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1Department of Mathematics, Science and Art Faculty,

Gaziantep University, Campus, 27310, Gaziantep, Turkey

(Received 16 December, 2017)

The study is about a new generalization of the second order number sequences called generalized k− Jacob-

sthal sequences. We investigate some properties of this sequence and in the sequel of this paper we prove some

of the properties by using determinant.
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I. INTRODUCTION

Special integer sequences such as Fibonacci, Lucas, Jacob-

sthal, Pell, Horadam are important for various reasons since

we can see abundant applications in Physics, Engineering,

Architecture, Nature and Art. So the researchers have studied

abuut them for a long time. For instance, the ratio of two con-

secutive elements of Fibonacci sequence is called golden ra-

tio, You can encounter it almost every area of science and art.

And specially computers use conditional directives to change

the flow of execution of a program. In addition to branch in-

structions, some microcontrollers use skip instructions which

conditionally bypass the next instruction.This brings out be-

ing useful for one case out of the four possibilities on 2 bits,

3 cases on 3 bits, 5 cases on 4 bits, 11 cases on 5 bits, 21

cases on 6 bits,..., which are exactly the Jacobsthal number-

s. Jacobsthal sequence is defined by the recurrence relations

jn = jn−1 + 2 jn−2, j0 = 0, j1 = 1 for n ≥ 2, respectively.

Because of the importance of special integer sequences, the

scientists generalize them by the different methods. We can

see any properties of these numbers in all references of us.

In this paper, a new generalization of the Jacobsthal se-

quence is introduced. It should be noted that the recurrence

formulas of these numbers depend on two real parameter-

s f (k) and g(k). The main purpose of this paper to es-

tablish some properties of this generalized k-Jacobsthal se-

quence such as Binet formula, generating function, Catalan,

D’ocagne...Moreever new interesting properties are revealed

by using determinant of matrix whose entries are generalized

k-Jacobsthal numbers. Some similar results for the general-

ized k-Horadam sequence are obtained by Yazlik and Taskara

in [8].

II. MAIN RESULTS

In this part we define e new generalization of Jacobsthal

sequences called generalized k-Jacobsthal sequences. We es-

tablish Binet formula and generating function and other dif-

ferent properties.

Definition 1 For f 2(k) + 8g(k) > 0, let k any positive real

number, f (k) and g(k) scalar valued polynomials, then the

generalized k-Jacobsthal sequence
{

Jk,n
}

n∈N is defined recur-

rently by

Jk,n = f (k)Jk,n−1 +2g(k)Jk,n−2, Jk,0 = a, Jk,1 = b, n≥ 2,

(1)
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• If f (k) = g(k) = 1 and a = 0; b = 1, we get the classic

Jacobsthal sequence is obtained.

The first few of the elements of the generalized k-Jacobsthal

sequence are Jk,0 = a, Jk,1 = b, Jk,2 = b f (k)+2ag(k), Jk,3 =

b f 2(k)+2a f (k)g(k)+2bg(k)...

The characteristic equation of (1) is given with the follow-

ing formula

x2− f (k)x−2g(k) = 0

with roots

α =
f (k)+

√
f 2(k)+8g(k)
2

, β =
f (k)−

√
f 2(k)+8g(k)
2

,

(2)

so that

α +β = f (k), αβ =−2g(k), α−β =
√

f 2(k)+4g(k).

(3)

Lemma 2 Let α ,β be roots of the characteristic equation of

(1) as defined in (2), then the following equality is satisfied:

Jk,n = αJk.n−1 +(Jk,1−αJk,0)β
n−1. (4)

Proof. By usig the properties of α ,β we have

Jk,n = f (k)Jk,n−1 +2g(k)Jn−2

Jk,n = (α +β )Jk,n−1− (αβ )Jk,n−2

Jk,n−αJk,n−1 = β (Jk,n−1−αJk,n−2) (5)

Similarly for n−1→ n,

Jk,n−1 = f (k)Jk,n−2 +2g(k)Jk,n−3

Jk,n−1 = αJk,n−2 +βJk,n−2− (αβ )Jk,n−3 (6)

If we substitıte Eq. (6) into (5), we obtain

Jk,n−αJk,n−1 = β (αJk,n−2 +βJk,n−2− (αβ )Jk,n−3−αJk,n−2)

= β
2(Jk,n−2−αJk,n−3)

Jk,n = αJk,n−1 +β
2(Jk,n−2−αJk,n−3)

By making the same reduction precedure n times at last we

have

Jk,n = αJk.n−1 +(Jk,1−αJk,0)β
n−1.

Theorem 3 (Binet Forms): Binet’s formulas allow us to ex-

press the generalized k-Jacobsthal numbers in function of the

roots α,β are defined by

Jk,n =
Xαn−Y β

n

α−β
(7)

where X = b−aβ , Y = b−aα.

Proof. 1) Let divide both sides of (4) by β
n

Jk,n = αJk.n−1 +(Jk,1−αJk,0)β
n−1

Jk,n

β
n =

α

β

Jk.n−1

β
n−1 +

β
n−1

β
n (Jk,1−αJk,0)

If we write the first order linear difference equation by the

above equality, we have

Vn =
α

β
Vn−1 +

Jk,1−αJk,0

β

The solution of this equation is get by

Vn = (
α

β
)nJk,0 +

Jk,1−αJk,0

β

(α

β
)n−1

α

β
−1

.

By the algebraic operations, we have

Jk,n

β
n =

αn

β
n Jk,0 +

Jk,1−αJk,0

β

αn−β
n

β
n(α−β )

β

Jk,n = α
n(Jk,0 +

Jk,1−αJk,0

α−β
)−β

n(
Jk,1−αJk,0

α−β
)

Jk,n = α
n(

Jk,1−βJk,0

α−β
)−β

n(
Jk,1−αJk,0

α−β
)

So the proof is completed.

Proof. 2) Let us define n. generalized k-Jacobsthal number by

aid of the roots α,β as

Jk,n = c1α
n + c2β

n.

For n = 0, we get Jk,0 = c1 + c2 = a and for n = 1, we get

Jk,1 = c1α + c2β = b. From this two equalities, we have the

desired result.
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Theorem 4 (Generating Function) The generating function

of generalized k-Jacobsthal numbers is established as
∞

∑
i=0

Jk,ixi =
Jk,0 + x(Jk,1− f (k)Jk,0)

1− f (k)x−2g(k)x2 . (8)

Proof. Let the generating function of generalized k-Jacobsthal

numbers is J(x) = Jk,n = Jk,0 + xJk,1 + ...+ xnJk,n + ... If we

multiply J(x) by f (x)x and 2g(k)x2,then we get

f (x)xJ(x)= f (x)xJk,n = f (x)xJk,0+ f (x)x2Jk,1+...+ f (x)xn+1Jk,n+...

2g(k)x2J(x) = g(k)x2Jk,0+g(k)x3Jk,1+ ...+g(k)xn+2Jk,n+ ...

From the difference of three equalities, we have the desired

result

(1− f (k)x−g(k)x2)Jk,n = Jk,0 + x(Jk,1− f (k)Jk,0).

Theorem 5
n−1

∑
k=0

Jk

tk =
1

(α−β )tn−1

[
X(αn− tn)(β − t)−Y (β n− tn)(α− t)

t2−2g(k)− f (k)t

]
Proof. The proof is easily seen by using the Binet formula.

Theorem 6 For
∣∣α

t

∣∣< 1 ,
∣∣∣β

t

∣∣∣< 1, the generating function of

the generalized k-Jacobsthal number with the negative power

of t is computed as
∞

∑
i=0

Ji

t i =
t(b+at−a f (k))
t2− f (k)t−2g(k)

.

Proof. We use Binet formula and the sum of geometric series

for the proof:

∞

∑
i=0

Ji

t i = lim
n→∞

n−1

∑
i=0

X
(

α

t

)i−Y
(

β

t

)i

α−β

=
1

α−β
lim
n→∞

X

((
α

t

)n−1
α

t −1

)
−Y


(

β

t

)n
−1

β

t −1


=

1
α−β

[
Xt

t−α
− Yt

t−β

]
=

t
α−β

[
(b−aβ )(t−β )− (b−aα)(t−α)

(t−α)(t−β )

]
=

t
α−β

[
b(α−β )+at(α−β )−a(α2−β

2)

t2− f (k)t−2g(k)

]

=
t(b+at−a f (k))
t2− f (k)t−2g(k)

.

Theorem 7 (Catalan Identity) Assume that r > 0 and integer,

we compute the Catalan identity by the following formula

Jk,n+rJk.n−r− J2
k.n =−XY (−2g(k))n−r

(
αr−β

r

α−β

)2

.

Proof. By using Binet form for this sequence, we have

Jk,n+rJk.n−r− J2
k.n

=
(Xαn−r−Y β

n−r)(Xαn+r−Y β
n+r)

(α−β )2 − (Xαn−Y β
n)2

(α−β )2

=
X2α2n +Y 2β

2n−XY (αβ )n
[

β
r

αr +
αr

β
r

]
(α−β )2

−X2α2n +Y 2β
2n−2XY (αβ )n

(α−β )2

=
XY (αβ )n

[
2− β

r

αr − αr

β
r

]
(α−β )2

=
XY (αβ )n

[
2αrβ

r−β
2r−α2r

αrβ
r

]
(α−β )2

=−XY (αβ )n−r (α
r−β

r)2

(α−β )2

=−XY (−2g(k))n−r
(

αr−β
r

α−β

)2

.

Corollary 8 (Cassini Identity) If we substitute r = 1 at the

Catalan Identity in (9), we obtain Cassini formula for gener-

alized k-Jacobsthal sequence as the following:

Jk,n+1Jk.n−1− J2
k.n = XY (−2g(k))n−1b2.

Theorem 9 (D’ocagne Property) For m,n > 0, integer, we

compute the D’ocagne property for generalized k-Jacobsthal

sequence by the following formula

Jk,mJk,n+1−Jk,m+1Jk,n =
XY f (k)

f 2(k)+4g(k)

[
(−2g(k)m(β n−m +α

n−m)
]
.

where X = b−aβ , Y = b−aα.
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Proof. By using Binet form for this sequence, we have

Jk,mJk,n+1− Jk,m+1Jk,n

=
Xαm−Y β

m

α−β

Xαn+1−Y β
n+1

α−β

−Xαm+1−Y β
m+1

α−β

Xαn−Y β
n

α−β

=
XY

(α−β )2 [α
m

β
n(β +α)+β

m
α

n(α +β )]

=
XY

(α−β )2 (α +β )
[
(αβ )m(β n−m +α

n−m)
]

=
XY f (k)

f 2(k)+4g(k)

[
(−2g(k))m(β n−m +α

n−m)
]
.

Theorem 10 (Honsberger Property)Assume that m,n > 0
and integer, we establish

Jk,m+1Jk,n+Jk,mJk,n−1 =
1

(α−β )2


X2αm+n+1(α2 +1)+Y 2β

m+n−1(β 2 +1)

+XY (2g(k)−1)(αmβ
n−1 +αn−1β

m)

 .
Proof. The proof is similarly made by using the Binet formu-

la.

Theorem 11 Let p > q ≥ 0, then we have the following sum

property

n

∑
i=0

Jk,pi+q =
(−2g(k))p(Jk,pn+q− Jk,q−p)− Jk,pn+p+q + Jk,q

(−2g(k))p−αn−β
n +1

.

Proof. By using Binet formula
n

∑
i=0

Jk,pi+q =
n

∑
i=0

Xα pi+q−Y β
pi+q

α−β

=
Xαq

α−β

n

∑
i=0

α
pi− Y β

q

α−β

n

∑
i=0

β
pi

By the sum of the geometric sequences

n

∑
i=0

Jk,pi+q =
Xαq

α−β

α p(n+1)−1
α p−1

− Y β
q

α−β

β
p(n+1)−1
β

p−1

=
1

α−β

 Xαq(α pn(−2g(k))p−α p(n+1)−β
p+1)

(−2g(k))p−(α p+β
p)+1

−Y β
q(α pn(−2g(k))p−α p−β

p(n+1)+1)
(−2g(k))p−(α p+β

p)+1



=
1

α−β

 (−2g(k))p(Xα pn+q−Y β
pn+q)−(Xα pn+p+q−Y β

pn+p+q))
(−2g(k))p−(α p+β

p)+1
−(Xαqβ

p−Y α pβ
q)+(Xαq−Y β

q

(−2g(k))p−(α p+β
p)+1


=

(−2g(k))p(Jk,pn+q− Jk,q−p)− Jk,pn+p+q + Jk,q

(−2g(k))p−α p−β
p +1

.

Theorem 12 For n > 0, integer, the sum of the square of the

elements of this sequence is given as

n−1

∑
i=0

J2
k,i =

1
(α−β )2


(αβ )2[(Xαn−1)2+(Y β

n−1)]+(X2+Y 2)
4g2(k)− f 2(k)−4g(k)+1

− (X2β
2+Y 2α2)+(X2α2n+Y 2β

2n)
4g2(k)− f 2(k)−4g(k)+1 + 2XY (−2g(k))n−1

2g(k)+1

 .
Proof. The proof is similarly made by using the Binet formula

and sum property of geometric series.

Theorem 13 For n ≥ 0, integer, a new sum formula for gen-

eralized k-Jacobsthal sequence is given as

n

∑
i=0

 n

i

 f i(k)(2g(k))n−iJi = J2n.

Proof.
n

∑
i=0

 n

i

 f i(k)(2g(k))n−iJi =
n

∑
i=0

 n

i

 f i(k)(2g(k))n−i Xai−Y β
i

α−β

=
1

α−β

 n

∑X
i=0

 n

i

( f (k)α)i(2g(k))n−i−
n

∑Y
i=0

 n

i

( f (k)β )i(2g(k))n−i


=

1
α−β

[X( f (k)α +2g(k))n−Y ( f (k)β +2g(k))n]

=
1

α−β

[
Xα

2n−Y β
2n
]
= J2n.

Theorem 14 The n. element of the generalized k-Jacobsthal

sequence is established by using matrix algebra as Jn+1

Jn

=

 f (k) 2g(k)

1 0

n J1

J0

 .
Proof. Let us write two equations with two unknowns X ,Y

JnX + Jn−1Y = Jn+1

Jn+1X + JnY = Jn+2

We denote the equations matrix form as

A=

 Jn Jn−1

Jn+1 Jn

 u=

 X

Y

 b=

 Jn+1

Jn+2

 .
For the solution of it we use Cramer method, so we get the

solution for Y as

Y =

∣∣∣∣∣∣ Jk,n Jk,n+1

Jk,n+1 Jk,n+2

∣∣∣∣∣∣∣∣∣∣∣∣ Jk,n Jk,n−1

Jk,n+1 Jk,n

∣∣∣∣∣∣
= 2g(k)
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Wn = JnJn+2− J2
n+1

= (Jn+1Jn−1− J2
n )2g(k)

= 2g(k)Wn−1

= (2g(k))2Wn−2

.

.

.

= (2g(k))n−1W1 = (2g)n−1(J2J0− J2
1 )

= (2g(k))n−1(ab f (k)+2a2g(k)−b2)

Theorem 15 Let define a 2x2 matrix Xn =

 Jk,n−1 Jk,n

Jk,n Jk,n+1


entries are generalized k-Jacobsthal numbers, then the deter-

minant of Xn is |Xn|= (−g(k))n−1(a2g(k)+ab f (k)−b2).

Proof. We use the induction method for the proof. For m = 1,

|X1|=

∣∣∣∣∣∣ Jk,0 Jk,1

Jk,1 Jk,2

∣∣∣∣∣∣= (−2g(k))0(2a2g(k)+ab f (k)−b2).

And similarly for m = 2

|X2|=

∣∣∣∣∣∣ Jk,1 Jk,2

Jk,2 Jk,3

∣∣∣∣∣∣= (−2g(k))1(2a2g(k)+ab f (k)−b2).

Let the assertion is true for all k ≤ m

|Xm|=

∣∣∣∣∣∣ Jk,m−1 Jk,m

Jk,m Jk,m+1

∣∣∣∣∣∣=(−2g(k))m−1(2a2g(k)+ab f (k)−b2).

Now we want to show that it is true for k=m+1. If we product

the first row by 2g(k) and the second row by f (k),we have

2g(k) f (k) |Xm|=

∣∣∣∣∣∣ 2g(k)Jk,m−1 2g(k)Jk,m

f (k)Jk,m f (k)Jk,m+1

∣∣∣∣∣∣ .
If we add the second row to the first row, we have

2g(k) f (k) |Xm|=

∣∣∣∣∣∣ Jk,m+1 Jk,m+2

f (k)Jk,m f (k)Jk,m+1

∣∣∣∣∣∣= f (k)

∣∣∣∣∣∣ Jk,m+1 Jk,m+2

Jk,m Jk,m+1

∣∣∣∣∣∣
=− f (k)

∣∣∣∣∣∣ Jk,m Jk,m+1

Jk,m+1 Jk,m+2

∣∣∣∣∣∣=− f (k) |Xm+1| .

From this equality, we obtain

|Xm+1|=−2g(k) |Xm|

(−2g(k))m(2a2g(k)+ab f (k)−b2).

From this equality, we complete the proof.

Theorem 16 Assume that Yr =

 Jk,n+r Jk,n

Jk,n+r+1 Jk,n+1

 be with

the entries are generalized k-Jacobsthal numbers then the fol-

lowing properties are hold:

• |Yr+2|= f (k) |Yr+1|+2g(k) |Yr|

• |Yr|= (−2g(k))n(bJk,r−aJk,r+1).

Proof.
A = f (k) |Yr+1|+2g(k) |Yr|

= f (k)

∣∣∣∣∣∣ Jk,n+r+1 Jk,n

Jk,n+r+2 Jk,n+1

∣∣∣∣∣∣+2g(k)

∣∣∣∣∣∣ Jk,n+r Jk,n

Jk,n+r+1 Jk,n+1

∣∣∣∣∣∣
A = f (k)(Jk,n+1Jk,n+r+1− Jk,nJk,n+r+2)+2g(k)(Jk,n+1Jk,n+r− Jk,nJk,n+r+1)

= Jk,n+1( f (k)Jk,n+r+1 +2g(k)Jk,n+r)− Jk,n( f (k)Jk,n+r+2 +2g(k)Jk,n+r+1)

= Jk,n+1Jk,n+r+2− Jk,nJk,n+r+3

= |Yr+2|

(ii) We use induction steps on r. For r = 0, it is easy to see
that |Y0|= 0. For r = 1,

2g(k) f (k) |Xm|= 2g(k) f (k)

∣∣∣∣∣∣ Jk,m−1 Jk,m

Jk,m Jk,m+1

∣∣∣∣∣∣=
∣∣∣∣∣∣ 2g(k)Jk,m−1 f (k)Jk,m

2g(k)Jk,m f (k)Jk,m+1

∣∣∣∣∣∣
=

∣∣∣∣∣∣ f (k)Jk,m +2g(k)Jk,m−1 f (k)Jk,m

f (k)Jk,m+1 +2g(k)Jk,m f (k)Jk,m+1

∣∣∣∣∣∣
= f (k)

∣∣∣∣∣∣ Jk,m+1 Jk,m

Jk,m+2 Jk,m+1

∣∣∣∣∣∣= f (k) |Y1|

2g(k) |Xm|= 2g(k)(−2g(k))m−1(2a2g(k)+ab f (k)−b2)

|Y1|= (−2g(k))m(−2a2g(k)−ab f (k)+b2)

= (−2g(k))m(bJk,1−aJk,2)

Let the assertion is true for all k ≤ m, that is |Yr| =
(−2g(k))m(bJk,r − aJk,r+1). Now we want to show that it is
true for k = m+1

|Yr| = (−2g(k))m(bJk,r−aJk,r+1)

|Yr+1| = f (k) |Yr|−2g(k) |Yr−1|

= f (k)(−2g(k))m(bJk,r−aJk,r+1)+2g(k)(−2g(k))m(bJk,r−1−aJk,r)

= (−2g(k))m{b[ f (k)Jk,r +2g(k)Jk,r−1]−a[ f (k)Jk,r+1 +2g(k)Jk,r]}

= (−2g(k))m(bJk,r+1−aJk,r+2)

which ends of the proof.
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If we choose m place of n+r in the theorem ,we obtain

another formula for the D′ocaigne identity for the generalized

k-Jacobsthal numbers.∣∣∣∣∣∣ Jk,m Jk,n

Jk,m+1 Jk,n+1

∣∣∣∣∣∣
= Jk,mJk,n+1− Jk,m+1Jk,n

= (−2g(k))n(bJk,m−n−aJk,m−n+1).

Theorem 17 Assume that Zs =

 Jk,n Jk,n−r

Jk,n+s Jk,n−r+s

 be with

the entries are generalized k-Jacobsthal numbers then the fol-

lowing properties are hold:

|Zs+2|= f (k) |Zs+1|+g(k) |Zs|

Proof.

f (k) |Zs+1|+g(k) |Zs|= f (k)

∣∣∣∣∣∣ Jk,n Jk,n−r

Jk,n+s+1 Jk,n−r+s+1

∣∣∣∣∣∣+2g(k)

∣∣∣∣∣∣ Jk,n Jk,n−r

Jk,n+s Jk,n−r+s

∣∣∣∣∣∣

= f (k)(Jk,nJk,n−r+s+1− Jk,n−rJk,n+s+1)+2g(k)(Jk,nJk,n−r+s− Jk,n+sJk,n−r)

=−Jk,n−r( f (k)Jk,n+s+1 +2g(k)Jk,n+s)+ Jk,n( f (k)Jk,n−r+s+1 +2g(k)Jk,n−r+s)

=−Jk,n−rJk,n+s+2 + Jk,nJk,n−r+s+2

= |Zs+2|
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