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HILBERT’S SPACE-FILLING CURVE

TIM TARVER

Abstract. This paper introduces the notion of a certain type of
space-filling curve. We will be talking about how a one-dimensional
curve can be called ”space-filling”. The curve will begin at a one-
dimensional unit interval and be mapped onto a unit square by a
certain correspondence. This correspondence is said to be one-to-
one. Later on in the paper it could be denoted as a function. There
are different kinds of space-filling curves such as the Lebesque
Curve, the Peano Curve, the Sierpinski Curve, and the Recur-
sive space-filling curve. This amazing finding was first brought to
everyone’s attention by Henri Lebesque. He explained this finding
geometrically and analytically in his paper as a function of ”t”.
We will discuss a specific type of space-filling curve named after
David Hilbert and how this correspondence that builds the curve
is not one-to-one.

Introduction

In 1878, a man named Georg Cantor published a remarkable finding:
”That there exists a one-to-one correspondence between any two finite-
dimensional smooth manifolds”. In simpler terms, he proposed that ”it
is possible for a mapping of all points in the unit interval [0, 1] onto
the unit square [0, 1]X[0, 1] be injective and surjective. Hence, the one-
to-one correspondence claim [1]. In this paper, we plan to introduce
what is called the Hilbert’s Space-Filling curve and to disprove the
statement of this curve being one-to-one. At the beginning of this
paper we question the theory, ”What is a ”space-filling” curve”? A
curve that is ”space-filling” is a surjective function mapping the unit
interval,

J = {x | 0 ≤ x ≤ 1} = [0, 1], where x ∈ J
as the domain of the function and is mapped onto the unit square,

B = {(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1} = [0, 1] X [0, 1], where (x, y) ∈ B
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which is our range of the function. We must show this space-filling
effect of the square is a surjection only.

Illustration

”The first point starts in the lower left corner to begin the illustration
of the curve. This means that it will start at coordinate (0, 0) when
x = 0 and (1, 0) when x = 1. The first enumeration or iteration
determines the satisfaction of two conditions” [1]. We will show how
this space-filling curve is a surjection only. This specific function is
mapping our unit interval onto our unit square hitting all possible
points.

Def: A function that does the mapping from the domain to the range
is called a surjection such that for all y ∈ B, there exists an x ∈ J such
that f(x) = y. In mathematical notation it is defined as,

∀y ∈ B, ∃x ∈ J s.t. f(x) = y.

This can be viewed as the definition of a function. The word corre-
spondence comes from the mapping between the unit interval and the
unit square.

Def: ”Let J and B be sets. A correspondence that associates with
each element x ∈ J with an unique element f(x) ∈ B is called a
function from J to B, which we can write as

f : J → B.”[6]

Def: ”Let f : J → B be given. The set J is called the domain of f
and the set B is called the range of f” [6].

This function f could not only be called a mapping but could al-
so be called a ”transformation” of J onto B. A nice statement that
can be made is that this function ”carries each point x ∈ J onto its
corresponding point f(x) ∈ B” [6].

Def: ”A function f : J → B is called a ”constant surjection” if there
exists a point y ∈ B such that f(x) = y for all x ∈ J” [6]. This previous
definition can also be named as a constant surjection. In notation we
write,

∃y ∈ B, ∀x ∈ J s.t. f(xn) = y.

This previous definition is vital to this paper as we continue to look at
the illustration of this specific curve.

Def: Let ”f” be a function defined on B. It is said that f is ”one-to-
one” on B iff for every x and y in B such that,

f(x) = f(y) ⇐⇒ x = y.
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It is said that a function that is one-to-one on a set B ” assigns distinct
values to specific members of B.” [4]. These functions are vital to
our correspondence because they possess ”inverses” [4]. This makes
things interesting because the previous statement is saying that our
correspondence has inverses. This means that ”two sets J and B which
are called ”equivalent”, we write J ∼ B if and only if there exists a
one-to-one function ”f” whose domain is the set J and the range is
the set B” [4]. The inverse to the previous statement would be ”two
sets J and B are also called equivalent, we also write B ∼ J if and
only if there exists a one-to-one ”inverse” function f−1 whose range
is the same set B and domain is the same set J” [4]. Now, we shall
recall that we must show that these sets J and B are equivalent to
each other. The proof will be shown below. In order for our sets to
be equivalent, we must define a one-to-one correspondence. Before we
accumulate our correspondence we must analyze the sets. There is a
question that should come up to our minds. Are these two sets ”finite”
or ”infinite”? In order to find out that either sets are infinite of finite,
we must define these sets.

A certain question should rise when reading the previous statemen-
t. How do we show and know that these two sets are equivalent ? A
similar statement could be that this ”f” establishes a ”one-to-one cor-
respondence” between the sets J and B.

Def: ”If ”f” is a one-to-one correspondence which makes the set J
”equivalent” to the set B, then ”f−1” will make the set B equivalent to
the set J . In notation we yield,

If f(x) = y, then f−1(y) = x

where f makes J ∼ B and f−1 makes B ∼ J.”[4]

Recall back to your Real Analysis course working in set theory. There
is a theorem where it states that we have to prove that the set of real
numbers R is uncountable. This can be applied to our situation having
our two sets of sub-intervals and sub-squares. Another question should
rise up from this theorem. Is the set of sub-intervals and the set of
sub-squares countable or uncountable? In a space-filling curve case,
the domain is the set of intervals J and the range is the set of squares
B. The inverse function f−1 maps the range onto the domain such that
f−1 : B → J . In order to illustrate the curve, the domain is mapped
onto the range such that f(x) = y. The definition of a function is a
surjection mapping certain elements of a set to another set.

We would like to show that a correspondence is defined as a function
mapping the unit interval J onto the unit square B. Before we do that,
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we must first define the sub-intervals in the unit interval and define the
sub-squares in the unit square such that the correspondence ”f” maps
these sub-intervals onto the sub-squares as,

{Jn,nk
} → {Bn,mk

}

where n is the number of iterations, {nk} is the indexing notation
for sub-intervals, and {mk} is the indexing notation for sub-squares.
Iteration zero, or the 0th iteration is where the given unit interval is
mapped onto the given unit square denoted as,

J0,nk
→ B0,mk

where as the sub-interval and sub-square indexing stays the same since
we have not yet made iterations. In the given interval J , the 1st itera-
tion is the unit interval quartered into four sub-intervals and mapped
onto four corresponding sub-squares. Let this be denoted as,

J1,nk
→ B1,mk

.

The second iteration is the first iteration quartered again making six-
teen sub-intervals that must correspond to sixteen sub-squares. Let
this be denoted as,

J2,nk
→ B2,mk

.

This process is repeated for all iterations n to k where the sequence of
sub-intervals is mapped onto the corresponding sequence of sub-squares
until the limit of all correspondences goes to a specific function filling
all points in the unit square. Let this be denoted as,

{Jk,ni
} → {Bk,mj

}

where the indexing of sub-intervals goes from k to i such that {n0, n1, n2, ..., ni}
and the indexing of sub-squares goes from k to j such that {m0,m1,m2, ...,mj}.
We can let the indexing of the sub-intervals and the sub-squares be e-
qual to 4n as desired such that nk = 4n and mk = 4n. When we
compute our indexed sets we would get {41, 42, ..., 4k} for each set of
sub-intervals nd sub-squares. The limit of the set of sub-squares goes
to a unique point.

We must show that such a correspondence is possible. There exists a
correspondence between sub-intervals and sub-squares that satisfy two
conditions: The Adjacency and Nesting Conditions. The Adjacency
Condition states that if two sub-intervals share an endpoint, then two
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corresponding sub-squares must share a common edge. In mathemati-
cal terms for example we yield,

J0,r0 , J1,r1 , J2,r2 , ..., Jk,ri , Jk+1,rj+1

f0 ↓, f1 ↓, f2 ↓ , ..., fk ↓, fk+1 ↓
B0,p0 , B1,p1 , B2,p2 , ..., Bk,pi , Bk+1,pj+1

.

The Nesting Condition states that if a sequence of sub-intervals is nest-
ed, then the corresponding sequence of sub-squares must also be nested.
Then for all iterations of the correspondence {fn} from n to k we yield,

J0,r0 ⊇ J1,r1 ⊇ J2,r2 ⊇ ... ⊇ Jk,ri ⊇ Jk+1,rj+1

f0 ↓ f1 ↓ f2 ↓ ... fk ↓ fk+1 ↓
B0,p0 ⊇ B1,p1 ⊇ B2,p2 ⊇ ... ⊇ Bk,pi ⊇ Bk+1,pj+1

which shows pictorially that the following correspondence is nested.
We must prove that this correspondence exists and is possible.

Theorem 1 (Adjacency Condition). If for all iterations ”n” two sub-
intervals share a common endpoint, then the function ”fn” maps two
sub-intervals to two sub-squares that ”share a common edge”.[1]

Proof. Let two sub-intervals be denoted as Jn,rn and Jn,sn then let two
sub-squares be denoted as Bn,pn and Bn,qn . Let n = k and r and s
be the indexing for sub-intervals and p and q be the indexing for the
sub-squares. Let the kth sub-intervals be denoted as Jk,rk and Jk,sk
and the kth sub-squares be denoted as Bk,pk and Bk,qk . We must show
that n = k+ 1 holds for the sequences of sub-intervals and sub-squares
so that both sequences satisfy the adjacency condition. So, for all
iterations fn to fk, the infinite sequences of sub-intervals {Jn,rn} and
{Jn,sn} satisfy the Adjacency Condition as long as they correspond to
the infinite sequences of sub-squares {Bn,pn} and {Bn,qn}. So for all
iterations fk+1 of every sequence we yield,

J0,r0 , J1,r1 , J2,r2 , ..., {Jn,rk}, {Jk,ri}, {Jk+1,rj+1
}

f0 ↓, f1 ↓, f2 ↓ , ..., {fn} ↓, {fk} ↓, {fk+1} ↓
B0,p0 , B1,p1 , B2,p2 , ..., {Bn,pi}, {Bk,pi}, {Bk+1,pj+1

}

J0,s0 , J1,s1 , J2,s2 , ..., {Jn,sk}, {Jk,si}, {Jk+1,sj+1
}

f0 ↓, f1 ↓, f2 ↓ , ..., {fn} ↓, {fk} ↓, {fk+1} ↓
B0,q0 , B1,q1 , B2,q2 , ..., {Bn,qi}, {Bk,qi}, {Bk+1,qj+1

}.
Hence, by using the Induction Hypothesis the sequences of sub-

intervals {Jk,nk
} and {Jk+1,nk+1

} share a common endpoint and the
sequences of squares {Bk,mk

} and {Bk+1,mk+1
} share a common edge.
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�

Theorem 2 (Nesting Condition). If for all iterations ”n” ”two sub-
intervals of a sequence of sub-intervals are nested, then two correspond-
ing sub-squares of a sequence of sub-squares are nested.”[1]

Proof. Let the sequences of sub-intervals and sub-squares be denoted
as {Jn,rn} and {Bn,pn}. Supposed that n = k holds for the infinite
sequences of sub-intervals and sub-squares. Then we have {Jn,rk} =
{Jk,rk} and {Bn,rk} = {Bk,rk}. We must show that n = k+ 1 holds for
both infinite sequences and that for n = k + 1, both sequences satisfy
the nesting condition. Thus, by using the Induction Hypothesis,

J0,r0 ⊇ J1,r1 ⊇ J2,r2 ⊇ ... ⊇ {Jn,ri} ⊇ {Jk,ri} ⊇ {Jk+1,ri+1
}

f0 ↓ f1 ↓ f2 ↓ ... {fn} ↓ {fk} ↓ {fk+1} ↓
B0,p0 ⊇ B1,p1 ⊇ B2,p2 ⊇ ... ⊇ {Bn,pi} ⊇ {Bk,pi} ⊇ {Bk+1,pi+1

}
holds for every iteration n to k + 1.

�

Theorem 3. Any correspondence ”fn” between sub-intervals and sub-
squares that satisfy the Adjacency and Nesting conditions determine
an unique continuous function ”f” which maps the unit interval
J onto the unit square B.[1]

Proof. Let f be a function such that f : J → B. Let x ∈ J be
an element of the sequences of closed nested sub-intervals {Jn,nk

} to
{Jk+1,ni+1

} such that,

J0,r0 ⊇ J1,r1 ⊇ J2,r2 ⊇ ... ⊇ {Jn,ri} ⊇ {Jk,ri} ⊇ {Jk+1,ri+1
} ⊇ ...

where one sub-interval is from each partition. So for all iterations, the
limit of the diameter of squares approaches a specific point determining
a unique point y. This unique point y is used to define our function
setting f(x) equal to y. The Adjacency Condition explains the con-
tinuity of our correspondence between sub-intervals ans sub-squares.
From the Nesting Condition, we have noticed that our correspondence
does the mapping from a nested sub-interval to a nested sub-square.
Since any correspondence does the mapping for all iterations n, it is
safe to say that this continuous function {fn} is unique due to the
correspondences shown in the previous conditions.

To explain how the curve is called ”space-filling” is that every cor-
respondence between sub-intervals and sub-squares for every iteration
n determines a unique continuous function ”f” where the limit of sub-
intervals and sub-squares goes to a specific point. More specifically, if
the limit of the sequence of sub-intervals gives us a point ”x”, then the
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limit of the corresponding sequence of sub-squares gives us an unique
point ”y” Thus, by the Induction Hypothesis the same function maps
the sub-intervals onto the sub-squares.

�

Proof of Surjection. An injective correspondence states that, If f(x) =
f(y), then x = y and inversely, If f(x) 6= f(y), then x 6= y. A surjection
again states that,

∀y ∈ B, ∃x ∈ J s.t. f(x) = y.

Going back to our ”constant surjection” definition we found out that
our point y is unique in a sense that,

∀x ∈ J,∃!y ∈ B s.t. f(x) = y.[6]

We must show that this specific point y is unique. Now, suppose we
have a set of points S = {x1, x2, ..., xk} and the set of points T =
{y1, y2, ..., yk}. Let these set of points S equal to the set of sub-intervals
where S ∈ J and the set of points T equal to the set of sub-squares.
When we map our sub-intervals onto our corresponding sub-squares we
have,

f(x) = y.

Since the set of points S and T gives us our unique point as defined,

(x1, y1)

(x2, y2)

.

.

.

(x, y)

our corresponding points will be,

(x1, f1(x1))

(x2, f2(x2))

.

.

.

(x, f(x)) .
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Thus proves that our correspondence ”fn” is a surjection only and
hence f(x) = y. In mathematical notation we confirm that our con-
stant surjection maps our sub-intervals onto our sub-squares such that,

f1(x1) = y1

f2(x2) = y2

f3(x3) = y3

.

.

.

fk(xk) = yk

For the correspondence to be both injective and surjective,

f(x) = f(y) = y or f(x) 6= f(y) 6= y.

As the surjection states f(x) = y but f(y) 6= y. In this case of our
space-filling curve, f(x) = y which is a surjection only and not an
injection. Since the same function is mapping the sub-intervals onto
the sub-squares, the function ”fn” is unique and continuous. Therefore,
the limit of sub-squares as n goes to infinity determines a unique point
y such that,

f0(J0,n0) = B0,m0

f1(J1,{n4}) = B1,m1

f2(J2,{n16}) = B1,m1

.

.

.

fk(Jk,{nk}) = B1,m1 .

If the limit of the sequence of sub-squares gives us a point ”y”, then the
limit of the corresponding sequence of sub-intervals gives us an unique
point ”x”.

�

In order for this proof of our surjection to hold true, we have to verify
it by showing that there are subsets in our unit square.

Theorem 4. If Jn,{nk} ⊆ Bn,{mk} and Bn,{mk} ⊆ B, then Jn,{nk} ⊂ B.

Proof. Let the set of sub-intervals of the first iteration be J1,{n4} and
let the subset of the first iteration of sub-squares be B1,{m4}. In order
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to map a certain domain onto a specific range, we must show that
these are subsets of a particular superset. We notice that there are
four sub-intervals that correspond to the first iteration of sub-squares
B1,{m4} meaning that the set of sub-intervals must be a subset of the
first iteration of sub-squares such that

J1,{n4} ⊆ B1,{m4}.

Then as we take more iterations, we notice that the previous iteration
becomes a proper subset of B2,{m16} such that

B1,{m4} ⊂ B2,{m16}.

Since J1,{n4} ⊆ B1,{m4} and B1,{m4} ⊂ B2,{m16}, then we can proceed to
confirm that J1,{n4} ⊂ B2,{m16}.

�

Def: ”Let {fn} be a sequence of correspondences. We say that {fn}
converges to a limit L and write,

lim
n→∞

fn = L

∀ε > 0,∃N < n such that | fn − L | < ε, whenever n ≥ N.”[7]

”Let {fn} be a sequence defined on the range B. If lim
n→∞

fn(x) exists (in

the set of real numbers R) ∀x ∈ J , it is safe to say that the sequence
{fn} can also converge pointwise on B. This limit can also define a
function f on B by the equation,

lim
n→∞

fn(x) = f(x)”.[7]

If the limit of the sequence of sub-squares gives us a point ”y”, then the
limit of the corresponding sequence of sub-intervals gives us an unique
point ”x”. Conversely, if the limit of the sequence of sub-intervals
gives us a point ”x”, then the limit of the corresponding sequence of
sub-intervals gives us an unique point ”y”. In mathematical terms,

lim
n→∞
{Jn,nk

} = x

lim
n→∞
{Bn,mk

} = y.

How do we come about building Hilbert’s Curve? Since we defined our
correspondence f to be a sequence {fn} as n→∞ we can now confirm
our goal of our illustration. This unique continuous curve becomes
Hilbert’s Curve ”f” when we take the limit of all correspondences {fn}
as n goes to ∞ as defined earlier in the paper such that,

lim
n→∞
{fn(xn)} = f(x). [2], [3], [5]
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Summary of Illustration. ”We have defined a sequence of corre-
spondence fn where each correspondence maps a sub-interval onto a
sub-square. For each x ∈ J , we have accumulated another sequence
{fn(xn)} where it possess corresponding function values” [4]. There is
a set of points S = {x1, x2, ..., xk} which is in the set J that was not
defined intentionally until now. It is said that the set of points S makes
the sequence {fn(xn)} converge. Our function ”f” is also defined by
the equation,

lim
n→∞
{fn(xn)} = f(x), ∀x ∈ J.

This function can also be named the ”limit function of the sequence
{fn} and that this sequence converges pointwise in the unit square” [4].
Since we have shown that there is a specific correspondence between
the sub-intervals and the sub-squares, both the Adjacency and Nesting
conditions hold. To sum up the illustration, the limit of the squares
determines a unique space-filling curve mapping a limit of a sequence
of correspondences {fn} : J → B, which came out to be a unique
continuous function ”f” and let this function be named the Hilbert’s
Space-Filling Curve.

Relations

Now, we will explain how the iterations relate to the theorem. The
correspondences in theorem 4 are the mappings between every sub-
interval and sub-square for every iteration ”n”. Another thing to ex-
plain is the relation of the correspondence ”fn” to the theorem. The
limit of correspondence ”fn” determines the unique continuous func-
tion ”f” which was later denoted as Hilbert’s Space-Filling Curve. How
would the iterations relate to Hilbert’s Curve f? Earlier in the paper we
found out that the limit of our correspondence ”fn” as n goes to infinity
between sub-intervals and sub-squares determines our Hilbert’s Curve.
Due to the definition of a surjection, each sub-square of the range is
mapped onto by at least one sub-interval of the domain. Thus, the lim-
its of the domain and range converge to a certain point by the Nesting
and Adjacency Conditions.

Why is this correspondence not one-to-one? Lets go back to our
question about our sets being countable or uncountable. The set of
Real Numbers R is uncountable by definition and was proven by Georg
Cantor. A specific set is countable when it has finite elements in it.
The set is uncountable when it has infinite elements in it. We have
defined that our set of sub-intervals and set of sub-squares are infinite.
”When you have a correspondence between two finite sets it is said that
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it is injective or ”one-to-one”” [4]. On the contrary, when you have a
correspondence between two infinite sets, the state of being one-to-one
does not exist. We noticed that for every iteration n, our two sets
converges to the set of real numbers R which is uncountable.

Since we have two infinite sets, a one-to-one correspondence does not
exist because each set is uncountable. A one-to-one correspondence is
a bijection meaning that it is injective and surjective. This correspon-
dence is not one-to-one because every sub-square in the unit square
cannot be mapped onto by at most one corresponding sub-interval in
the unit interval. Note that in a one-to-one function, each x is paired
with only one y and each y is paired with only one x. Also, there has
to be identity functions of injection defined such that f(x) = x and
f(y) = y so that f(x) = y = x for a function to be defined as one-
to-one [4]. In the topic of space-filling curves, I did not come across
any research so far where there was an identity function defined to
determine a curve being space-filling. Some mathematicians may state
that an identity function is obvious therefore it will not be stated or
defined. On the contrary, every sub-square can be mapped onto by at
least one corresponding sub-interval. The first iteration yields,

f1 : J1,{n4} → B1,{m4}

where {m4} = the set of sub-squares {m1,m2,m3,m4}. In the first
iteration, at most one sub-interval corresponds to at most one sub-
square as stated earlier to satisfy the injection definition. Then as we
take more iterations of the correspondence, fn, we notice that we can
map the next iterations of sub-intervals onto the first iteration of sub-
squares B1,{m4}. To confirm this statement we show the next iterations
such that,

f2 : J2,{n16} → B1,{m4}

f3 : J3,{n64} → B1,{m4}

.

.

.

fk : Jk,{nk} → B1,{m4}

More specifically, for the second iteration,

f2 : J2,{n4} → B1,m1

f2 : J2,{n4} → B1,m2
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f2 : J2,{n4} → B1,m3

f2 : J2,{n4} → B1,m4

and for the third iteration,

f3 : J3,{n16} → B1,m1

f3 : J3,{n16} → B1,m2

f3 : J3,{n16} → B1,m3

f3 : J3,{n16} → B1,m4

and so forth. In other words, four sub-intervals from the set of sixteen
are mapped onto a corresponding sub-square. This process is repeated
for every iteration. Since we quarter the unit interval for every itera-
tive correspondence, we can map multiple sub-intervals onto the first
iteration of sub-squares. Due to this mapping being possible, this dis-
proves the statement that ”at most one element in the range can be
mapped onto by at most one element in the domain. Thus, our one-
to-one correspondence is a surjection only which is a contradiction!
Also, from the definition of the injective function having inverses we
have noticed that we can not map our set of squares unto the set of
intervals with the inverse function f−1 because the set of intervals is
strictly defined as our one-dimensional space x ∈ [0, 1]. Mapping the
range to our domain will simply put our two dimensional squares in
our one-dimensional interval which can not happen, thus confirming
another statement bringing us to a contradiction yet again.
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