 1.2. [4] A quasi b-metric space is a pair (X, d) where $d : X \times X \to [0, \infty)$ satisfies the following for all $x, y, z \in X$ and $s \ge 1$:

a) d(x,y) = d(y,x) = 0 if and only if x = y;

b)
$$d(x, y) \le s[d(x, z) + d(z, y)].$$

Definition 1.3. Given a quasi b-metric space (X, d) we define $d^{-1} : X \times X \to [0, \infty)$ by $d^{-1}(x, y) = d(y, x)$ for all $x, y \in X$. Then (X, d^{-1}) is also a quasi b-metric space. We call d^{-1} the **conjugate** of d on X. Next, we define the function $d^* : X \times X \to [0, \infty)$ by $d^*(x, y) = \max\{d(x, y), d^{-1}(x, y)\}$. Note that d^* is a b-metric on X. We say that the quasi b-metric space is Cauchy bicomplete if the b-metric space (X, d^*) is Cauchy complete.

²⁰⁰⁰ Mathematics Subject Classification: 54C05, 54C20, 54E35.

Keywords: Quasi b-metric spaces, Bicompletions, Quasi uniform spaces.

Note that every quasi metric space is a quasi *b*-metric space but not conversely.

Let (X, d) be a quasi *b*-metric space. We say that a quasi *b*-metric space (X, d) is a **Cauchy bicompletion** of (X, d) if:

a) (\tilde{X}, \tilde{d}) is Cauchy bicomplete;

b) $X \subseteq \tilde{X}$, and $\tilde{d}|_{X \times X} = d$;

c) There exists an isometry $T: X \to \tilde{X}$, such that T(X) is \tilde{d}^* -dense in \tilde{X} .

Recall that a **strong** *b*-metric space is a pair (X, d), with a mapping $d : X \times X \to [0, \infty)$ satisfying for all $x, y, z \in X$ and $s \ge 1$:

a) d(x, y) = 0 if and only if x = y;

b) d(x,y) = d(y,x);

c) $d(x,y) \le d(x,z) + sd(z,y)$.

So, we define a strong quasi *b*-metric space as a pair (X, d) with a mapping $d : X \times X \rightarrow [0, \infty)$ satisfying for all $x, y, z \in X$ and $s \ge 1$:

a) d(x, y) = d(y, x) = 0 if and only if x = y;

b) $d(x,y) \le d(x,z) + sd(z,y)$.

Note that every strong quasi *b*-metric space is a quasi *b*-metric space but not conversely, also every strong *b*-metric space is a strong quasi *b*-metric space and not conversely.

The completion of a strong b-metric space is discussed in [2], that is,

Theorem 1.1. [2] Let (X, d) be a strong b-metric space. There exists a Cauchy completion strong b-metric space (\tilde{X}, \tilde{d}) of (X, d) which is unique up to isometry.

We now extend Theorem 1.1:

Theorem 1.2. Let (X, d) be a strong quasi b-metric space. There exists a strong quasi bmetric space (\tilde{X}, \tilde{d}) of (X, d) which is Cauchy bicomplete and unique up to isometry. The strong quasi b-metric space (\tilde{X}, \tilde{d}) is the Cauchy bicompletion of (X, d).

Proof: Let (X, d) be a strong quasi *b*-metric space and \mathcal{C} be the set of all d^* -Cauchy sequences in (X, d). Define the relation \sim on \mathcal{C} as follows: $\{x_n\} \sim \{y_n\}$ if $\lim_n d(x_n, y_n) = 0$. Then \sim is an equivalence relation in \mathcal{C} . Let $\tilde{X} = \mathcal{C}/\sim$ be the set of all equivalence classes for \sim , that is, $\tilde{X} = \{[\{x_n\}] : x_n \in \mathcal{C}\}$. Define $\tilde{d} : \tilde{X} \times \tilde{X} \to [0, \infty)$ by $\tilde{d}([\{x_n\}], [\{y_n\}]) = \lim_n d(x_n, y_n)$.

Then \tilde{d} is well defined and it is a strong quasi *b*-metric on \tilde{X} , with the same parameter *s*. Easily, *X* can be regarded as a subspace of \tilde{X} , just define $T : X \to \tilde{X}$ by $Tx = [\{x\}]$ for each $x \in X$ and also *T* is an isometry.

Let $x = [\{x_n\}] \in \tilde{X}$. Given $\epsilon > 0$, there exists an $N \in \mathbb{N}$ such that for any n, m > N, $d(x_n, x_m) < \epsilon$. In particular, $d(x_n, x_{N+1}) < \epsilon$ and $d(x_{N+1}, x_n) < \epsilon$ for n > N. Hence, $\tilde{d}(x, x_{N+1}) \leq \epsilon$ and $\tilde{d}(x_{N+1}, x) \leq \epsilon$. So, $\tilde{d}^*(x, x_{N+1}) < \epsilon$, thus X is \tilde{d}^* -dense in \tilde{X} , where $\tilde{d}^* : \tilde{X} \times \tilde{X} \to [0, \infty)$ is given by $\tilde{d}^*(x, y) = max\{\tilde{d}(x, y), \tilde{d^{-1}}(x, y)\}$, for all $x, y \in \tilde{X}$. Finally, (\tilde{X}, \tilde{d}) is Cauchy bicomplete and it is unique up to isometry.

We recall:

Theorem 1.3. [1] Let (X, d) be a quasi b-metric space. There exists a Cauchy bicompletion (\tilde{X}, \tilde{d}) of (X, d) which is unique up to isometry.

It is important to note that in Theorem 1.3, \tilde{d} may not be well-defined. Now consider the set X, where X is the set of rational numbers equipped with the distance function $d: X \times X \to [0, \infty)$ defined by $d(x, y) = (x - y)^2$, for all $x, y \in X$. We easily see that (X, d) is a *b*-metric space with the parameter s = 2. The Cauchy completion of X is just \tilde{X} , the set of real numbers with the distance function $\tilde{d}: \tilde{X} \times \tilde{X} \to [0, \infty)$ defined by $\tilde{d}(x, y) = (x - y)^2$. Note that (X, d) is not a strong *b*-metric space, take x = 1, z = 2 and y = 3. Then d(x, y) > d(x, z) + sd(z, y) with s = 2. So, Theorem 1.1 does not apply in this instance but Theorem 1.3 does. Generally, there are problems with this construction as noted in [2], namely: that the function $\tilde{d}: \tilde{X} \times \tilde{X} \to [0, \infty)$ may not be well-defined. This also correct our statement concerning the well definences of \tilde{d} in [1].

PROBLEM: Let (X, d) be a quasi *b*-metric space. Construct a Cauchy bicompletion (\tilde{X}, \tilde{d}) of (X, d) such that $\tilde{d} : \tilde{X} \times \tilde{X} \to [0, \infty)$ is well-defined.

Finally, let (X, d) be a quasi *b*-metric space. It is well-known [1] that (X, d) is quasimetrizable, since the set $U_d = \{(x, y) : d(x, y) < \frac{1}{n}; n \ge 1\}$ is a base for the quasi-uniformity \mathcal{U}_d and is countable. So, let ρ be the quasi-metric on X such that $\tau(d) = \tau(\rho)$, where $\tau(d)$ denotes the topology on X induced by d. Note that the bicompletion $(\tilde{X}, \tilde{\mathcal{U}}_d)$ of the quasi-uniform space (X, \mathcal{U}_d) is unique up to quasi-uniform isomorphism [3].

2. ACKNOWLEDGMENT

The support from South African National Research Foundation under Grant Number 92052) and Tshwane University of Technology(TUT) through Department of Mathematics and Statistics are acknowledged.

References

- M. Aphane, S. P. Moshokoa, On completeness and bicompletions of quasi b-metric spaces, Asian Journal of Mathematics and Applications, Vol. 2015, Article ID ama0241, 10 pages.
- T. Van An, N. Van Dung, Answers to Kirk-Shahzad's questions on strong b-metric spaces, Taiwanese J. Math., Vol 20, 2016, 1175 - 1184.
- [3] P. Fletcher, W. F. Lindgren, *Quasi uniform spaces*, Marcel Dekker Inc., New York, 1982.
- [4] C. Klin-eam, C. Suanoom, Dislocated quasi b-metric spaces and fixed point theorems for cyclic contractions, Fixed point Theory and Applications, 2015, 2015:74 DOI 10.1186/s13663-015-0325-2.