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Abstract. In this paper, we consider the SIRC (Susceptible-Infected-Recovered-Cross immune) epidemic 

model. First the non-negative solution of the SIRC model in fractional order is presented. Then the multi-step 

generalized differential transform method (MSGDTM) is employed to compute an approximation to the 

solution of the model of fractional order. The obtained results are compared with the results by forth order 

Runge-Kutta method and nonstandard numerical method in the integer form. Finally, we present some 

numerical results. 

 

1. Introduction 

 

Infectious agents have had decisive influence on the history of mankind. In fourteenth 

century Black Death has taken lives of about one third of Europe’s population [1]. The first 

major epidemic in the USA was Yellow Fever epidemic in Philadelphia in 1793, in which 

about 5,000 human died out of total 50,000 population. Epidemic models are used to 

understand the spread of infectious diseases in population [1, 2]. The practical use of 

epidemic models must rely heavily on the realism put into the models. This does not mean 

that a reasonable model can include all possible effects but rather incorporate the 

mechanisms in the simplest possible fashion so as to maintain major components that 

influence disease propagation. Great care should be taken before epidemic models are used 

for prediction of real phenomena [3]. However, even simple models should, and often pose 

important questions about the underlying mechanisms of infection spread and possible 

means of control of the disease or epidemic. Kermack and McKendrick first time introduced 

an epidemic model see for more detail [2]. These papers have had a major influence on the 

development of mathematical models to capture the spread of different diseases and are 

still useful in many epidemic situations. The models presented in these papers laid out a 

foundation for modeling infectious diseases in constant population. It means that there is 

no birth or death from infection. Kermack and McKendrick [2] in their first paper start with 

the assumption that all members of the community are initially equally susceptible to the 

disease, and that a complete immunity is conferred after the infection. The population is 

divided into three distinct classes: S represents healthy individuals who can catch the 

disease; I represents the number of infected individuals; R represents the recovered 
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(removed) individuals who have had the disease and are now immune to the infection (or 

removed from further propagation of the disease by some other means). These 

subdivisions of the population are called compartments. To formulate in regular order, the 

individual goes through consecutive states like S  I  R, 

such models are often called the SIR models. 

Two epidemic models: the susceptible-infected-susceptible (SIS) model and the susceptible 

infected-recovered (SIR) model are commonly used for studying the spreads of epidemics 

[3,4]. In the SIS epidemic model a recovered individual can be infected again while in the 

SIR model which assume recovered individuals have lifelong immunity to the disease and 

this difference makes them suitable for different kinds of infectious diseases. For instance, 

childhood diseases in which individuals can have long-lasting immunity, either naturally or 

from vaccination, are appropriate for SIR model. While for viruses transmitting infection, it 

is more reasonable to use SIS model. Several researchers considered both SIS and SIR 

epidemic models and presented different epidemics in different regions all over the world 

[3-5]. Hethcote [6], presented the interaction of susceptible S(t), infected I(t) and 

recovered R(t) individuals is given by: 

 

( )
( ) ( ) ( ) ( ) ,

( )
( ) ( ) ( ) ( ) ,

( )
( ) ( ) .

d S t
N t S t S t I t

d t

d I t
S t I t I t

d t

d R t
I t R t

d t

 

  

 

  

  

 

 

Here N(t) is the total population,   is the interaction rate of infection,   is the death rate 

and   is the recovery rate. Zaleta and Henandez [7] considered a simple two dimensional 

SIS model with vaccination showing backward bifurcation. Casagrandi et al. [9] presented 

the SIRC (Susceptible-Infected-Recovered-Cross-immune) model. This compartment (C) 

presents an intermediate state between the fully susceptible (S) and the fully protected (R) 

one. For numerical solutions Jodar et al. [9] presented the nonstandard finite difference 

schemes. Also Samanta [10] extended the work of Casagrandi et al. [9] for time dependent 

population size and distributed time delay. But all these work has been done in the integer 

order differential equations. 

Nowadays several researchers work on the fractional order differential equations because 

of best presentation of many phenomena. Fractional calculus represents a generalization of 

the ordinary differentiation and integration to non-integer and complex order. Fractional 

calculus is used to established new models in many fields not only in mathematics see for 
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example [11-16]. For this purpose Shahed and Alseadi [17] developed a fractional SIRC 

model. In their work they presented a detailed analysis for the asymptotic stability of 

disease-free and positive fixed point. 

In this paper, we consider an SIRC model. First we show the positive solution of  SIRC 

model in fractional order. Then we use the multi-step generalized differential transform 

method to approximate the numerical solution. Finally we compare our numerical results 

with nonstandard numerical method and forth order Runge-Kutta method.  

This paper is organized as: In Section 2, we present formulation of the model with some 

basic definitions and notations related to this work. In Section 3, we show the non-negative 

solution and uniqueness of the model. In Section 4, the multi-step generalized differential 

transform method (MSGDTM) is applied to the model. In Section 5, the numerical 

simulations are presented graphically. Finally, we give conclusion.  

 

2. Formulation of Model with Preliminaries 

 

Here, we consider the model taking by M. El-Shahed et al. [17]. 

 

( )
(1 ( )) ( ) ( ) ( ) ,

( )
( ) ( ) ( ) ( ) ( ) ( ) ,

( )
(1 ) ( ) ( ) ( ) ( ) ( ) ,

( )
( ) ( ) ( ) ( ) ( ) .

d S t
S t I t S t C t

d t

d I t
I t S t C t I t I t

d t

d R t
C t I t I t R t

d t

d C t
R t C t I t C t

d t

  

    

    

   

   

   

    

   

                     (1) 

 

 With  
0 0 0 0

( 0 ) , ( 0 ) , ( 0 ) , ( 0 ) .S S I I R R C C     

 

Here   is the contact rate of infection, 
1




 is the cross-immune period, 
1




 is the 

infectious period, 
1




 is the total immune period and   is the fraction of the exposed 

cross-immune individuals who are recruited in a unit time into the infective subpopulation.  

The total population ( ) ( ) ( ) ( ) ( ),N t S t I t R t C t      

so we obtain by adding all equations of the system (1)  
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( )
(1 ( )) .

d N t
N t

d t

                                                                         (2)                           

Now we introduced fractional order to the system (1) which is consisting of ordinary 

differential equations. The new system is described by the following set of fractional order 

differential equations: 

( ) (1 ( ) ) ( ) ( ) ( ) , ( 3 )

( ) ( ) ( ) ( ) ( ) ( ) ( ) , ( 4 )

( ) (1 ) ( ) ( ) ( ) ( ) ( ) , ( 5 )

( ) ( ) ( ) ( ) ( ) ( ) , ( 6 )

( ) ( ) . ( 7 )

t

t

t

t

t

D S t S t S t I t C t

D I t S t I t C t I t I t

D R t C t I t I t R t

D C t R t C t I t C t

D N t N t











  

    

    

   

 

   

   

    

   

 

               

Here we used the Caputo sense fractional derivative 
t

D
 .  

Now we give some basic definitions related to this work and fractional calculus [11-16]. 

 

 Definition  A function ( )( 0 )f x x    is said to be in the space ( )C R

    if it can be written 

as for some  p    where 
1
( )f x   is continuous in [0 , ),   and it is said to be in space m

C


  if  

( )
, .

m
f C m N


   

  

 Definition The Riemann-Liouville integral operator of order 0    with 0a    is defined as 

 

1 1
( )( ) ( ) ( ) , , (8 )

( )

0
( )( ) ( ) . ( 9 )

x
J f x x t f t d t x aaa

J f x f x
a

 




  





               

 

Properties of the above operator can be found in [11]. We only need the following: 

 

 Definition  For  , , 0 , 0 ,f C and fo r a c R


       and  1,     we have 

 

( )( ) ( )( ) ( )( ) , (1 0 )

( , 1) , (1 1)

( )

a a a a a

a x a

x

J J f x J J f x J f x

x
J x B

     

 

 
 









 

 


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 where ( , 1)B

     is incomplete beta function which is defined as 

 

0

0

1
( , 1) (1 ) , (1 2 )

[ ( )]
( ) . (1 3 )

( 1)k

k
cx a c

a

B t t d t

c x a
J e e x a

k



 



 

 








  


 

  

 

 

 Definition The Caputo fractional derivative of ( )f x  of order 0   with 0a   is defined as 

 

( )
( )

1

1 ( )
( )( ) ( ) ( ) , (1 4 )

( )( )

x

a

m
m m

a a m

f t
D f x J f x d t

x tm

 






 
 

 

 

 

for  
1

1 , , , ( ) .
m

m m m N x a f x C


       

The fractional derivative was investigated by many authors, for 1 , ( )
m

m m f x C


      

and  1,     we have 

1

0

( ) ( )
( ) ( ) ( ) ( ) ( ) . (1 5 )

!

m

k

k
m m k

a a

x a
J D f x J D f x f x f a

k

 





    

 

For mathematical properties of fractional derivatives and integrals one can consult the 

mentioned references. 

  

3. Non-negative solutions 

 

Let 5 5
{ : 0}R X R X


    and  ( ) ( ) , ( ) , ( ) , ( ) , ( )

T

X t S t I t R t C t N t . For the proof of the 

theorem about non-negative solutions we shall need the following Lemma [16]: 

 Lemma (Generalized Mean Value Theorem) Let ( ) [ , ]f x C a b and  ( ) [ , ]D f x C a b


 for  

0 1 .   

Then we have,  

1
( ) ( ) ( ) ( ) (1 6 )

( )

f x f a D f x a
 





  



 

 

with  0 ,x    for all  ( , ] .x a b  

 

 Remark Suppose  ( ) [ , ]f x C a b   and  ( ) [ , ]D f x C a b


   for  0 1 .   It is clear from the 



6 / 19 
ANWAR ZEB, GUL ZAMAN, M. IKHLAQ CHOHAN, SHAHER MOMANI,  VEDAT SUAT ERTÜRK  

above Lemma that if ( ) 0 ,D f x


  for all (0 , ),x b  then the function f  is non-decreasing, 

and if  ( ) 0 ,D f x


  for all (0 , ),x b  then the function f  is non-increasing. 

 

 Theorem There is a unique solution for the initial value problem given by (3)-(7), and the 

solution remains in 5
.R


 

 Proof The existence and uniqueness of the solution of (3)-(7), in (0 , )   can be obtained 

from [16, Theorem 3.1 and Remark 3.2]. We need to show that the domain 5
R


  is positively 

invariant. Since 

 

0

0

0

0

0

| 0 ,

| 0 ,

| (1 ) 0 ,

| 0 ,

| 0 .

S

I

R

C

N

D S C

D I

D R C I I

D C R

D N











 

  















  



   

 

 

 

 

 

On each hyper-plane bounding the nonnegative orthant, the vector field points into 5
.R


 

 

4. Multi-step generalized differential transform  

method. 

 

We applying the multi-step generalized differential transform method to fined the 

approximate solution of equations (3)-(7), which gives an accurate solution over a longer 

time frame as compared to the standard generalized differential transform method. Taking 

the differential transform of equations (3)-(7) with respect to time we obtain, 

 



7 / 19 
ANALYTIC NUMERIC SOLUTION FOR SIRC EPIDEMIC MODEL IN FRACTIONAL ORDER 

 

 

 

0

0 0

0

( 1)
( 1) (1 ( )) ( ) ( ) ( ) ,

( ( 1) 1)

( 1)
( 1) ( ) ( ) ( ) ( ) ( ) ( ) ,

( ( 1) 1)

( 1)
( 1) (1 ) ( ) ( ) ( ) ( ) ( ) , (1 7 )

(( 1) 1)

( 1

k

i

k k

i i

k

i

k
S k S k S k i I i C k

k

k
I k S k i I i C k i I i I k

k

k
R k C k i I i I k R k

k

C k


  




    




    





 



 
     

  

 
       

  

 
      

  

  

 

0

( 1)
) ( ) ( ) ( ) ( ) ( ) ,

( ( 1) 1)

( 1)
( 1) ( ) .

( ( 1) 1)

k

i

k
R k C k i I i C k

k

k
N k N k

k


   




 





 
    

  

 
  

  

 

Here  ( ), ( ), ( ), ( )S k I k R k C k   and  ( )N k  are the differential transformation of  

( ), ( ), ( ), ( )S t I t R t C t   and ( ).N t  The differential transform of the initial conditions are 

0 0 0 0
( 0 ) , ( 0 ) , ( 0 ) , ( 0 )S S I I R R C C      and  

0
( 0 ) .N N   

In view of the differential inverse transform, the differential transform series solution for 

the system can be obtained as 

 

                              

0

0

0

0

0

( ) ( ) ,

( ) ( ) ,

( ) ( ) ,

( ) ( ) ,

( ) ( ) .

K

k

K

k

K

k

K

k

K

k

k

k

k

k

k

S t S k t

I t I k t

R t R k t

C t C k t

N t N k t














































                                          (18) 

 

 

Now according to the multi-step generalized differential transform method the series 

solution for the equations (3)-(7) is suggested by 
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1 1
0

2 1 1 2
0

1 1
0

( ) , [ 0 , ]

( ) ( ) , [ , ]

.
( )

.

.

( ) ( ) , [ , ]

K

k

K

k

K

M M M M
k

k

k

k

S k t t t

S k t t t t t

S t

S k t t t t t











 


 

  



  

















                (19) 

 

                   

1 1
0

2 1 1 2
0

1 1
0

( ) , [ 0 , ]

( ) ( ) , [ , ]

.
( )

.

.

( ) ( ) , [ , ]

K

k

K

k

K

M M M M
k

k

k

k

I k t t t

I k t t t t t

I t

I k t t t t t











 


 

  



  

















                  (20) 

 

                   

1 1
0

2 1 1 2
0

1 1
0

( ) , [ 0 , ]

( ) ( ) , [ , ]

.
( )

.

.

( ) ( ) , [ , ]

K

k

K

k

K

M M M M
k

k

k

k

R k t t t

R k t t t t t

R t

R k t t t t t











 


 

  



  

















                   (21) 

 

                    

1 1
0

2 1 1 2
0

1 1
0

( ) , [ 0 , ]

( ) ( ) , [ , ]

.
( )

.

.

( ) ( ) , [ , ]

K

k

K

k

K

M M M M
k

k

k

k

C k t t t

C k t t t t t

C t

C k t t t t t











 


 

  



  

















                   (22) 
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1 1
0

2 1 1 2
0

1 1
0

( ) , [ 0 , ]

( ) ( ) , [ , ]

.
( )

.

.

( ) ( ) , [ , ]

K

k

K

k

K

M M M M
k

k

k

k

N k t t t

N k t t t t t

N t

N k t t t t t











 


 

  



  

















                  (23) 

 

 

Here ( ) , ( ) , ( ) , ( )
j j j j

S k I k R k C k   and  ( )
j

N k   for  1, 2 , ...,j M   satisfy the following 

recurrence relations 

 

 

 

 

0

0 0

0

( 1)
( 1) (1 ( )) ( ) ( ) ( ) ,

( ( 1) 1)

( 1)
( 1) ( ) ( ) ( ) ( ) ( ) ( ) ,

( ( 1) 1)

( 1)
( 1) (1 ) ( ) ( ) ( ) (

( ( 1) 1)

k

i

k k

i i

k

i

j jj j j

j j j jj j

j jj

k
S k S k S k i I i C k

k

k
I k S k i I i C k i I i I k

k

k
R k C k i I i I k

j
k


  




    




    





 



 
     

  

 
       

  

 
      

  
 

 

 

0

) ( ) , ( 2 4 )

( 1)
( 1) ( ) ( ) ( ) ( ) ( ) ,

( ( 1) 1)

( 1)
( 1) ( ) .

( ( 1) 1)

k

i

j

j jj j j

j j

R k

k
C k R k C k i I i C k

k

k
N k N k

k


   




 





 
     

  

 
  

  

 

With the initial conditions 
1 1

( 0 ) ( 0 ), ( 0 ) ( 0 ),
j j j j

S S I I
 

 
1

( 0 ) ( 0 ),
j j

R R


  

1
( 0 ) ( 0 ),

j j
C C


  and 

1
( 0 ) ( 0 ).

j j
N N


  Finally, we start with initial conditions 

0 0 0 0 0
( 0 ) , ( 0 ) , ( 0 ) , ( 0 ) ( 0 ) ,S S I I R R C C and N N       and use the recurrence 

relation given in the above system, we can obtained the multi-step generalized differential 

transform solution given in (19)-(23). 

 

5. Numerical Method and Simulation 

 

We solve analytically the equations (3)-(7) with initial conditions by using the multi-step 

generalized differential transform method (MSGDTM). We also numerically solve by 

nonstandard numerical method and forth-order Runge-Kutta method for numerical results. 
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For numerical simulation we use a set of parameters given in Table 1. To demonstrate the 

effectiveness of proposed algorithm as an approximate tool for solving the nonlinear 

system of fractional differential equations (3)-(7) for large time t, we apply this algorithm 

on the interval [0-30]. 

 

 

Table 1: Parameter values for the numerical simulation 

 

Notation           Parameter description                                                           Value 

                      Natural death rate                                                                    0.02 

                      Contact rate of infection                                                          0.03                                            

                      Cross-immune period                                                               0.05                                                  

                      Infectious period                                                                       0.07                                                                              

                     Total immune period                                                                 0.01                                                                                                             

                     Fraction of the exposed cross-immune  

                        individuals who are recruited in a unit 

                        time into the infective subpopulation                                        0.08                                    

 

 

 

From the graphical results in Figs. 1-5, it can be seen that the results obtained using the 

multi-step generalized differential transform method match the results of the classica l 

Runge–Kutta method very well, which implies that the presented method can predict the 

behavior of these variables accurately for the region under consideration. 

Figs. 6–10 show the approximate solutions for )(),(),(),( tRtItEtS  and )( tN obtained for 

different values of   using the multi-step generalized differential transform method.  
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Fig 1. Shows the susceptible individuals. 

 

 

 

 

 
 

Fig 2. Shows the infected individuals 
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Fig. 3. Shows the recovered individuals 

 

 

 

 

 
Fig 4. Shows the cross-immune individuals 
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Fig 5. Shows the total time dependent population. 

 

 

 

 

 
Fig. 6. )(tS versus t: (solid line) MSGDTM, (dotted line) Runge-Kutta method. 



14 / 19 
ANWAR ZEB, GUL ZAMAN, M. IKHLAQ CHOHAN, SHAHER MOMANI,  VEDAT SUAT ERTÜRK  

 
Fig. 7. )( tI versus t: (solid line) MSGDTM, (dotted line) Runge-Kutta method. 

 

 

 

 

 

 
Fig. 8. )( tR versus t: (solid line) MSGDTM, (dotted line) Runge-Kutta method. 
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Fig. 9. )( tC versus t: (solid line) MSGDTM, (dotted line) Runge-Kutta method. 

 

 

 

 

 
Fig. 10. )( tN versus t: (solid line) MSGDTM, (dotted line) Runge-Kutta method. 
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Fig. 11. )(tS versus t: (solid line) 0.1 (dashed line) 95.0 , (dot-dashed line) 85.0 . 

 

 

 

 

 
Fig. 12. )( tI versus t: (solid line) 0.1 ( dashed line) 95.0 , (dot-dashed line) 85.0 . 
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Fig. 13. )( tR versus t: (solid line) 0.1 ( dashed line) 95.0 , (dot-dashed line) 85.0 . 

 

 

 

 

 
Fig. 14. )( tC versus t: (solid line) 0.1 ( dashed line) 95.0 , (dot-dashed line) 85.0 . 
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Fig. 15. )( tN versus t: (solid line) 0.1 ( dashed line) 95.0 , (dot-dashed line) 85.0 . 

 

6. Conclusion 

 

 In this paper, a fractional order system for SIRC 

(Susceptible-Infected-Recovered-Cross-immune) epidemic model is studied and its 

approximate solution is presented using the multi-step generalized differential transform 

method (MSGDTM).     

The approximate solution obtained by multi-step generalized differential transform 

method are highly accurate and valid for a long time in the integer case. This method is 

very applicable and also this is a good approach for the solutions of differential equations 

of such order. 

This tool is the best one for modeling in science and engineering.    
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