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Abstract: In this work, the equations of motion of the restricted three-body problem under the effects of the 

oblateness of less massive primary and the radiation pressure of the bigger massive primary are expressed. 

The analytical solution is obtained by the variation of parameters method. The locations of the libration 

points are obtained. The periodic orbits around each of these points are investigated for the Sun-Earth 

system, the zero-velocity curves, the phase spaces, and the Poincare surface sections are presented for one of 

the collinear libration points and one of the non-linear libration points. The obtained results are compared 

with previous works such as Kunitsyn[13] and Schuerman[14], and good agreements with these results are 

found. 

 

 

Introduction 

The variation of parameters method is one of the important methods of theoretical and 

applied mathematics. The applications of this method are concerned mainly with the 

determination of maximum and minimum of certain expressions involving unknown 

functions. For orbital dynamics this method was introduced by the Swiss-born 

mathematician Leonhard Euler (1707 - 1783) and completed by the Italian-French 

mathematician Joseph-Louis Lagrange (1736 - 1813) Abell [1]and Efroimsky[2] Lagrange 

had put a reduced two-body problem as an unperturbed solution and had assumed that all 

perturbations come from the gravitational force. In the 20th century Vallado[3], celestial 

mechanics began to consider interactions that depend on both positions and velocities 

(relativistic corrections, atmospheric drag, inertial forces). Therefore, the method of 
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variation of parameters used by Lagrange was extended to the situation with velocity-

dependent forces Moulton [4]. Geometrically, this method is a representation of an orbit as 

a set of points, each of which is contributed by a member of some chosen family of curves 

C(K), where K stands for a set of constants that number a particular -curve within the 

family curves Lovett[5] 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This situation is depicted within the family of curves Fig.1.Point A of the orbit coincides 

with some point𝜆1on a curve C (K1). Point B of the orbit coincides with point𝜆2on some 

other curveC (K2) of the same family, etc. This way, orbital motion from A to B becomes a 

superposition of motion along CK from𝜆1to𝜆2and a gradual distortion of the curve CK from 

the shape C (K1) to the shape C (K2). Normally the curves CK are chosen to be ellipses or 

hyperbolae to be managed analyzed Oberti[6]. Many analytical theories depend on the 

central body and the perturbs force, therefore it is needed to study the problem with many 

perturbing forces Vallado[7]. 

Therefore, the method of variation of parameters is useful to study the motion of a 

massless particle in restricted three-body problem which considered as one of the most 

important objects in astro-dynamics. There are many studies which treated the restricted 

three-body problem under different perturbing forces Srivastava[8].     But most important 

Fig.1. Each point of the orbit is contributed by a member of some family of curves C(K) of a 

certain type, K standing for a set of constants that member a particular curve within the family. 

Motion from A to B is, first, due to the motion along the curve C(K) from 𝜆1 𝑡𝑜 𝜆2 and, second, 

due to the fact that during this motion the curve itself was evolving from C (𝐾1) to C (𝐾2). 
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perturbing forces are the radiation pressure and the oblateness      of the primaries 

Efroimsky [2], George [9], Douskos[10], Sharma[11], Simmons[12], Kunitsyn[13]   and 

Schuerman[14]. 

        In this work, the equations of motion of the restricted three-body problem in the 

classical form are presented under the effects of the radiation pressure of the more massive 

body and the oblateness of less massive body. The variation of parameters method is used 

to obtain the analytical solution. From this solution, the libration points are obtained and 

the stability around each point is studied. 

 

Equations of Motion 

Using a barycentric-synodic coordinate system (X, Y, Z) and dimensionless variables, the 

equations of motion of a test particle in the circular restricted three-body problem under 

the effects of the oblateness of the small primary and the radiation pressure of the bigger 

primary can be expressed as 

𝑋̈ − 2𝑛𝑌̇ = 𝑈𝑋                                                                             (1.1) 

𝑌̈ + 2𝑛𝑋̇ = 𝑈𝑌                                                            (1.2) 

𝑍̈ = 𝑈𝑍                                                (1.3) 

Since the above system is rotating around the Z axis by a constant angular velocity, then Z 

= constant, so the system of Equations (1) is reduced to the system 

𝑋̈ − 2𝑛𝑌̇ = 𝑈𝑋                                                                 (2.1) 

𝑌̈ + 2𝑛𝑋̇ = 𝑈𝑌                                              (2.2) 

Where 

𝑈 =
𝑛2

2
(𝑋2 + 𝑌2) +

(1−𝛽)(1−𝜇)

𝑟1
−

𝜇

𝑟2
−

𝜇 𝐴

2𝑟2
3                                                                                      (3) 

Where  

  

𝑟1 = √(x − 𝜇)2 + 𝑦2,       𝑟2 = √(x + 1 − 𝜇)2 + 𝑦2   

U𝑥 = 𝑛2x −
(1−μ)(x−μ) (1−𝛽)

r1
3 −

μ(x−μ+1)

r2
3 −

3 A μ(x−μ+1)

2 r2
5                                          (4) 

U𝑦 = 𝑛2𝑦 −
(1−𝜇)(1−𝛽)  𝑦

𝑟1
3 −

𝜇𝑦

𝑟2
3 −

 3 𝐴 𝜇𝑦

2 𝑟2
5                                            (5) 

Where 𝑛 is the mean motion of the smaller primary and given by 

𝑛2 =  1 +  
3

2
A , where 𝐴 =

𝑟𝑒
2− 𝑟𝑝

2

5 𝑅2   Ibrahim[15], re and rp are the equatorial and polar radii of 

the oblate body, and R is the distance between the two primaries, is considered as unity 

Ismail[16] . 
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Since the radiation, pressure force Fr and the gravitational force Fg are acting on the body in 

opposite directions, so that 

 Fg  - Fr = Fg (1-β)                                                                                               (6) 

Where 

Fg and Fr are the gravitational force and radiation force respectively, 

β = 
𝑭𝒓

𝑭𝒈
. In dimensionless coordinates m1 + m 2 = 1, 𝝁 =  

𝒎𝟐

𝒎𝟏+ 𝒎𝟐
  is the mass ratio of the 

system. 

 

Method of Variation of Parameters 

      To solve the system of Equations (2) we use the method of variation of parameters 

Chen[17] and Palais[18], which needed to reduce the above system to first order, so that let 

 𝑢 =  𝐷𝑋, 𝐷𝑢 =  𝐷2𝑋, 𝑣 = 𝐷𝑌, 𝐷𝑣 =  𝐷2𝑌. Then the system of Equations (2) becomes 

 

𝐷𝑢 =    2𝑛𝑣 +  𝑈𝑋                                                                                   (7.1) 

𝐷𝑣 =  −2𝑛𝑢 +  𝑈𝑌                                                       (7.2) 

𝐷𝑋 = 𝑢                                                                                        (7.3) 

𝐷𝑌 = 𝑣                                                                                                                                                (7.4) 

Equations (7) are system of ODEs, which expressed in the matrix form as 

[𝜒̇(𝑡)] = [

𝑢̇
𝑣̇
𝑋̇
𝑌̇

] =  [

0 2𝑛 0
−2𝑛 0 0

0
0

0
1

0
0

   

0
0
0
0

]  [

𝑢
𝑣
𝑋
𝑌

] +  [

𝑈𝑋

𝑈𝑌

0
0

]                                                     (8) 

Now, the homogenous and the particular- solutions for the system of Equations (8) well be 

obtained. At first the homogenous solution 𝝌𝑯 is obtained when                     UX = 0 and UY = 

0; then 

[𝜒̇(𝑡)] = [

𝑢̇
𝑣̇
𝑋̇
𝑌̇

] =  [

0 2𝑛 0
−2𝑛 0 0

0
0

0
1

0
0

   

0
0
0
0

]  [

𝑢
𝑣
𝑋
𝑌

] =  [

0
0
0
0

]                                         (9) 

The auxiliary equation for the homogenous system of Equations (9) is 

|𝐴 − 𝜆𝐼| = |

0 − 𝜆 2𝑛 0 0
−2 𝑛 0 − 𝜆 0 0

0 0 0 − 𝜆 0
0 1 0 0 − 𝜆

| = 0 

The roots are 𝝀1;2 = 0;𝝀3;4 = ±2in; the homogenous solution of system (9) is, 
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𝜒𝐻 = 𝑐1 {[

1
0
0
1

] + 𝑡 [

0
0
1
0

]} + 𝑐2 [

2𝑛
−2𝑖𝑛

𝑖
1

] 𝑒−2𝑖𝑛𝑡 + 𝑐3 [

2𝑛
2𝑖𝑛
−𝑖
1

] 𝑒2𝑖𝑛𝑡  

= 𝑐1 {[

1
0
0
1

] + 𝑡 [

0
0
1
0

]} + 𝑐2 [

2𝑛
−2𝑖𝑛

𝑖
1

] (cos 2𝑛𝑡 − 𝑖 sin 2𝑛𝑡) + 𝑐3 [

2𝑛
2𝑖𝑛
−𝑖
1

] (cos 2𝑛𝑡 + 𝑖 sin 2𝑛𝑡)  

= 𝑐1 {[

1
0
0
1

] + 𝑡 [

0
0
1
0

]} + (𝑐2 + 𝑐3) {[

2𝑛
0
0
1

] cos 2𝑛𝑡 + [

0
−2𝑛

1
0

] sin 2𝑛𝑡} 

+𝑖 (𝑐2 − 𝑐3) {[

0
−2𝑛

1
0

] cos 2𝑛𝑡 + [

−2𝑛
0
0

−1

] sin 2𝑛𝑡} 

put c2 = (c2 + c3); c3 = I (c2 -  c3); then 

𝜒𝐻 = 𝑐1 {[

1
0
0
1

] + 𝑡 [

0
0
1
0

]} + 𝑐2 {[

2𝑛
0
0
1

] cos 2𝑛𝑡 + [

0
−2𝑛

1
0

] sin 2𝑛𝑡} + 𝑐3 {[

0
−2𝑛

1
0

] cos 2𝑛𝑡 +

[

−2𝑛
0
0

−1

] sin 2𝑛𝑡}                                                                                                  (10) 

Where c1, c2, and c3 are arbitrary linear independent constants. Then substitute into the 

system of Equations (2) we get, 

 

𝜒𝐻 = 𝑐1 {[
0
1

] + 𝑡 [
1
0

]} + 𝑐2 {[
0
1

] cos 2𝑛𝑡 + [
1
0

] sin 2𝑛𝑡}  + 𝑐3 {[
1
0

] cos 2𝑛𝑡 + [
0

−1
] sin 2𝑛𝑡}           

                                                                                                                 (11) 

        Now to obtain the particular- solution𝝌𝑷, for the nonhomogeneous system (2) which is 

in the form, 

𝜒𝑝 = 𝐴1(𝑡) {[
0
1

] + 𝑡 [
1
0

]} + 𝐴2(𝑡) {[
0
1

] cos 2𝑛𝑡 + [
1
0

] sin 2𝑛𝑡}  + 𝐴3(𝑡) {[
1
0

] cos 2𝑛𝑡 + [
0

−1
] sin 2𝑛𝑡}     (12) 

     

 Since, the particular- solution𝝌𝑷 satisfied the system of Equations (2) then, 

  

χ̇p = [
0 α

−α 0
] χp                                                                                                                               (13)  

where 2n i=𝜶; 
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𝜒̇𝑝 = 𝐴̇1(𝑡) {[
0
1

] + 𝑡 [
1
0

]} + 𝐴1(𝑡) {[
1
0

]} + 𝐴̇2(𝑡) {[
0
1

] cos 𝛼𝑡 + [
1
0

] sin 𝛼𝑡} + 𝐴2(𝑡) {[
0
1

] (−α sin 𝛼𝑡) + [
1
0

] 𝛼 cos 𝛼𝑡}

+ 𝐴̇3(𝑡) {[
1
0

] cos 𝛼𝑡 + [
0

−1
] sin 𝛼𝑡} + 𝐴3(𝑡) {[

1
0

] (−α sin 𝛼𝑡) + [
0

−1
] 𝛼 cos 𝛼𝑡}    

 

= [
0 𝛼

−𝛼 0
] . {𝐴1(𝑡) {[

0
1

] + 𝑡 [
1
0

]} + 𝐴2(𝑡) {[
0
1

] cos 𝛼𝑡 + [
1
0

] sin 𝛼𝑡} + 𝐴3(𝑡) {[
1
0

] cos 𝛼𝑡 + [
0

−1
] sin 𝛼𝑡}}   

 = 𝐴1(𝑡) {[
𝛼
0

] + 𝑡 [
0

−𝛼
]} + 𝐴2(𝑡) {[

𝛼
0

] cos 𝛼𝑡 + [
0

−𝛼
] sin 𝛼𝑡} + 𝐴3(𝑡) {[

0
−𝛼

] cos 𝛼𝑡 + [
−𝛼
0

] sin 𝛼 𝑡}  

  

Then 

𝐴̇1(𝑡) {[
0
1

] + 𝑡 [
1
0

]} + 𝐴̇2(𝑡) {[
0
1

] cos 𝛼𝑡 + [
1
0

] sin 𝛼 𝑡} + 𝐴̇3(𝑡) {[
1
0

] cos 𝛼𝑡 + [
0

−1
] sin 𝛼𝑡} +𝐴1(𝑡) {[

1
0

]}

+ 𝐴2(𝑡) {[
𝛼
0

] cos 𝛼𝑡 + [
0

−𝛼
] sin 𝛼𝑡} + 𝐴3(𝑡) {[

0
−𝛼

] cos 𝛼𝑡 + [
−𝛼
0

] sin 𝛼 𝑡} 

= 𝐴1(𝑡) {[
𝛼
0

] + 𝑡 [
0

−𝛼
]} + 𝐴2(𝑡) {[

𝛼
0

] cos 𝛼𝑡 + [
0

−𝛼
] sin 𝛼𝑡} + 𝐴3(𝑡) {[

0
−𝛼

] cos 𝛼𝑡 + [
−𝛼
0

] sin 𝛼 𝑡}  

 

𝐴̇1(𝑡) {[
0
1

] + 𝑡 [
1
0

]} + 𝐴̇2(𝑡) {[
0
1

] cos 𝛼𝑡 + [
1
0

] sin 𝛼 𝑡} + 𝐴̇3(𝑡) {[
1
0

] cos 𝛼𝑡 + [
0

−1
] sin 𝛼𝑡} +𝐴1 = 𝐴1(𝑡) {[

𝛼
0

] +

𝑡 [
0

−𝛼
] − [

1
0

]}           

Then 

[
𝑡 sin 𝛼𝑡 cos 𝛼𝑡
1 cos 𝛼𝑡 − sin 𝛼𝑡
0 0 0

] [

𝐴̇1

𝐴̇2

𝐴̇3

] = 𝐴1(𝑡) [
𝛼 − 1
−𝛼𝑡

] + [
𝑈𝑋

𝑈𝑌

0
]                                              (14) 

Equation (14) can be written as 

 𝑡 𝐴̇1(𝑡) +  sin 𝛼𝑡 𝐴̇2(𝑡) + cos 𝛼𝑡 𝐴̇3(𝑡) = (𝛼 − 1)𝐴1(𝑡) +  𝑈𝑋                   (15) 

𝐴̇1(𝑡) +  cos 𝛼𝑡 𝐴̇2(𝑡) − sin 𝛼𝑡 𝐴̇3(𝑡) =  −𝛼 𝑡 𝐴1(𝑡) + 𝑈𝑌                   (16) 

where 𝐴1(𝑡) is arbitrary function then, put 𝐴1(𝑡) = 0 and 𝐴̇1(𝑡) = 0 , this yields 

sin 𝛼𝑡 𝐴̇2(𝑡) + cos 𝛼𝑡 𝐴̇3(𝑡) =  𝑈𝑋                   (17) 

cos 𝛼𝑡 𝐴̇2(𝑡) − sin 𝛼𝑡 𝐴̇3(𝑡) =   𝑈𝑌                   (18) 

Multiply Equation (17) by sin 𝛼𝑡 and Equation (18) by cos 𝛼𝑡 and add then 

(sin2 𝛼𝑡 + cos2 𝛼𝑡)  𝐴̇2(𝑡) =   sin 𝛼𝑡 𝑈𝑋 + cos 𝛼𝑡 𝑈𝑌 

𝐴̇2(𝑡) = sin 𝛼𝑡 𝑈𝑋 +  cos 𝛼𝑡 𝑈𝑌 

By integrating we get, 

𝐴2(𝑡) = −
𝑈𝑋

𝛼
cos 𝛼𝑡 +  

𝑈𝑌

𝛼
sin 𝛼𝑡                                                           (19) 

Multiply Equation (17) by cos 𝛼𝑡 and Equation (18) by (− sin 𝛼𝑡 )and add then 

(sin2 𝛼𝑡 + cos2 𝛼𝑡)  𝐴̇3(𝑡) =   cos 𝛼𝑡 𝑈𝑋 −  𝑠𝑖𝑛 𝛼𝑡 𝑈𝑌 

𝐴̇3(𝑡) = cos 𝛼𝑡  𝑈𝑋 −  sin𝛼𝑡 𝑈𝑌 

By integrating we get,  
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𝐴3(𝑡) =
𝑈𝑋

𝛼
sin 𝛼𝑡 𝑈𝑥 +  

𝑈𝑌

𝛼
cos 𝛼𝑡 𝑈𝑦                           (20) 

Substitute from Equations (19) and (20) into Equation (15) this yields 

𝑡𝐴̇1(𝑡) + sin 𝛼𝑡 (−
𝑈𝑥

𝛼
cos 𝛼𝑡 + 

𝑈𝑦

𝛼
sin 𝛼𝑡 ) + cos 𝛼𝑡 (

𝑈𝑥

𝛼
sin 𝛼𝑡 +  

𝑈𝑦

𝛼
cos 𝛼𝑡 ) = (𝛼 −

1)𝐴1(𝑡) +  𝑈𝑉  

𝑡𝐴̇1(𝑡) − (𝛼 − 1)𝐴1(𝑡) = 𝑈𝑋 − sin 𝛼𝑡 (−
𝑈𝑋

𝛼
cos 𝛼𝑡 +  

𝑈𝑌

𝛼
sin 𝛼𝑡 ) − cos 𝛼𝑡 (

𝑈𝑋

𝛼
sin 𝛼𝑡 +

 
𝑈𝑦

𝛼
cos 𝛼𝑡 )  

𝑡𝐴̇1(𝑡) − (𝛼 − 1)𝐴1(𝑡) = 𝑈𝑋 −
𝑈𝑋

𝛼
 (− sin 𝛼𝑡 cos 𝛼𝑡 +  sin 𝛼𝑡 cos 𝛼𝑡 ) −

𝑈𝑌

𝛼
 (sin2 𝛼𝑡 +

 cos2 𝛼𝑡 )  

𝑡𝐴̇1(𝑡) −
(𝛼−1)

𝑡
𝐴1(𝑡) =

1

𝑡
(𝑈𝑋 +

𝑈𝑌

𝛼
)        (21) 

Equation (21) represents linear ODE, which will be solved as follows 

𝑑

𝑑𝑡
(𝐴1(𝑡) ∙

1

𝑡𝛼−1
) =

1

𝑡𝛼
(𝑈𝑋 +

𝑈𝑌

𝛼
) ) 

By integrating to obtain the value of A1, 

𝐴1(𝑡) ∙
1

𝑡𝛼−1 =(𝑈𝑋 −
𝑈𝑌

𝛼
) (− 

1

(𝛼−1)𝑡−(𝛼−1))                                                                      (22)  

      Now, substitute from Equations (19), (20) and (22) into Equation (12) the particular- 

solution is obtained 

𝜒𝑝 = (𝑈𝑋 −
𝑈𝑌

𝛼
) (− 

1

(𝛼−1)
) {[

0
1

] + 𝑡 [
1
0

]} +  (−
𝑈𝑋

𝛼
cos 𝛼𝑡 +  

𝑈𝑌

𝛼
sin 𝛼𝑡 ) {[

0
1

] cos 𝛼𝑡 +

[
1
0

] sin 𝛼𝑡} + (
𝑈𝑋

𝛼
sin 𝛼𝑡 +  

𝑈𝑌

𝛼
cos 𝛼𝑡 ) {[

1
0

] cos 𝛼𝑡 + [
0

−1
] sin 𝛼𝑡}                                (23) 

Then the general analytical solutions for the nonhomogeneous system of ODEs (2) is given 

by 

𝜒(𝑡) =  𝜒𝐻  +  𝜒𝑃                                         (24) 

𝜒(𝑡) = [
𝑋(𝑡)
𝑌(𝑡)

] = 𝑐1 {[
0
1

] + 𝑡 [
1
0

]} + 𝑐2 {[
0
1

] cos 𝛼𝑡 + [
1
0

] sin 𝛼𝑡} + 𝑐3 {[
1
0

] cos 𝛼𝑡 + [
0

−1
] sin 𝛼𝑡 +} + (𝑈𝑋 −

𝑈𝑌

𝛼
) (− 

1

(𝛼−1)
) {[

0
1

] + 𝑡 [
1
0

]} +  (−
𝑈𝑋

𝛼
cos 𝛼𝑡 +  

𝑈𝑌

𝛼
sin 𝛼𝑡 ) {[

0
1

] cos 𝛼𝑡 + [
1
0

] sin 𝛼𝑡} + (
𝑈𝑋

𝛼
sin 𝛼𝑡 +

 
𝑈𝑌

𝛼
cos 𝛼𝑡 ) {[

1
0

] cos 𝛼𝑡 + [
0

−1
] sin 𝛼𝑡}          (25) 

      To apply the Variation of Parameters Method on a dynamical system, the locations of the 

libration points, Jacobi constant, and the stability of motion will be illustrated as follows. 

 

 Locations of the Libration Points 

      Let 𝑿̇ = 𝒀̇ = 𝒁̇ = 𝟎 , and 𝑿̈ = 𝒀̈ = 𝒁̈ = 𝟎, and using Equation (25) at t = 0, to evaluate 

the initial condition. We put 𝑋(𝑎) = 𝑌(𝑎) = 𝑏1, and 𝑋̇(𝑎) = 𝑌̇(𝑎) = 𝑏2. 

 When  𝑎 → 0 , then,  𝑏1 → 10−4 , 𝑏2 → 0. We obtain the values of c1, c2 and c3  
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Which are given by 𝑐1 =
𝛼210−4+𝑈𝑌

𝛼(𝛼−1)
, 𝑐2 =

𝛼 10−4+𝑈𝑋

𝛼(𝛼−1)
 and 𝑐2 =

𝛼 10−4+𝑈𝑌

𝛼(𝛼−1)
  . 

These values are used through the system of Equations (2), this yield 

𝑛2𝑋 −
(1−𝜇)(𝑋−𝜇) (1−𝛽)

𝑟1
3 −

𝜇(𝑋−𝜇+1)

𝑟2
3 −

3 𝐴 𝜇(𝑋−𝜇+1)

2 𝑟2
5   = 0    (26) 

𝑛2𝑌 −
(1−𝜇)(1−𝛽) 𝑌

𝑟1
3 −

𝜇𝑌

𝑟2
3 −

 3 𝐴 𝜇𝑌

2 𝑟2
5  = 0      (27) 

by solving Equation (26) numerically the locations of the collinear libration points are 

obtained, while the locations of the triangular libration points are calculated by solving 

Equations (26) and (27) together to obtain (X, Y) for each triangular point.  

The Jacobi constant 

      It is well known that the Jacobi constant is given by Szebehely[19] 

C = (Ẋ2 + Ẏ2) − 2U                                                                      (28) 

Since the Jacobi constant can be obtained at each libration point, then this enables to obtain 

the zero-velocity curves about each point. Since the variation of parameter solution of 

Equation (25) gives expressions for the (X, and Y) depending on time, which contains 

trigonometric functions depend on the angular velocity, these terms represent the short 

periodic orbits around the libration point understudy, the eccentricity and period of the 

orbit can be obtained by 

𝑒2 =
𝑐2−1

𝑐2      (29) 

𝑇 =
2𝜋

𝑆
    (30) 

 where, 𝑐 =
𝜆𝑖

2−𝑈𝑋𝑋

2 𝜆𝑖−𝑈𝑋𝑌
,   S= Coefficient ofthe imaginary part of 𝜆 Ibrahim[20]. 

 

Results and Discussion 

         To apply the variation of parameter solution on the dynamical systems, the Sun-Earth-

spacecraft system is considered. A Mathematica Cod is constructed to solve Equations (26) 

and (27) using Equation (25) to obtain the libration points for this model and to study the 

motion about each point. Then Table 1 illustrates the locations of libration points, Jacobi 

constant, eccentricity, and period of the orbit which are obtained also. 

      The motion about each of the libration points is represented by showing the behavior of 

the phase space about the libration point understudy, the orbit obtained represents the 

short periodic orbits and it is obtained from Equation (25) with c1 = 0. Zero velocity curves 

show the regions at which the infinitesimal body moves with different values of energy 

levels. The first level is at the initial values of the Jacobi constant. Finally, the Poincare 

surfaces of section is a technique which represented the stability of the motion about the 



PERTURBED RESTRICTED THREE-BODY PROBLEM                                                       9 

 

libration points, it is a projection of the orbits from (𝑋, 𝑌, 𝑋)̇ plane to (𝑋, 𝑋)̇ plane, each 

point represents an orbit about the libration point. 

Now, L1and L2 are chosen as an example of the collinear libration points, while L4 and L6 

are chosen as an example of the triangular libration points. 

From the results obtained Fig 2 shows periodic orbit about L1, Fig. 3 illustrates the zero-

velocity curve and Fig.4 shows a Poincare surface about L1 and Fig 5 shows periodic orbit 

about L2, Fig. 6 illustrates the zero-velocity curve and Fig.7 shows a Poincare surface about 

L2. The same for L4, Fig 8 shows the periodic orbit about L4, Fig. 9 shows the zero-velocity 

curves and Fig.10 Poincare surface about L4. The same for L6 is illustrated in figures 11, 12, 

and 13. 

 

Table 1: The collinear and non-collinear libration points for the Sun-Earth system and their 
Jacobi constant C, eccentricity and period of the orbit about each point. 

 
libration points Position 

X                       Y 

Jacobi constant eccentricity period of the orbit 

L1 0.986675 0 2.98435 0.978755 3.13455 

L2 1.01201 0 2.98488 0.991976 3.13455 

L3 -1.00332 0 2.98463 1.6196 3.13455 

L4 0.986675 0.997497 3.3886 0.856303 3.13455 

L5 0.986675 -1.0025 3.39508 0.451298 3.13455 

L6 0.986675 9.00001*10^-10 2.98435 0.978755 3.13455 

 

 

 

 

 

 

   Fig.2: the phase space about L1                                    Fig. 3. Zero Velocity Curve at L1 , C=2.98435 
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Fig. 4. Poincare Surface at L1 

 

 

 

 

 

           Fig.5: the phase space about L2                           Fig. 6. Zero Velocity Curve at L2 , C=2.98488 

 
 

 

 

 

 

 

                              

                                                   Fig. 7. - Poincare Surface at L2 
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            Fig. 8:Phase Space at L4                                                        Fig. 9:Zero Velocity Curve at L 4 ,C = 3.3886 

 

 

 

 

 

 

 

 

 

                                                    Fig. 10: Poincare Surface at L4 
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     Fig. 11: Phase Space at L6                                                     Fig.12:Zero Velocity Curve at L6 ,C = 2.98435 

 

 

 

   Fig. 13:  

Fig. 13: Poincare Surface at L6 
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Conclusion 

   In this study, the Variation of Parameters Method is used to obtain the analytical 

solution of the restricted three-body problem. The obtained solution gives explicit 

expressions in X, Y depends on the time. The application of these solutions enables us to 

obtain the libration points and to study the stability of motion about these libration points, 

the results obtained are in a good agreement with the results obtained by Simmons [13], 

Kunitsyn[14], Schuerman[15] and Ibrahim[16]. Therefore the variation of the parameter 

method is a good technique to be applied on the astro-dynamical systems. 
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