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UNSTEADY FLOW OF VISCOELASTIC FLUID DUE
TO IMPULSIVE MOTION OF PLATE

AMIR KHAN, GUL ZAMAN, OBAID ALGAHTANI

Abstract. New exact solutions for unsteady magneto-hydro dy-
namic (MHD) flows of a generalized second-grade fluid due to a
impulsive motion of the plate have been derived. The generalized
second-grade fluid saturates the porous space. Fractional deriva-
tive is used in the governing equation. The analytical expressions
for velocity and shear stress fields have been obtained by using
Laplace transform technique for the fractional calculus. The ob-
tained solutions are expressed in series form in terms of Fox H-
functions.

1. Introduction

During the past several decades, the Navier-Stokes equations
were intensively studied in the literature. However, these equations
are unable to predict the behaviors of many real fluids encountered in
numerous industrial applications such as processing of polymers, phar-
maceuticals, personal care products, food products, inks, and so forth.
Therefore, it has been now recognized in industrial and technologi-
cal applications that non-Newtonian fluids are more appropriate than
Newtonian fluids. Non-Newtonian fluids are a broad class of fluids in
which the relation connecting the shear stress and shear rate is non
linear and hence there is no universal constitutive model available that
can alone predict the behavior of all non-Newtonian fluids. Hence, it
is necessary to study the behavior of non-Newtonian fluids in order
to obtain a thorough understanding and improve their utilization in
various manufacturing processes. Rivlin and Ericksen [1] introduced
a subclass of non-Newtonian fluids known as second-grade fluid for
which a possibility exist to obtain the exact solution. Exact solutions
of second-grade fluid for start-up flows have been investigated by Ban-
delli [2] using integral transform technique. Tan [3] discussed the flow
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of suddenly moved flat plate in a generalized second-grade. Exact solu-
tions of a generalized second grade fluid corresponding to the oscillatory
flow between two cylinders have been achieved by Mahmood et al. [4].
Tripathy [5] discussed peristaltic motion of a generalized second grade
fluid passing through a cylindrical tube. Tan [6] obtained solutions for
unsteady motions between two parallel plates of the generalized second
grade fluid.
In the last few decades the study of fluid motions through porous medi-
um have received much attention due to its importance not only to the
field of academic but also to the industry. Such motions have many
applications in many industrial and biological processes such as food
industry, irrigation problems, oil exploitation, motion of blood in the
cardiovascular system [7], chemistry and bio-engineering, soap and cel-
lulose solutions and in biophysical sciences where the human lungs are
considered as a porous layer. etc. Unsteady MHD flows of viscoelastic
fluids passing through porous space are of considerable interest. In the
last few years alot of work has been done on MHD flow, see [8-12] and
reference therein.
Recently, the fractional derivative [13] approach is proving to be an im-
portant tool for considering the behaviors of such types of fluids. Many
researchers investigated different problems using fractional derivative
technique regarding such fluids. In their works, the integer order time
derivatives in the constitutive models for generalized second-grade flu-
ids are replaced by the Riemann-Liouville fractional derivatives. Alot
of work has been done on fractional derivatives during the last few
years. Here we mention only those contributions which regards with
the viscoelastic type fluids [13-20] and the references therein.
According to the authors informations upto yet no study has been done
on the MHD flow of generalized second-grade fluid induced by impul-
sive motion of the plate flowing through a porous space. Hence, our
main objective in this note is to make a contribution in this regard.
We take an incompressible MHD flow passing through porous space of
a generalized second-grade fluid. Laplace transform method has been
used for the fractional calculus to obtained exact solutions for the pro-
files of velocity field and the corresponding shear stress. The obtained
solutions satisfies all the imposed initial and boundary conditions are
expressed in terms of Fox-H function.
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2. Governing equations

The equation of continuity and momentum of MHD flow passing
through porous space is given by:(Tan and Masuoka [6])

(2.1) ∇ ·V = 0; ρ(
dV

dt
) = divT− σβ2

oV + R,

where V=(u,v,w) represents velocity vector, electrical conductivity and
density of the fluid are represented by σ and ρ respectively, B0 is the
magnitude of a uniform magnetic field, material time derivative is de-
noted by d/dt, Cauchy stress tensor is represented by T, and R is the
Darcy’s resistance of the porous space.
For an incompressible and unsteady generalized second-grade fluid the
cauchy stress tensor T is given as [7]:

(2.2) T = S− pI; S = µW1 + α1W2 + α2W
2
1,

where S and pI represents the extra stress tensor and the indeterminate
spherical stress, the dynamic viscosity is denoted by µ, normal stress
moduli are represented by α1 and α2 and the kinematic tensors are W1

and W2 defined as

(2.3) W1 = L + LT , W2 = Dβ
t + W1L + LTW1

where L is the velocity gradient and Dβ
t represents the operator for

fractional differentiation whose order is β and is based on the Riemann-
Liouville definition [13],

(2.4) Db
a[g(a)] =

1

Γ(1− b)
d

da

∫ a

0

g(t)

(a− t)b
dt, 0 ≤ b < 1

where Gamma function is denoted by Γ(·). Model for ordinary second-
grade fluid can be obtained by putting β = 1. For the compatibility
of this model with thermodynamics it is required that the material
moduli should obey the following conditions

(2.5) α1 + α2 = 0, 0 ≤ α1 and µ ≥ 0.

For the second-grade fluid the Darcy’s resistance satisfies the following
equation:

(2.6) R = −φ
κ

(1 + α1
∂

∂t
)V

where k > 0 and φ(0 < φ < 1) are the permeability and the porosity of
the porous medium. For the following problem we consider the velocity
field and an extra stress of the form

(2.7) V = (u(y, t), 0, 0), S = S(y, t).
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where u is the velocity taken in the x-direction. Substituting Eq.(7)
into Eq.(2) and taking into account the initial condition

(2.8) S(y, 0) = 0, y > 0,

the fluid being at rest up to the time t = 0, we get

(2.9) Sxy = (µ+ α1D
β
t )∂yu(y, t),

where Syy = Szz = Sxz = Syz = 0, and Sxy = Syx. The balance of
linear momentum in the absence of body forces and pressure gradient
is given as:

(2.10) ∂ySxy − σB2
0u−

µφ

κ
(1 + α1

∂

∂t
) = ρ∂tu(y, t),

By putting Sxy from Eq. (9) into (10), we find the governing equation
under the form
(2.11)

ρ∂tu(y, t) = (µ+ α1D
β
t )∂2yu(y, t)− σB2

0u(y, t)− φ

κ
(µ+ α1

∂

∂t
)u(y, t),

3. Statement of the problem

We take an unsteady incompressible flow of homogenous and electri-
cally conducting second-grade fluid bounded by a rigid plate at y = 0.
The plate is taken normal to y-axis and the fluid saturates the porous
medium y > 0. The electrically conducting fluid is stressed by a unifor-
m magnetic field B0 parallel to the y axis, while the induced magnetic
field is neglected by choosing a small magnetic Reynolds number. Ini-
tially, both the plate and the fluid are at rest, and after time t=0, it is
suddenly set into motion by translating the flate plate in its plane, with
a constant velocity A. The initial and boundary conditions of velocity
field are:

(3.1)

u(y, 0) = 0; y > 0,

u(0, t) = A; t > 0,

u(y, t), ∂yu(y, t)→ 0 as y →∞ and t > 0.



UNSTEADY FLOW OF VISCOELASTIC FLUID 5

4. Calculation of Velocity field

Employing the non-dimensional quantities

(4.1)
u∗ = u

U
, y∗ = yU

ν
, t∗ = tU2

ν
, α∗ = α1U2

ρν2
, A∗ = A

U

τ = S
ρU2 , K = κU2

φν2
, M2 =

σνB2
0

ρU2 ,

The dimensionless mark * is omitted here for simplicity. Thus, the
governing equations of dimensionless motion becomes

(4.2) ∂tu(y, t) = (1 +αDβ
t )∂2yu(y, t)− 1

K
(1 +α

∂

∂t
)u(y, t)−M2u(y, t),

(4.3) τ(y, t) = (1 + αDβ
t )∂yu(y, t)

with the given conditions as

(4.4)

u(y, 0) = 0; y > 0,

u(0, t) = A; t > 0,

u(y, t), ∂yu(y, t)→ 0 as y →∞, and t > 0.

First we will apply the Laplace transform to eq (14) and using the
Laplace transform formula for sequential fractional derivatives [21]

(4.5) ū(y, t) =

∫ ∞
o

u(y, t)e−stdt, s ≥ 0,

Taking into the account the corresponding initial and boundary condi-
tions (16), we get the following differential equation

(4.6) ∂2y ū(y, q)−
(

1 + αq

K(1 + αqβ)
+
q +M2

1 + αqβ

)
ū(y, q) = 0, s ≥ 0,

ū(0, q) =
A

q
; t > 0,

(4.7) ū(y, q), ∂yū(y, q)→ 0 as y →∞, and q > 0.

The solution of Eq.(18) satisfying the boundary conditions (19) is of
the following form:

(4.8) ū(y, q) =
A

q
exp

(
− y

√
1

K(1 + αqβ)
((1 + αq) +K(q +M2))

)
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To get the analytical solution for velocity field and to avoid difficult
calculations of contour integrals and residues, we will apply the discrete
inverse Laplace transform method [21], but first we have to expressed
Eq. (20) in series form as

(4.9)

ū(y, q) =
∞∑
e1=0

∞∑
f1=0

∞∑
g1=0

∞∑
h1=0

∞∑
r=0

∞∑
s=0

A(−1)e1+f1+g1+h1+r+sαh1+r+sM2g1ye1

e1!f1!g1!h1!r!s!Ke1/2−f1q−f1−h1−βr−s+1

× Γ(f1 − e1/2)Γ(g1 − f1)Γ(h1 + f1)Γ(r + e1/2)Γ(s− e1/2)

Γ(e1/2)Γ(−e1/2)Γ(e1/2)Γ(f1)Γ(−f1)

Now apply the discrete inverse Laplace transform to Eq. (22), we get

(4.10)

u(y, t) =
∞∑
e1=0

∞∑
f1=0

∞∑
g1=0

∞∑
h1=0

∞∑
r=0

∞∑
s=0

A(−1)e1+f1+g1+h1+r+st−f1−h1−βr−sαh1+r+s

e1!f1!g1!h1!r!s!Γ(−f1)Ke1/2−f1

× Γ(f1 − e1/2)Γ(g1 − f1)Γ(h1 + f1)Γ(r + e1/2)Γ(s− e1/2)M2g1ye1

Γ(e1/2)Γ(−e1/2)Γ(e1/2)Γ(f1)Γ(−f1 − h1 − βr − s+ 1)

To get Eq. (23) in a more compact form we use Fox H-function [13],

(4.11)

u(y, t) = A
∞∑
e1=0

∞∑
f1=0

∞∑
g1=0

∞∑
r=0

∞∑
s=0

(−1)e1+f1+g1+r+sM2g1ye1t−f1−βr−s+1αr+s

e1!f1!g1!r!s!Ke1/2−f1

×H
1,5

5,7

[
α

t

∣∣∣∣∣∣∣∣
(1− f1 + e1/2, 0), (1− g1 + f1, 0), (1− f1, 1), (1− s+ e1/2, 0),

(1− r − e1/2, 0).
(1− e1/2, 0), (1− f1, 0), (1 + f1, 0), (0, 1), (1 + e1/2, 0),

(1− e1/2, 0), (f1 + βr + s,−1).

]

To obtain Eq. (24), the following Fox H-function property has been
used,

H
1,s

s,t+1

[
−σ

∣∣∣∣∣ (1− a1, A1), ..., (1− as, As)
(1, 0), (1− b1, B1), ..., (1− bt, Bt)

]
=
∞∑
r=0

Γ(a1 + A1r)...Γ(as + Asr)

r!Γ(b1 +B1r)...Γ(bt +Btr)
σr.

5. Calculation of Shear Stress

To get the shear stress first we apply Laplace transform on Eq. (15),
we get

(5.1) τ̄(y, q) = (1 + αqβ)∂yū(y, q),



UNSTEADY FLOW OF VISCOELASTIC FLUID 7

Substituting ū(y, q) from eq. (20), we get

τ̄(y, t) = −A(1 + αqβ)

q
exp(−

√
By)
√
B.(5.2)

where

B =
(1 + αq) +K(q +M2)

K(1 + αqβ)

To get a more compact form of τ̄(y, q), we write eq. (26) in series form
as

(5.3)

τ̄(y, q) =
∞∑
e1=0

∞∑
f1=0

∞∑
g1=0

∞∑
h1=0

∗∗∑ ∞∑
r=0

∞∑
s=0

A(−1)e1+f1+g1+h1+ζ1+r+s+1

e1!f1!g1!h1!i1!j1!k1!l1!m1!r!s!

×α
h1+k1+l1+m1+r+sΓ(f1 − e1/2)Γ(g1 − f1)Γ(h1 + f1)Γ(r + e1/2)Γ(s− e1/2)

Γ(e1/2)Γ(−e1/2)Γ(e1/2)Γ(f1)Γ(−f1)Ke1/2−f1−i1+1/2

×M
2g1+2j1ye1Γ(i1 − 1/2)Γ(j1 − i1)Γ(k1 + i1)Γ(l1 − 1/2)Γ(m1 − 1/2)

Γ(1/2)Γ(1/2)Γ(1/2)Γ(i1)Γ(−i1)q−f1−h1−i1−k1−βl1−m1−βr−s+1

where

∗∗∑
=

∞∑
i1=0

∞∑
j1=0

∞∑
k1=0

∞∑
l1=0

∞∑
m1=0

,

ζ1 = i1 + j1 + k1 + l1 +m1,

Taking the inverse Laplace of eq.(27), we get

(5.4)

τ(y, t) =
∞∑
e1=0

∞∑
f1=0

∞∑
g1=0

∞∑
h1=0

∗∗∑ ∞∑
r=0

∞∑
s=0

A(−1)e1+f1+g1+h1+ζ1+r+s+1

e1!f1!g1!h1!i1!j1!k1!l1!m1!r!s!

×α
h1+k1+l1+m1+r+sΓ(f1 − e1/2)Γ(g1 − f1)Γ(h1 + f1)Γ(r + e1/2)Γ(s− e1/2)

Γ(e1/2)Γ(−e1/2)Γ(e1/2)Γ(f1)Γ(−f1)Ke1/2−f1−i1+1/2

× M2g1+2j1ye1Γ(i1 − 1/2)Γ(j1 − i1)Γ(k1 + i1)Γ(l1 − 1/2)Γ(m1 − 1/2)

Γ(1/2)Γ(1/2)Γ(1/2)Γ(i1)Γ(−i1)Γ(−f1 − h1 − i1 − k1 − βl1 −m1 − βr − s+ 1)

× t−f1−h1−i1−k1−βl1−m1−βr−s
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Finally, using Fox H-function to get the stress field as,

(5.5)

τ(y, t) =
∞∑
e1=0

∞∑
f1=0

∞∑
g1=0

∗∗∑ ∞∑
r=0

∞∑
s=0

A(−1)e1+f1+g1+ζ1+r+s+1ye1

e1!f1!g1!i1!j1!k1!l1!m1!r!s!M−2g1−2j1

× t−f1−i1−k1−βl1−m1−βr−s

α−k1−l1−m1−r−sKe1/2−f1−i1+1/2

H
1,10

10,12

[
α

t

∣∣∣∣∣∣∣∣∣∣∣

(−i1 + 3/2, 0), (1− j1 + i1, 0), (1− k1 − i1, 0), (1− l1 + 1/2, 0),
(1− f1, 1), (1− s+ e1/2, 0), (1− r − e1/2, 0), (1− f1 + e1/2, 0),

(−m1 + 3/2, 0), (1− g1 + f1, 0).
(1/2, 0), (1− i1, 0), (1 + i1, 0), (1− e1/2, 0), (1− f1, 0), (0, 1),

(1 + f1, 0), (1− e1/2, 0), (1/2, 0), (1/2, 0), (1 + e1/2, 0)
(f1 + i1 + k1 + βl1 +m1 + βr + s,−1).

]
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