ON COMPLETENESS AND BICOMPLETIONS OF QUASI b-METRIC SPACES

M. APHANE AND S.P. MOSHOKOA

Abstract. The purpose of this paper is to present results on completeness and bicompletions of quasi b-metric spaces. We further discuss extension of maps defined on a dense subspace to the whole space.

1. Introduction

In the literature one find a rich theory on completeness of metric spaces and quasi metric spaces for example: Doitchinov’s completion [5], Yoneda’s completion [10], Salbany’s completion [13] and Smyth’s completion [16]. Note that the current completion theory on metric spaces and quasi metric spaces does not cater and address for a completion of some mathematical structures: For example the space X, where X is the set of rational numbers equipped with the distance function $d(x,y) = (x - y)^2$. We easily see that (X,d) is neither a metric space nor a quasi metric space. The completion of X is just \tilde{X}, the set of real numbers with the distance function $d(x,y) = (x - y)^2$. So certainly, we need a formal and explicit structure to address this motivation.

The notion of b-metric spaces was first introduced and studied by Bakhtin [1] in 1989. Due to its importance, Czerwik used the notion to present and study some generalization of contraction mappings in [2] and also in [3]. Subsequently, several researchers motivated by the notion of b-metric spaces have obtained interesting extensions of the Banach contraction principle see the papers [4] and [11] for example.

Inspired by the notion of b-metric spaces we introduce the concept of quasi b-metric spaces and deduce several results in this context. Among other results presented in the paper, we show that every quasi b-metric space admits a bicompletion which is unique up to isometry, and we
also show that every quasi b-metric space is quasi metrizable. On the other hand, we have provided some examples to show the generality of our results. In particular, we extend the work of [12] and some others.

2. Basic notions and preliminaries

Our basic references for quasi uniform spaces and quasi metric spaces are [6] and [9] respectively. Recall that:

Definition 2.1. [9] A **quasi metric space** is a pair $\langle X, d \rangle$ where $d : X \times X \to [0, \infty)$ satisfies the following for all $x, y, z \in X$:

(i) $d(x, y) = 0$ if and only if $x = y$.
(ii) $d(x, y) \leq d(x, z) + d(z, y)$.

Example 2.1. Let $X = [0, \infty)$ and $d : X \times X \to [0, \infty)$ be defined by

$$d(x, y) = \begin{cases} 1 & \text{if } x > y, \\ 0 & \text{if } x \leq y. \end{cases}$$

Then $\langle X, d \rangle$ is a quasi metric space.

Definition 2.2. [2] Let X be a set, and $d : X \times X \to [0, \infty)$ be a function satisfies the following for all $x, y, z \in X$, and $s \geq 1$:

(i) $d(x, y) = 0$ if and only if $x = y$.
(ii) $d(x, y) = d(y, x)$ for all $x, y \in X$.
(iii) $d(x, y) \leq s[d(x, z) + d(z, y)]$. The pair $\langle X, d \rangle$ is called a **b-metric space**.

Example 2.2. Let $X = \mathbb{R}$ and $d : X \times X \to [0, \infty)$ be defined by $d(x, y) = (x - y)^2$ for all $x, y \in \mathbb{R}$. Then $\langle X, d \rangle$ is a b-metric space with constant ($s = 2$). Note that $\langle X, d \rangle$ is neither a quasi metric space nor a metric space.

For more examples of b-metric spaces, which shows that b-metric space is a generalization of metric space we refer the reader to [7] and [14].

Remark 2.1. Let $\langle X, d \rangle$ be a b-metric space. Note that:

- If $s = 1$ then, Definition 2.2 reduces to a standard metric space.
- If $s = 1$ and properties (i) and (iii) are satisfied then, Definition 2.2 reduces to a quasi metric space.
- Hence, the class of b-metric spaces is larger than the class of metric spaces.

Definition 2.3. A **quasi b-metric space** is a pair $\langle X, d \rangle$ where $s \geq 1, s \in \mathbb{R}$ and $d : X \times X \to [0, \infty)$ satisfies the following for all $x, y, z \in X$:

...
ON COMPLETENESS AND BICOMPLETIONS OF QUASI b-METRIC SPACES

(i) \(d(x, y) = 0\) if and only if \(x = y\).
(ii) \(d(x, y) \leq s[d(x, z) + d(z, y)]\).

Given a quasi b-metric space \((X, d)\) we define \(d^{-1} : X \times X \to [0, \infty)\) by \(d^{-1}(x, y) = d(y, x)\) for all \(x, y \in X\). Then \((X, d^{-1})\) is also a quasi b-metric space. We call \(d^{-1}\) the conjugate of \(d\) on \(X\). Note that \(d^{-1}\) is a \(b\)-metric on \(X\).

Remark 2.2. Note that a quasi metric space is a quasi b-metric space with a constant \(s = 1\). Therefore the class of quasi b-metric spaces is larger than the class of quasi metric spaces.

Definition 2.4. Let \((X, d)\) be a quasi b-metric space. Then:
(i) A sequence \(\{x_n\}\) in \((X, d)\) \(d\)-converges to \(x \in X\) if
\[
\lim_{n} d(x_n, x) = 0.
\]
(ii) A sequence \(\{x_n\}\) in \((X, d)\) \(d^{-1}\)-converges to a point \(x \in X\) if
\[
\lim_{n} d^{-1}(x_n, x) = 0.
\]
(iii) A sequence \(\{x_n\}\) in \((X, d)\) \(d^*\)-converges to a point \(x \in X\) if
\[
\lim_{n} d^*(x_n, x) = 0.
\]

Remark 2.3. Let \((X, d)\) be a quasi b-metric space. For a sequence \(\{x_n\}\) in \(X\) and \(x \in X\), \(\lim_n d(x_n, x) = 0\) implies \(\lim_n d^*(x_n, x) = 0\) and \(\lim_n d^{-1}(x_n, x) = 0\).

Example 2.3. Let \(X = \mathbb{Q}\) be equipped with \(d : X \times X \to [0, \infty)\) defined by
\[
d(x, y) = \begin{cases}
1 & \text{if } x > y, \\
(y - x)^3 & \text{if } x \leq y.
\end{cases}
\]
Then \((X, d)\) is a quasi b-metric space but not a quasi metric space.

3. Bicompletions of quasi b-metric spaces

Definition 3.1. Let \((X, d)\) be a quasi b-metric space. Then:
(i) A sequence \(\{x_n\}\) in \((X, d)\) is called a \(d^*\)-Cauchy if
\[
\lim_{n,m} d^*(x_n, x_m) = 0.
\]
(ii) A quasi b-metric space \((X, d)\) is said to be bicomplete if every \(d^*\)-Cauchy sequence \(d^*-\)converges to a point \(x \in X\).

Remark 3.1. A quasi b-metric space \((X, d)\) is said to be bicomplete if \((X, d^*)\) is a complete b-metric space.

Definition 3.2. Let \((X, d)\) be a quasi b-metric space and \(A\) be a subset of \(X\). Then \(A\) is \(d^*\)-dense whenever it is dense in \(X\) with respect to \(d^*\).
Theorem 3.1. Let \((X, d)\) be a quasi \(b\)-metric space. Then every quasi \(b\)-metric space has a bicompletion.

Proof: Let \((X, d)\) be a quasi \(b\)-metric space and \(C\) be the set of all \(d^*\)-Cauchy sequences in \((X, d)\). Define the relation \(\sim\) on \(C\) as follows: \(\{x_n\} \sim \{y_n\}\) if \(\lim_n d(x_n, y_n) = 0\). It is easy to verify that \(\sim\) is an equivalence relation in \(C\). Let \(\tilde{X}\) be the set of all equivalence classes for \(\sim\) and \(\tilde{X} = \{\{x_n\} : x_n \in C\}\). Define \(\tilde{d} : \tilde{X} \times \tilde{X} \rightarrow [0, \infty)\) by \(\tilde{d}([\{x_n\}], [\{y_n\}]) = \lim_n d(x_n, y_n)\).

We now show that \(\tilde{d}\) is well defined. Let \(\{x_n\}\) and \(\{y_n\}\) be two \(d^*\)-Cauchy sequences in \(C\) then \(\lim_{n,m} d^*(x_n, x_m) = 0\) and \(\lim_{n,m} d^*(y_n, y_m) = 0\). Since,
\[
d(x_n, y_n) \leq s d(x_n, x_m) + s^2 d(x_m, y_m) + s^2 d(y_m, y_n)
\]
for \(s \geq 1\). Then
\[
d(x_n, y_n) - s^2 d(x_m, y_m) \leq s d(x_n, x_m) + s^2 d(y_m, y_n).
\]
Note that
\[
d(x_n, y_n) - d(x_m, y_m) \leq |d(x_n, y_n) - s^2 d(x_m, y_m)| \leq s d(x_n, x_m) + s^2 d(y_m, y_n).
\]
Similarly, we have
\[
d(x_m, y_m) - d(x_n, y_n) \leq |d(x_m, y_m) - s^2 d(x_n, y_n)| \leq s d(x_n, x_m) + s^2 d(y_n, y_m).
\]
Hence,
\[
|d(x_n, y_n) - d(x_m, y_m)| \leq s d(x_n, x_m) + s^2 d(y_m, y_n) \rightarrow 0.
\]
Since \(\lim |d(x_n, y_n) - d(x_m, y_m)| \rightarrow 0\), this implies that \(\{d(x_n, y_n)\}\) is a \(d^*\)-Cauchy sequences in \([0, \infty)\). Since \([0, \infty)\) is complete when equipped with the usual metric then, the limit of \(\{d(x_n, y_n)\}\) exists. Thus \(\tilde{d}\) is well defined.

We show that \(\tilde{d}\) is a quasi \(b\)-metric on \(\tilde{X}\). Let \(\{x_n\}\), \(\{y_n\}\) and \(\{z_n\}\) \(\in \tilde{X}\).

Suppose that \(\tilde{d}(\{x_n\}, \{y_n\}) = 0\). Then \(\{x_n\} = \{y_n\}\).

Conversely, suppose that \(\{x_n\} = \{y_n\}\). Then \(\tilde{d}(\{x_n\}, \{y_n\}) = \tilde{d}(\{x_n\}, \{x_n\}) = 0\).

Therefore \(\tilde{d}(\{x_n\}, \{y_n\}) = 0\).

We know that for all \(x_n, y_n, z_n \in X\), \(d(x_n, z_n) \leq d(x_n, y_n) + d(y_n, z_n)\).

That is,
\[
\tilde{d}(\{x_n\}, \{z_n\}) = \lim_n d(x_n, z_n) \leq \lim_n s[d(x_n, y_n) + d(y_n, z_n)].
\]

\[
= s[\tilde{d}(\{x_n\}, \{y_n\}) + \tilde{d}(\{y_n\}, \{z_n\})].
\]
Therefore \(\tilde{d} \) is a quasi b-metric on \(\tilde{X} \), with the same parameter \(s \).

Let \(f : X \to \tilde{X} \) be a map and be defined by \(f(x) = \{ \{x_n\} : x_n = x \) for all \(n \} \). Since \(\tilde{d}(f(x), f(y)) = \lim_n d(\{x_n\}, \{y_n\}) = \lim_n d(x_n, y_n) = d(x, y) \). Thus \(f \) is an isometry. \(f \) is injective since \(\{ \{x_n\} : x_n = x \} \neq \{ \{y_n\} : y_n = y \} \) if \(x \neq y \). Thus \(X \) can be regarded as a subspace of \(\tilde{X} \).

Let \(x = \{x_n\} \in X \). Given \(\epsilon > 0 \), there exists an \(N \in \mathbb{N} \) such that for any \(n, m > N \), \(d(x_n, x_m) < \epsilon \). In particular, \(d(x_n, x_{N+1}) < \epsilon \) and \(d(x_{N+1}, x_n) < \epsilon \) for \(n > N \). Hence, \(\tilde{d}(x, x_{N+1}) \leq \epsilon \) and \(\tilde{d}(x_{N+1}, x) \leq \epsilon \). Thus \(X \) is \(d^* \)-dense in \(\tilde{X} \).

Finally, we show that \((\tilde{X}, \tilde{d})\) is bicomplete. Let \(x = \{x_n\} \) be a \(d^* \)-Cauchy sequence in \(X \) and \(\epsilon > 0 \). Then \(\tilde{d}(x_n, x_m) < \epsilon \) for \(m, n > N \). Fix \(n > N \) and let \(m \to \infty \) we get \(\tilde{d}(x_n, x) < \epsilon, \tilde{d}(x, x_n) < \epsilon \). Hence \(\tilde{d}(x_n, x) \to 0 \) and \(\tilde{d}(x, x_n) \to 0 \) as \(n \to \infty \).

Remark 3.2. Let \(f \) be a map from a quasi b-metric space \((X, d)\) into \((\tilde{X}, \tilde{d})\) such that for each \(x \in X, f(x) = [\{\tilde{x}\}] \) where \([\{\tilde{x}\}]\) is the equivalence class of constant sequences. Then for each \(x, y \in X, \tilde{d}(f(x), f(y)) = d(x, y) \), and hence, \(f \) is an isometry.

Corollary 3.1. Every b-metric space admits a completion.

We now show by means of an example that Theorem 3.1 holds.

Example 3.1. Let \((X, d)\) be defined as in Example 2.3. Observe that \((X, d)\) is not bicomplete. Its bicompletion is \(\tilde{X} = \mathbb{R} \) with \(\tilde{d} : \tilde{X} \times \tilde{X} \to [0, \infty) \) defined by

\[
\tilde{d}(x, y) = \begin{cases}
1 & \text{if } x > y, \\
(y - x)^3 & \text{if } x \leq y.
\end{cases}
\]

Note that both \((X, d)\) and \((\tilde{X}, \tilde{d})\) have the same parameter.

4. **Quasi b-metric spaces and quasi uniformities**

Let \((X, d)\) be a quasi b-metric space, then \(d \) on \(X \) induces a topology \(\tau_d \) on \(X \) which has as a base the family of open balls \{\(B_d(x, \varepsilon) : x \in X, \varepsilon > 0\}\}, where \(B_d(x, \varepsilon) = \{y \in X : d(x, y) < \varepsilon\} \) for all \(x \in X \) and \(\varepsilon > 0 \). In fact, we obtain a bitopological space \((X, \tau_d, \tau_{d-1})\).

A topological space \((X, \tau)\) is called quasi metrizable if there is a quasi metric \(d \) on \(X \) such that \(\tau = \tau_d \). In this case we say that \(d \) is compatible with \(\tau \), and that \(\tau \) is a quasi metrizable topology.

Definition 4.1. [6] A quasi uniformity on a set \(X \) is a filter \(\mathcal{U} \) on \(X \times X \) such that:

(i) For each \(U \in \mathcal{U}, \triangle \subset U \).
(ii) If \(U \in \mathcal{U} \), then \(V \circ V \subset U \) for some \(V \in \mathcal{U} \). The pair \((X, \mathcal{U})\) is called **quasi uniform space** and the members of \(\mathcal{U} \) are called **entourages**.

It worth noting that if \(\mathcal{U} \) is a quasi uniformity on \(X \), then \(\mathcal{U}^{-1} = \{U^{-1} | U \in \mathcal{U}\} \) is also a quasi uniformity on \(X \) and is called the **conjugate** of \(\mathcal{U} \) where \(U^{-1} = \{(x, y) \in X \times X : (y, x) \in U\} \). A quasi uniformity \(\mathcal{U} \) is a uniformity provided \(\mathcal{U} = \mathcal{U}^{-1} \).

For a quasi uniformity \((X, \mathcal{U})\), let \(\mathcal{U}^* = \mathcal{U} \vee \mathcal{U}^{-1} \) then \(\mathcal{U}^* \) is a uniformity on \(X \), define \(U[x] = \{y \in X : (x, y) \in U\} \). Then each quasi uniformity \(\mathcal{U} \) on \(X \) induces a topology \(\tau_\mathcal{U} \) on \(X \), defined as follows: \(\tau_\mathcal{U} = \{A \subset X : \text{for each } x \in A \text{ there is } U \in \mathcal{U} \text{ such that } U[x] \subset A\} \).

Definition 4.2. [6] A quasi uniform space \((X, \mathcal{U})\) is called **bicomplete** if \((X, \mathcal{U}^*)\) is a complete uniform space. In this case we say that \(\mathcal{U} \) is a **bicomplete quasi uniformity**.

It was proved in [6] that every quasi uniform space \((X, \mathcal{U})\) admits a unique bicompletion \((\tilde{X}, \tilde{\mathcal{U}})\) up to quasi isomorphism.

Definition 4.3. A quasi b-metric space \((X, d)\) is **quasi uniformizable** if there exists a quasi uniform space \((X, \mathcal{U})\) such that \(\tau_d = \tau_\mathcal{U} \).

Theorem 4.1. Every quasi b-metric space is quasi metrizable.

Proof: For each \(n \in \mathbb{N} \), define

\[
U_n = \{(x, y) \in X \times X : d(x, y) < \frac{1}{n}\}.
\]

We shall prove that \(\{U_n\} \) is a base for the quasi uniformity on \(X \) whose induced topology coincides with \(\tau_d \). Note that for each \(n \in \mathbb{N} \)

\[
\{(x, x) : x \in X\} \subseteq U_n, U_{n+1} \subset U_n.
\]

For each \(n \in \mathbb{N} \), choose \(m \in \mathbb{N} \) such that \(m > (s + 2s^2)n \). Next we show that \(U_m \circ U_m \circ U_m \subseteq U_n \). So let \((x, z) \in U_m \circ U_m \circ U_m \subseteq U_n \). We find \(y, w \in X \) such that \((x, y) \in U_m, (y, w) \in U_m \) and \((w, z) \in U_m \). Then \(d(x, y) < \frac{1}{m}, d(y, w) < \frac{1}{m} \) and \(d(w, z) < \frac{1}{m} \). Hence,

\[
d(x, z) \leq sd(x, y) + s^2d(y, w) + s^2d(w, z) < \frac{2s^2 + s}{m} < \frac{1}{n}.
\]

Therefore \((x, z) \in U_n \). Thus \(\{U_n : n \in \mathbb{N}\} \) is a base for a quasi uniformity \(\mathcal{U} \) on \(X \). Therefore a quasi b-metric space is quasi uniformizable,
ON COMPLETENESS AND BICOMPETITIONS OF QUASI b-METRIC SPACES

we denote by U_d the quasi uniformity induced by d. Since for each $x \in X$ and each $n \in \mathbb{N}$,

$$U_n(x) = \{ y \in X : d(x,y) < \frac{1}{n} \} = B(x, \frac{1}{n}).$$

Clearly, U_d has a countable base, hence (X, τ_d) is quasi metrizable [6] and [8]. In fact, $	au_d = \tau_{U_d}$. □

Corollary 4.1. Every b-metric space is metrizable.

Every quasi b-metric space (X,d) induces a quasi uniformity (X,U_d) as shown in Theorem 4.1. In addition, every quasi uniformity (X,U_d) has a bicompletion (\tilde{X},\tilde{U}_d) [6].

Remark 4.1. Given a quasi b-metric space (X,d), let (\tilde{X},\tilde{d}) be the bicompletion of (X,d) as in Theorem 3.1 and (\tilde{X},\tilde{U}_d) be the quasi uniformity of (\tilde{X},\tilde{d}) as in Theorem 4.1. Further, let (\tilde{X},\tilde{U}_d) be the bicompletion of (X,U_d), see, for instance, [6].

Then:

Theorem 4.2. Let (X,d) be a quasi b-metric space. Then, (\tilde{X},\tilde{U}_d) is quasi isomorphic to (\tilde{X},\tilde{U}_d). In particular, $\tau_{U_d} = \tau_{\tilde{U}_d}$.

5. EXTENSIONS OF MAPS ON QUASI b-METRIC SPACES

Definition 5.1. Let $f : (X,d) \to (Y,\rho)$ be a map between two quasi b-metric spaces. Then:

(i) A mapping $f : (X,d) \to (Y,\rho)$ is (d,ρ)-continuous if $\{x_n\}$ d-converges to x implies that $f(x_n)$ ρ-converges to $f(x)$.

(ii) A mapping $f : (X,d) \to (Y,\rho)$ is (d^{-1},ρ^{-1})-continuous if $\{x_n\}$ d^{-1}-converges to x implies that $f(x_n)$ ρ^{-1}-converges to $f(x)$.

(iii) A mapping $f : (X,d) \to (Y,\rho)$ is (d^*,ρ^*)-continuous if $\{x_n\}$ d^*-converges to x implies that $f(x_n)$ ρ^*-converges to $f(x)$.

Definition 5.2. Let (X,d) and (Y,ρ) be two quasi b-metric spaces. A mapping $f : (X,d) \to (Y,\rho)$ is said to be quasi uniformly continuous if for any $\epsilon > 0$ there exists $\delta > 0$ such that $x,y \in X$ and $d(x,y) < \delta$ implies that $\rho(f(x), f(y)) < \epsilon$.

Lemma 5.1. Let (X,d) and (Y,ρ) be two quasi b-metric spaces. A mapping $f : (X,d) \to (Y,\rho)$ is quasi uniformly continuous if and only if $f : (X,U_d) \to (Y,U_\rho)$ is quasi uniformly continuous between the quasi uniform spaces.
Proposition 5.1. Let $a, d \in \mathbb{R}$ and $k \geq 1$. If $a \leq kd$ and $d \leq ka$ hold, then $a = d$.

Theorem 5.1. Let (X, d) be a quasi b-metric space and (Y, ρ) be a bicomplete quasi b-metric space. If $f : (A, d) \to (Y, \rho)$ is quasi uniformly continuous, from a d^*-dense subspace (A, d) of (X, d) to (Y, ρ), then there exists a unique extension $f^* : (X, d) \to (Y, \rho)$ such that $f^|_A = f$ and f^* is quasi uniformly continuous. In particular, f^* is an isometry whenever f is so.

Proof: By Lemma 5.1, f is quasi uniformly continuous from the quasi uniform space $(X, \mathcal{U}_d|_{A \times A})$ to the quasi uniform space (Y, \mathcal{U}_ρ). Since A is d^*-dense in X, it follows that f has a unique quasi uniformly continuous extension $f^* : (X, \mathcal{U}_d) \to (Y, \mathcal{U}_\rho)$, see Theorem 3.29 in [6]. Thus f^* is quasi uniformly continuous from the quasi b-metric space (X, d) to the bicomplete quasi b-metric space (Y, ρ) by Lemma 5.1.

Let f be an isometry from (A, d) to (Y, ρ) and $x, y \in X$. Suppose that f is $(d^* - \rho^*)$-continuous. Then there exists $\{x_n\} \cup \{y_n\}$ in A such that $\lim_n d^*(x_n, x) = 0$ and $\lim_n d^*(y_n, y) = 0$. By $(d^* - \rho^*)$-continuity of f^* it follows that $\lim_n \rho^*(f^*(x_n), f^*(x)) = 0$ and $\lim_n \rho^*(f^*(y_n), f^*(y)) = 0$. Then there exists $N \in \mathbb{N}$ such that $d(x, x_n) < \epsilon, d(y, y_n) < \epsilon, \rho(f^*(x), f^*(x_n)) < \delta$ for all $n \geq N$. Thus we have,

\[
d(x, y) \leq sd(x, x_n) + s^2d(x_n, y_n) + s^2d(y_n, y) \\
\leq s\epsilon + s^2\rho(f^*(x_n), f^*(y_n)) + s^2\epsilon \\
\leq s^2\rho(f^*(x_n), f^*(y_n))
\]

and

\[
\rho(f^*(x_n), f^*(y_n)) \leq \alpha\rho(f^*(x_n), f^*(x)) \\
+ \alpha^2\rho(f^*(x), f^*(y)) + \alpha^2\rho(f^*(y), f^*(y_n)) \\
\leq \alpha\delta + \alpha^2\rho(f^*(x), f^*(y)) + \alpha^2\delta \\
\leq \alpha^2\rho(f^*(x), f^*(y))
\]

for all $n \in N$ and $\alpha \geq 1$. Therefore

\[
d(x, y) \leq \alpha s^2\rho(f^*(x), f^*(y)) \tag{1}
\]

Similarly,

\[
\rho(f^*(x), f^*(y)) \leq \alpha\rho(f^*(x), f^*(x_n)) + \alpha^2\rho(f^*(x_n), f^*(y_n)) \\
+ \alpha^2\rho(f^*(y_n), f^*(y)) \\
\leq \alpha\delta + \alpha^2d(x_n, y_n) + \alpha^2\delta \\
\leq \alpha^2d(x_n, y_n),
\]
and
\[
\begin{align*}
 d(x_n, y_n) & \leq s d(x_n, x) + s^2 d(x, y) + s^2 d(y, y_n) \\
 & \leq s \varepsilon + s^2 d(x, y) + s^2 \varepsilon \\
 & \leq \alpha^2 s^2 d(x, y)
\end{align*}
\]
for all \(n \in \mathbb{N} \) and \(s \geq 1 \). Therefore
\[
\rho(f^*(x), f^*(y)) \leq \alpha^2 s^2 d(x, y) \tag{2}
\]
By (1), (2) and Proposition 5.1, we have \(\rho(f^*(x), f^*(y)) = d(x, y) \).
Hence \(f^* \) is an isometry from \((X, d)\) to \((Y, \rho)\).

We see from Theorem 3.1 and Theorem 5.1 that: Every quasi \(b \)-metric space admits a bicompletion which is unique up to isometry. We now present the following results as Corollaries. Note that Corollary 5.1 and Corollary 5.3 are well known.

Corollary 5.1. Let \((X, d)\) be a quasi metric space and \((Y, \rho)\) be a bicomplete quasi metric space. If \(f : (A, d) \rightarrow (Y, \rho) \) is quasi uniformly continuous, from a \(d^* \)-dense subspace \((A, d)\) of \((X, d)\) to \((Y, \rho)\), then there exists a unique extension \(f^* : (X, d) \rightarrow (Y, \rho) \) such that \(f^*|_A = f \) and \(f^* \) is quasi uniformly continuous. In particular, \(f^* \) is an isometry whenever \(f \) is so.

Corollary 5.2. Let \((X, d)\) be a \(b \)-metric space and \((Y, \rho)\) be a complete \(b \)-metric space. If \(f : (A, d) \rightarrow (Y, \rho) \) is uniformly continuous, from a dense subspace \((A, d)\) of \((X, d)\) to \((Y, \rho)\), then there exists a unique extension \(f^* : (X, d) \rightarrow (Y, \rho) \) such that \(f^*|_A = f \) and \(f^* \) is uniformly continuous. In particular, \(f^* \) is an isometry whenever \(f \) is so.

Corollary 5.3. Let \((X, d)\) be a metric space and \((Y, \rho)\) be a complete metric space. If \(f : (A, d) \rightarrow (Y, \rho) \) is uniformly continuous, from a dense subspace \((A, d)\) of \((X, d)\) to \((Y, \rho)\), then there exists a unique extension \(f^* : (X, d) \rightarrow (Y, \rho) \) such that \(f^*|_A = f \) and \(f^* \) is uniformly continuous. In particular, \(f^* \) is an isometry whenever \(f \) is so.

We conclude the paper with the following example:

Example 5.1. Let \((X, d)\) be defined as in Examples 2.3 and 3.1. Consider \(Y = \mathbb{R} \) be equipped with the usual metric. Define a mapping \(f : (A, d) \rightarrow (Y, \rho) \) by \(f(x) = x + 1 \) for all \(x \in A \). Then \(f \) is quasi uniformly continuous. Let \(F : (X, d) \rightarrow (Y, \rho) \) be defined by \(F(x) = x + 1 \) for all \(x \in X \), where \(X = \mathbb{R} \). Then \(F \) extend \(f \) uniquely to \(X \) and it is quasi uniformly continuous. In particular, Theorem 5.1 holds.
References

M. Aphane, Department of Mathematics and Statistics, Tshwane University of Technology, Pretoria, 0008, South Africa.

S.P. Moshokoa, Department of Mathematics and Statistics, Tshwane University of Technology, Pretoria, 0008, South Africa.