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Abstract. In this paper we consider the generalized iteration of n entire functions and

compare maximum modulus and maximum term of generalized iterated entire functions

with that of the n entire functions.

1. Introduction and Definitions

For an entire function f(z) =
∑∞

n=0 anz
n, let M(r, f) = max|z|=r |f(z)| and µ(r, f) =

maxn |an|rn are respectively called maximum modulus and maximum term of f(z) on |z| = r.

In 1997, Lahiri and Banerjee [7] considered two entire functions f(z) and g(z) and formed

the relative iterations of f(z) with respect to g(z) as follows.

f1(z) = f(z)

f2(z) = f(g(z)) = f(g1(z))

f3(z) = f(g(f(z))) = f(g2(z)) = f(g(f1(z)))

... ... ...

fn(z) = f(g(f...(f(z) or g(z))...))

according as n is odd or even

and so are gn(z).

With this definition of iteration, several researchers (see for example [2], [3], [4]) made close

investigation on growth properties of maximum modulus and maximum term of iterated

entire functions and achieved various results.

After this in 2012, Banerjee and Mondal [1] introduced a more general type of iteration,

called generalized iteration as follows.

Let f and g be two nonconstant entire functions and α be any real number satisfying

0 < α ≤ 1. Then the generalized iteration of f with respect to g is defined as follows.
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f1,g(z) = (1− α)z + αf(z)

f2,g(z) = (1− α)g1,f (z) + αf(g1,f (z))

f3,g(z) = (1− α)g2,f (z) + αf(g2,f (z))

.

.

.

fn,g(z) = (1− α)gn−1,f (z) + αf(gn−1,f (z))

and so are

g1,f (z) = (1− α)z + αg(z)

g2,f (z) = (1− α)f1,g(z) + αg(f1,g(z))

g3,f (z) = (1− α)f2,g(z) + αg(f2,g(z))

.

.

.

gn,f (z) = (1− α)fn−1,g(z) + αg(fn−1,g(z)).

Recently Banerjee and Sarkar [5] considered n entire functions f1(z), f2(z), ..., fn(z) and de-

fined the relative iteration of n entire functions as follows.

F1(z) = f1(z)

F2(z) = f2(f1(z)) = f2(F1(z))

... ... ...

Fn(z) = fn(fn−1(...(f2(f1(z))))) = fn(Fn−1(z)), n ≥ 2.

Now we introduce a more general type of iteration, called generalized iteration of n entire

functions as follows.

Let f1, f2,..., fn are n entire functions and α be any real number satisfying 0 < α ≤ 1. Then

we define

F1(z) = (1− α)z + αf1(z)

F2(z) = (1− α)F1(z) + αf2(F1(z))

F3(z) = (1− α)F2(z) + αf3(F2(z))

.

.

.

Fn(z) = (1− α)Fn−1(z) + αfn(Fn−1(z)).

Note 1.1. For α = 1, generalized iteration reduces to relative iteration of n entire functions.

Following Sato [8], we write log[0]x = x, exp[0]x = x and for positive integer m, log[m]x =

log(log[m−1]x), exp[m]x = exp(exp[m−1]x).

First we need the following definitions.
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Definition 1.1. The order ρf and the lower order λf of an entire function f are defined as

ρf = lim sup
r→∞

log[2]M(r, f)

logr

and λf = lim inf
r→∞

log[2]M(r, f)

logr
.

Singh [9] proved the following relation between M(r, f) and µ(r, f) as follows.

For 0 ≤ r < R

µ(r, f) ≤M(r, f) ≤ R

R− r
µ(R, f).

Then one can easily obtain

ρf = lim sup
r→∞

log[2]µ(r, f)

logr

and

λf = lim inf
r→∞

log[2]µ(r, f)

logr
.

The main purpose of this paper is to compare the maximum modulus and maximum term

of generalized iterated entire functions with that of the generating functions.

2. Known Results

During the proof of our main results we shall need the following lemmas.

Lemma 2.1. [6] Let f(z) and g(z) be entire functions with g(0) = 0.

Let α satisfy 0 < α < 1 and let C(α) = (1−α)2
4α

. Then for r > 0

M(r, f ◦ g) ≥M(C(α)M(αr, g), f).

Further if g(z) is any entire function, then with α = 1/2, for sufficiently large values of r

M(r, f ◦ g) ≥M(
1

8
M(

r

2
, g)− |g(0)|, f).

Clearly

(2.1) M(r, f ◦ g) ≥M(
1

16
M(

r

2
, g), f).

On the other hand from the definition we have

(2.2) M(r, f ◦ g) ≤M(M(r, g)), f).
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Lemma 2.2. [9] Let f(z) and g(z) be entire functions with g(0) = 0.

Let α satisfy 0 < α < 1 and let C(α) = (1−α)2
4α

. Also let 0 < δ < 1. Then

µ(r, f ◦ g) ≥ (1− δ)µ(C(α)µ(αδr, g), f).

And if g(z) is any entire function, then with α = δ = 1/2, for sufficiently large values of r

µ(r, f ◦ g) ≥ 1

2
µ(

1

8
µ(
r

4
, g)− |g(0)|, f).

Clearly

(2.3) µ(r, f ◦ g) ≥ 1

2
µ(

1

16
µ(
r

4
, g), f).

Lemma 2.3. [9] Let f(z) and g(z) be any two entire functions. Then for every α > 1 and

0 < r < R,

µ(r, f ◦ g) ≤ α

α− 1
µ(

αR

R− r
µ(R, g), f).

Clearly for α = 2 and R = 2r

(2.4) µ(r, f ◦ g) ≤ 2µ(4µ(2r, g), f).

3. Main Results

In this section we present the main results of the paper.

Theorem 3.1. Let f1, f2, ..., fn are n entire functions having positive lower orders and of

finite orders and suppose eγ(M( r
2
,Fn))δ ≥M(r, Fn) holds for every γ > 0, δ > 0 . Then

(3.1) lim
r→∞

log[2]M(r, Fn)

log[2]M(rA, fk)
=∞

for every positive constant A and 1 ≤ k ≤ n.

Proof. Let us suppose that 0 < α < 1. Choose 0 < ε < min{λ(fi), i = 1 to n}. Now for

all sufficiently large values of r, using (2.1) we get

M(r, Fn) = M(r, (1− α)Fn−1 + αfn(Fn−1))

≥M(r, αfn(Fn−1))−M(r, (1− α)Fn−1)

≥ αM(
1

16
M(

r

2
, Fn−1), fn)− (1− α)M(r, Fn−1).
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So for all sufficiently large values of r we get

log[2]M(r, Fn) ≥ log[2]M(
1

16
M(

r

2
, Fn−1), fn)− log[2]M(r, Fn−1) +O(1)

> (λ(fn)− ε)log(
1

16
M(

r

2
, Fn−1))− log[2]M(r, Fn−1) +O(1)

> (λ(fn)− ε)logM(
r

2
, Fn−1)−

1

2
(λ(fn)− ε)logM(

r

2
, Fn−1) +O(1)

=
1

2
(λ(fn)− ε)logM(

r

2
, Fn−1) +O(1)

≥ 1

2
(λ(fn)− ε)log[2]M(

r

2
, Fn−1) +O(1)

>
1

22
(λ(fn)− ε)(λ(fn−1)− ε)log[2]M(

r

22
, Fn−2) +O(1).

Repeating the process, after (n− 2) steps we get,

log[2]M(r, Fn) >
1

2n−2
(λ(fn)− ε)(λ(fn−1)− ε)...(λ(f3)− ε)log[2]M(

r

2n−2
, F2) +O(1)

>
1

2n−1
(λ(fn)− ε)(λ(fn−1)− ε)...(λ(f3)− ε)(λ(f2)− ε)logM(

r

2n−1
, F1) +O(1)

=
1

2n−1
(λ(fn)− ε)(λ(fn−1)− ε)...(λ(f2)− ε)logM(

r

2n−1
, (1− α)z + αf1) +O(1)

≥ 1

2n−1
(λ(fn)− ε)...(λ(f2)− ε)[logM(

r

2n−1
, αf1)− logM(

r

2n−1
, (1− α)z)] +O(1)

=
1

2n−1
(λ(fn)− ε)(λ(fn−1)− ε)...(λ(f2)− ε)[logM(

r

2n−1
, f1)− logM(

r

2n−1
, z] +O(1)

(3.2)
≥ 1

2n−1
(λ(fn)− ε)(λ(fn−1)− ε)...(λ(f2)− ε)[(

r

2n−1
)λ(f1)−ε − log r

2n−1
] +O(1).

Now it is possible to choose r sufficiently large so that for every A > 0

(3.3) log[2]M(rA, fk) < (ρ(fk) + ε) logrA.

Now from (3.4) and (3.5) we get for sufficiently large values of r,

log[2]M(r, Fn)

log[2]M(rA, fk)
>

1
2n−1 (λ(fn)− ε)(λ(fn−1)− ε)...(λ(f2)− ε)[( r

2n−1 )λ(f1)−ε − log r
2n−1 ] +O(1)

A(ρ(fk) + ε) logr

→∞ as r →∞.

Therefore,

lim
r→∞

log[2]M(r, Fn)

log[2]M(rA, fk)
=∞.

So the result (3.1) is proved.
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Theorem 3.2. Let f1, f2, ..., fn are n non-constant entire functions of finite orders with

ρ(f1) < ρ(fn). Then

lim inf
r→∞

log[n]M(r, Fn)

log[2]M(exp(rρ(fn)), fn)
= 0.

Proof. We choose ε, so that 0 < ε < ρ(fn)− ρ(f1).

Since ρ(fn) > ρ(f1) ≥ 0, so that fn must not be a polynomial. Hence

(3.4) M(r, fn) ≥ r

for all large values of r.

Now for all large values of r, using (2.2) and (3.4) we obtained that

M(r, Fn) ≤ (1− α)M(r, Fn−1) + αM(r, fn(Fn−1))

≤ (1− α)M(M(r, Fn−1), fn) + αM(M(r, Fn−1), fn)

= M(M(r, Fn−1), fn).

Therefore,

log[2]M(r, Fn) < (ρ(fn) + ε)logM(r, Fn−1).

So,

log[3]M(r, Fn) < (ρ(fn−1) + ε)logM(r, Fn−2) +O(1).

Therefore,

log[4]M(r, Fn) < (ρ(fn−2) + ε)logM(r, Fn−3) +O(1).

After (n− 2) steps we get

log[n]M(r, Fn) < (ρ(f2) + ε)logM(r, F1) +O(1)

= (ρ(f2) + ε)logM(r, (1− α)z + αf1) +O(1)

≤ (ρ(f2) + ε)[logM(r, αf1) + logM(r, (1− α)z)] +O(1)

= (ρ(f2) + ε)[logM(r, f1) + logM(r, z)] +O(1)

= (ρ(f2) + ε)[logM(r, f1) + logr)] +O(1)

≤ (ρ(f2) + ε)[logM(r, f1) + logM(r, f1)] +O(1)

= 2(ρ(f2) + ε)logM(r, f1) +O(1)

< (ρ(f2) + ε)r(ρ(f1)+ε) +O(1).

On the other hand, for a sequence r = rn →∞

log[2]M(r, fn) > (ρ(fn)− ε)logr.

Expressing Rn = (log rn)
1

ρ(fn) it follows that

log[2]M(exp(Rρ(fn)
n ), fn) > (ρ(fn)− ε)Rn

ρ(fn).
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Thus for r = Rn(≥ r0)

log[n]M(r, Fn)

log[2]M(exp(rρ(fn)), fn)
<

(ρ(f2) + ε)r(ρ(f1)+ε) +O(1)

(ρ(fn)− ε)rρ(fn)
.

Hence,

lim inf
r→∞

log[n]M(r, Fn)

log[2]M(exp(rρ(fn)), fn)
= 0.

Theorem 3.3. Let f1, f2, ..., fn are n nonconstant entire functions of finite orders with

λ(f1) > ρ(fk)(1 ≤ k ≤ n) and λ(fn) > 0 and suppose eγ(M( r
2
,Fn))δ ≥M(r, Fn) holds for every

γ > 0, δ > 0 . Then

lim
r→∞

log[2]M(r, Fn)

log[2]M(exp(rρ(fk)), fk)
=∞.

Proof. We choose ε, so that 0 < ε < λ(f1)− ρ(fk). From (3.2) we get for all r ≥ r0

log[2]M(r, Fn) >
1

2n−1
(λ(fn)− ε)(λ(fn−1)− ε)...(λ(f2)− ε)[(

r

2n−1
)λ(f1)−ε − log r

2n−1
] +O(1).

On the other hand for all r ≥ r0

log[2]M(r, fk) < (ρ(fk) + ε) log r

i.e., log[2]M(exp(rρ(fk)), fk) < (ρ(fk) + ε) rρ(fk).

Thus for all sufficiently large r

log[2]M(r, Fn)

log[2]M(exp(rρ(fk)), fk)
>

1
2n−1 (λ(fn)− ε)(λ(fn−1)− ε)...(λ(f2)− ε)[( r

2n−1 )λ(f1)−ε − log r
2n−1 ] +O(1)

(ρ(fk) + ε) rρ(fk)

→∞ as r →∞.

Hence

lim
r→∞

log[2]M(r, Fn)

log[2]M(exp(rρ(fk)), fk)
=∞.

Theorem 3.4. Let f1, f2, ..., fn are n nonconstant entire functions of positive lower orders

and of finite orders and suppose eγ(µ(
r
4
,Fn))δ ≥ µ(r, Fn) holds for every γ > 0, δ > 0 and also

for every positive integer n.Then

lim
r→∞

log[2]µ(r, Fn)

log[2]µ(rA, fk)
=∞

for every positive constant A and 1 ≤ k ≤ n.

Proof. We choose ε such that 0 < ε < min{λ(fi), i = 1 to n}. Now for all sufficiently

large values of r, using (2.3) we get

µ(r, Fn) = µ(r, (1− α)Fn−1 + αfn(Fn−1))

≥ µ(r, αfn(Fn−1))− µ(r, (1− α)Fn−1)

≥ 1

2
αµ(

1

16
µ(
r

4
, Fn−1), fn)− (1− α)µ(r, Fn−1).
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So for all sufficiently large values of r we get

log[2]µ(r, Fn) ≥ log[2]µ(
1

16
µ(
r

4
, Fn−1), fn)− log[2]µ(r, Fn−1) +O(1)

> (λ(fn)− ε)log(
1

16
µ(
r

4
, Fn−1))− log[2]µ(r, Fn−1) +O(1)

> (λ(fn)− ε)logµ(
r

4
, Fn−1)−

1

2
(λ(fn)− ε)logµ(

r

4
, Fn−1) +O(1)

=
1

2
(λ(fn)− ε)logµ(

r

4
, Fn−1) +O(1)

≥ 1

2
(λ(fn)− ε)log[2]µ(

r

4
, Fn−1) +O(1)

>
1

22
(λ(fn)− ε)(λ(fn−1)− ε)log[2]µ(

r

42
, Fn−2) +O(1).

Repeating the process, after (n− 2) steps we get

log[2]µ(r, Fn) >
1

2n−2
(λ(fn)− ε)(λ(fn−1)− ε)...(λ(f3)− ε)log[2]µ(

r

4n−2
, F2) +O(1)

>
1

2n−1
(λ(fn)− ε)(λ(fn−1)− ε)...(λ(f3)− ε)(λ(f2)− ε)logµ(

r

4n−1
, F1) +O(1)

=
1

2n−1
(λ(fn)− ε)(λ(fn−1)− ε)...(λ(f2)− ε)logµ(

r

4n−1
, (1− α)z + αf1) +O(1)

≥ 1

2n−1
(λ(fn)− ε)(λ(fn−1)− ε)...(λ(f2)− ε)[logµ(

r

4n−1
, αf1)− logµ(

r

4n−1
, (1− α)z)] +O(1)

=
1

2n−1
(λ(fn)− ε)(λ(fn−1)− ε)...(λ(f2)− ε)[logµ(

r

4n−1
, f1)− logµ(

r

4n−1
, z] +O(1)

(3.5)
≥ 1

2n−1
(λ(fn)− ε)(λ(fn−1)− ε)...(λ(f2)− ε)[(

r

4n−1
)λ(f1)−ε − log r

4n−1
] +O(1).

Now it is possible to choose r sufficiently large so that for every A > 0

(3.6) log[2]µ(rA, fk) < (ρ(fk) + ε) logrA.

Now from (3.5) and (3.6) we get for sufficiently large values of r,

log[2]µ(r, Fn)

log[2]µ(rA, fk)
>

1
2n−1 (λ(fn)− ε)(λ(fn−1)− ε)...(λ(f2)− ε)[( r

4n−1 )λ(f1)−ε − log r
4n−1 ] +O(1)

A(ρ(fk) + ε) logr

→∞ as r →∞.

Hence,

lim
r→∞

log[2]µ(r, Fn)

log[2]µ(rA, fk)
=∞.

This proves the theorem.
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Theorem 3.5. Let f1, f2, ..., fn are n non-constant entire functions of finite orders with

ρ(f1) < ρ(fn). Then

lim inf
r→∞

log[n]µ(r, Fn)

log[2]µ(exp(rρ(fn)), fn)
= 0.

Proof. We choose ε, so that 0 < ε < ρ(fn)− ρ(f1).

Since ρ(fn) > ρ(f1) ≥ 0, so that fn must not be a polynomial. Hence

(3.7) r ≤ µ(r, fn) ≤ 2µ(r, fn)

for all large values of r.

Now for all large values of r, using (2.4) and (3.7) we obtained that

µ(r, Fn) ≤ (1− α)µ(r, Fn−1) + αµ(r, fn(Fn−1))

< (1− α)4µ(2r, Fn−1) + αµ(r, fn(Fn−1))

≤ (1− α)2µ(4µ(2r, Fn−1), fn) + α2µ(4µ(2r, Fn−1), fn)

= 2µ(4µ(2r, Fn−1), fn).

Therefore,

log[2]µ(r, Fn) < (ρ(fn) + ε)logµ(2r, Fn−1) +O(1).

So,

log[3]µ(r, Fn) < (ρ(fn−1) + ε)logµ(22r, Fn−2) +O(1).

Therefore,

log[4]µ(r, Fn) < (ρ(fn−2) + ε)logµ(23r, Fn−3) +O(1).

After (n− 2) steps we get

log[n]µ(r, Fn) < (ρ(f2) + ε)logµ(2n−1r, F1) +O(1)

= (ρ(f2) + ε)logµ(2n−1r, (1− α)z + αf1) +O(1)

≤ (ρ(f2) + ε)[logµ(2n−1r, αf1) + logµ(2n−1r, (1− α)z)] +O(1)

= (ρ(f2) + ε)[logµ(2n−1r, f1) + logµ(2n−1r, z)] +O(1)

= (ρ(f2) + ε)[logµ(2n−1r, f1) + log2n−1r)] +O(1)

≤ (ρ(f2) + ε)[logµ(2n−1r, f1) + logµ(2n−1r, f1)] +O(1)

= 2(ρ(f2) + ε)logµ(2n−1r, f1) +O(1)

< (ρ(f2) + ε)(2n−1r)(ρ(f1)+ε) +O(1).

On the other hand, for a sequence r = rn →∞

log[2]µ(r, fn) < (ρ(fn)− ε)logr.

Expressing Rn = (log rn)
1

ρ(fn) it follows that

log[2]µ(exp(Rρ(fn)
n ), fn) > (ρ(fn)− ε)Rn

ρ(fn).
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Thus for r = Rn(≥ r0)

log[n]µ(r, Fn)

log[2]µ(exp(rρ(fn)), fn)
<

(ρ(f2) + ε)(2n−1r)(ρ(f1)+ε) +O(1)

(ρ(fn)− ε)rρ(fn)
.

Hence,

lim inf
r→∞

log[n]µ(r, Fn)

log[2]µ(exp(rρ(fn)), fn)
= 0.

Theorem 3.6. Let f1, f2, ..., fn are entire functions of finite orders with λ(f1) > ρ(fk)(1 ≤
k ≤ n) and λ(fn) > 0 and suppose eγ(µ(

r
4
,Fn))δ ≥ µ(r, Fn) holds for every γ > 0, δ > 0 and

also for every positive integer n.Then

lim
r→∞

log[n]µ(r, Fn)

log[2]µ(exp(rρ(fk)), fk)
=∞.

Proof. We choose ε, so that 0 < ε < λ(f1)− ρ(fk). From (3.5) we get for all r ≥ r0

log[2]µ(r, Fn) >
1

2n−1
(λ(fn)− ε)(λ(fn−1)− ε)...(λ(f2)− ε)[(

r

4n−1
)λ(f1)−ε − log r

4n−1
] +O(1).

On the other hand for all r ≥ r0

log[2]µ(r, fk) < (ρ(fk) + ε) log r

i.e., log[2]µ(exp(rρ(fk)), fk) < (ρ(fk) + ε) rρ(fk).

Thus for all sufficiently large r

log[2]µ(r, Fn)

log[2]µ(exp(rρ(fk)), fk)
>

1
2n−1 (λ(fn)− ε)(λ(fn−1)− ε)...(λ(f2)− ε)[( r

4n−1 )λ(f1)−ε − log r
4n−1 ] +O(1)

(ρ(fk) + ε) rρ(fk)

→∞ as r →∞.

Hence,

lim
r→∞

log[2]µ(r, Fn)

log[2]µ(exp(rρ(fk)), fk)
=∞.
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