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Abstract:  In this paper, we show that different type of contraction mappings have unique fixed point in b-

metric spaces.  

 

 

Introduction and Preliminaries: The concept of b-metric space was introduced by Bakhtin in 

[1] and used by Czerwik in [6]. 

It is well known that Banach’s contraction mapping theorem is one of the pivotal results of 

functional Analysis. A mapping       where       is a metric space, is said to be a 

contraction if there exists         such that          

                                                                                          ----------(1.1) 

If the metric space       is complete the mapping satisfying (1.1) has a unique fixed point.  

Inequality (1.1) implies continuity of   .  We have some contractive condition which will 

imply existence of fixed point in a complete metric space but will not imply continuity (See 

[10]). 

In this paper, we establish some new contractive type condition for mappings defined on b-

metric spaces and prove some new fixed point theorems for these mappings. Our results 

are generalizations of results in [10]. 

Definition 1[1]: Let   be a non-empty set and let     be a given real number.  A function 

          is called a b-metric provided that, for all          

1)          iff       

2)                 

3)                       ]   

A pair       is called a b-metric space. It is clear that definition of b-metric space is a 

extension of usual metric space. 

Example 1[7]: The space          , 

   {        ∑|  |   

 

   

}  

together with the function           
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       (∑|     | 
 

   

)

 
 

  

where              is a b-metric space.  By an elementary calculation we obtain that   

       
 

   
              ] 

Example 2[7]: The           of all real functions            ] such that ∫ |    |    
 

 

   

is b-metric space if we take 

       [∫ |         |   
 

 

]

 
 
 

 

for each        . 

Definition 2[7]: Let       be a b-metric space.  Then a sequence      in   is called a Cauchy 

sequence if and only if for all     there exist        such that for each          we 

have           . 

Definition 3[7]: Let       be a b-metric space.  Then a sequence      in   is called 

convergent sequence if and only if there exists     such that for all there exists        

such that for all       we have          . In this case, we write             

Definition 4[7]: The b-metric space is complete if every Cauchy sequence convergent. 

Definition 5[9]: Let   be a non-empty set and       a self map.  We say that     is a 

fixed point of   if        and denote by    or        the set of all fixed points of   . 

Let E be any set and       a self map.  For any given     we define       inductively 

by         and          (     )  we recall        the      iterative of   under  .  For 

any       the sequence           given by 

                        

is called the sequence of successive approximations with the initial value      It is also 

known as the Picard iteration starting at   . 

Definition 6[9]: Let       be metric space.  A mapping       is called weak contraction if 

there exists a constant         and some     such that  

                                                                             ----------- (1.2) 

 Remark 7[9]: Due to symmetry of the distance, the weak contractive condition (1.2) imply 

implicitly includes the following dual one. 

                                                                             ----------- (1.3) 

          

In order to check the weak contractiveness of  ; it is necessary to check both (1.2) and 

(1.3). It is clear that any contraction mapping is also weak contraction mapping in a metric 

space. 
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Main Results: In this section, we give some fixed point theorems in b-metric spaces. 

Theorem 1: Let       be a complete b-metric space with constant s    and define the 

sequence        
     by the recursion 

             . 

Let       be a mapping such that 

                                                        ](1) 

                      where                   

         then there exists      such that       and    is a unique fixed point. 

Proof: Let      and        
 be a sequence in   defined as              ,     

                     

By (1) and (2) we obtain that 

                        

                                                                   

                                                                                                                                           ] 

                                                    

                                                                                                                                       ] 

                                            ]                

      +                         ]                                                                                       

                                                                 

                                                                                         +               

   
 
                                           

                                                         
 
                    

            
  

 
         

              
           

             

where    
          

            
   

As                   

                             

           
          

            
   

                        

                                     

Continuing this process, we get 

                                . 

Now, we show that        
  is a Cauchy sequence in  .  Let       with     

                                                          

                                                                                           

                                                                              ] 
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                       [
             

    
]. 

When we take       

                  

Hence        
  is a Cauchy sequence in     Since        

  is a Cauchy sequence,      

converges to       

Now we show that    is the unique fixed point of    

                                               ] 

                                                          

                                                                

                        ] 

                                                              

                           

                                                      

                                                                           

      
 
                                        

                                                                            

      
 
                                    

   

                                                                                        

           
(          )

            
         

   
(             )

            
           

            as    .  Now we show that    is the fixed point of    Assume that    is 

another fixed point of     then we have T      and 

                             

                                                                             ] 

                                                              ] 

                                ]                    

which implies that         

 

Theorem 2 : Let       be a complete b-metric space with constant    . Let       be a 

mapping for which there exist          
 

 
  such that 

                                                       ]              ------(3) 

         

Then there exists      such that       and    is a unique fixed point of T. 

Proof: Let      and        
 be a sequence in   defined as              ,  

          . By using (3) 

                        

                                        ] 
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                                      ] 

                                             
 
                            

                    
 
               

           (
     

    
)            

             

where    
     

    
   

as          

            

     

    
   

                      

Thus   is a contraction mapping. 

Now, we show that        
  is a Cauchy sequence in  .  Let       with     

                                 ] 

                                            

                     

                                                                                    

                                                      ] 

               [
             

    
] 

when we take       

                                                               . 

Hence        
  is a Cauchy sequence in     Since        

  is a Cauchy sequence,      

converges to       

Now we show that    is the unique fixed point of     

                              ] 

                                                                   

                         

              
 
        

  ]                             ] 

                      
                              

                                
                

           ] 
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i.e        

Now we show that    is the unique fixed point of    Assume that    is another fixed point of  

   then we have T      and 

                                

                                  ] 

                    

    
 
              

which implies that       

This completes the proof. 
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