
ISSN: 2307-7743
www.scienceasia.asia
©2023 Science Asia

Asian J. Math. Appl. (2023) 2023:5

On Two-Dimensional Functions With an Integral Equal to
Zero Over a Rectangle: Application to a Modi�ed Gaussian
Distribution

Christophe Chesneau1

1Department of Mathematics, LMNO, University of Caen, 14032 Caen, France

Correspondence should be addressed to Christophe Chesneau: chesneau.christophe@gmail.com

Abstract
The study of two-dimensional real functions with an integral over a rectangle equal to zero can lead to a better
understanding of integration theory and its applications in various �elds such as physics, engineering, andmath-
ematics. Additionally, it is of importance in the development of numerical methods for computing integrals. In
this article, we investigate some manageable conditions under which two-dimensional functions satisfy this in-
tegral property. They include the standard separable and centered integral conditions, the odd conditions, the
antisymmetric conditions, the trigonometric conditions and the composite function di�erence conditions. The
�ndings are presented as propositions with thorough and self-contained proofs. Various examples are given to
illustrate the �ndings. An application part is devoted to two new modi�ed two-dimensional Gaussian distribu-
tions. These modi�cations are made by the use of �exible trigonometric perturbation functions, which are able
to produce two-dimensional multi-modality and various weights on the tails. These new perturbed Gaussian
distributions represent promising new avenues for research in probability theory, with potential applications in
a wide range of �elds.

Keywords: two-dimensional functions; two-dimensional integrals; trigonometric functions; Gaussian distri-
bution.

Introduction

Two-dimensional functions with an integral of zero over a rectangle have numerous applications in mathemat-
ics, physics, engineering, and other �elds. Here are some areas of interest for these functions:

In vector calculus, they can correspond to vector �elds that are divergence-free. This property is important
in the study of �uid dynamics, electromagnetism, and other areas of physics. See [1].

In di�erential equations, they can be used to construct solutions to certain types of di�erential equations, such
as the wave equation and the heat equation. See [2].

In mathematical physics, they correspond to conserved quantities, such as the total charge or energy of a
system. These quantities are particularly useful in the study of classical mechanics, quantum mechanics,
and other areas of physics. See [3, 4].
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In harmonic analysis, they can be expressed as a linear combination of harmonic functions, which have im-
portant properties in analysis and geometry. See [5].

In Fourier analysis, they can be decomposed into Fourier series, which have applications in signal processing,
data analysis, and other �elds. See [6].

In probability theory, they arise in the study of probability distributions, such as the joint distribution of two
random variables. Applications can be found in multivariate Gaussian distributions, regression analysis,
and other areas of statistics. See [7].

In numerical methods, they can be approximated numerically using speci�c methods, such as �nite element
methods and spectral methods. See [8].

These are just a few examples of the many areas in which two-dimensional functions with an integral of
zero over a rectangle are of interest. Further reading on these and related topics can be found in the references
provided.

In the overall literature, a lot of di�erent and precise examples exist, but rare are the attempts to exhibit
clear general conditions for two-dimensional functions with such properties. This article aims to �ll this gap.

The �rst part determines several di�erent sets of conditions, such as the standard separable and centered
integral conditions involving intermediary integral terms, the odd conditions involving odd functions according
to a single variable, the antisymmetric (or skew-symmetric) conditions involving antisymmetric functions, i.e.,
functions U (x , y) such that U (x , y) = −U (y , x) for any (x , y) ∈ ℝ2 (see [13]), the trigonometric conditions
involving sine and cosine functions, and the composite function di�erence conditions based on a speci�c form
and a two-dimensional change of variables with one variable on ℝ. They are presented in the form of clear
propositions, with detailed proofs. In order to relate to concrete calculus, each proposition is illustrated with
concrete examples. This part thus presents the main theoretical results, and they can be taken independently
of the researchers’ interests.

The second part is devoted to an application of the �ndings to a very useful probability tool. To com-
municate its importance, a retrospective on the two-dimensional Gaussian distribution is necessary. To be-
gin, a two-dimensional Gaussian distribution is a multivariate distribution with two dimensions characterized
by its elliptical contours and smooth bell shape. It has many applications in �elds such as signal processing,
statistics, image processing, and machine learning (see [9], [10], [11] and [12]). Various extensions of it have
been elaborated (see [14] for the skewed two-dimensional Gaussian distribution, [15] for the wrapped two-
dimensional Gaussian distribution, [16] for the mixture two-dimensional Gaussian distribution, and [17] for
the two-dimensional Gaussian copula). Nevertheless, trigonometric extensions of it are rare, despite potential
applications in the context of image processing and pattern recognition, among others. We make a contribu-
tion in this direction; using the trigonometric conditions established in the �rst part of the article, we create
new sine and cosine-modi�ed two-dimensional Gaussian distributions. More precisely, sine and cosine per-
turbation functions are used to make these modi�cations, which can result in multi-modality and di�erent
tail weights. The �ndings are illustrated by graphics. Intriguing oscillating shapes are observed, along with a
high level of functional versatility on the peaks and tails. The potential applications of these distributions are
numerous in mathematics, physics, engineering, and other �elds.

The rest of the article considers the following sections: Section describes the main context, and the separa-
ble and centered integral conditions. Section is devoted to the analysis of odd-type conditions. Antisymmetric
conditions are described in Section . The trigonometric conditions are the subject of Section . Section focuses
on the composite function di�erence conditions. The new trigonometric two-dimensional Gaussian distribu-
tions are presented in Section . Conclusions are given in Section .
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Context and classical integral conditions

Context

In all the article, we consider four real numbers, 𝛼, 𝛽 , 𝛾 and 𝜆 , such that 𝛼 < 𝛽 and 𝛾 < 𝜆 (possibly equal to
−∞ or +∞). Based on them, we de�ne the rectangle (or rectangular domain): [𝛼 , 𝛽 ] × [𝛾 , 𝜆 ] as

[𝛼 , 𝛽 ] × [𝛾 , 𝜆 ] = {(x , y) ∈ ℝ2 | 𝛼 ≤ x ≤ 𝛽 , 𝛾 ≤ y ≤ 𝜆 }.

In other words, [𝛼 , 𝛽 ] × [𝛾 , 𝜆 ] represents the Cartesian product of [𝛼 , 𝛽 ] and [𝛾 , 𝜆 ]. When 𝛾 = 𝛼 and 𝜆 = 𝛽 ,
we write [𝛼 , 𝛽 ] × [𝛾 , 𝜆 ] = [𝛼 , 𝛽 ]2. In addition, when 𝛼 = −∞ and 𝛽 = +∞, then [𝛼 , 𝛽 ] represents the entire
real line: ℝ.

In the �rst part of this article, as developed in the introductory section, we aim to determine general and
manageable conditions on two-dimensional integrable (real) functions P (x , y) de�ned on [𝛼 , 𝛽 ] × [𝛾 , 𝜆 ] sat-
isfying ∫ 𝜆

𝛾

∫ 𝛽

𝛼

P (x , y)dxdy = 0.

The possible multiplicative constant terms are easy to handle and therefore omitted. To this end, it is supposed
that

∫ 𝜆

𝛾

∫ 𝛽

𝛼
P (x , y)dxdy exists (or converge in the integral sense), and that we can switch the order of integra-

tion (under the wide conditions of the Fubini theorem, for instance). Overall, the book of Stewart provides
a comprehensive introduction to the integration of two-dimensional functions and is a valuable resource (see
[18]).

Separable conditions

Themost basic conditions that immediately come to mind are those involving separable functions, as described
in the following result.

Proposition 2.1 Let 𝛼, 𝛽 , 𝛾 and 𝜆 be real numbers such that 𝛼 < 𝛽 and 𝛾 < 𝜆 (possibly equal to −∞ or +∞). We
consider an integrable two-dimensional function P (x , y) de�ned on [𝛼 , 𝛽 ] × [𝛾 , 𝜆 ] under the assumption below.

Suppose that there exist

• an uni-dimensional integrable function f (x) de�ned on [𝛼 , 𝛽 ],

• an uni-dimensional integrable function g (y) de�ned on [𝛾 , 𝜆 ],

satisfying
∫ 𝛽

𝛼
f (x)dx = 0 or

∫ 𝜆

𝛾
g (y)dy = 0, and such that, for any (x , y) ∈ [𝛼 , 𝛽 ] × [𝛾 , 𝜆 ], we have

P (x , y) = f (x)g (y).

Then we have
∫ 𝜆

𝛾

∫ 𝛽

𝛼
P (x , y)dxdy = 0.

Proof. Clearly, by the distributive law, we get∫ 𝜆

𝛾

∫ 𝛽

𝛼

P (x , y)dxdy =
∫ 𝜆

𝛾

∫ 𝛽

𝛼

f (x)g (y)dxdy =
(∫ 𝛽

𝛼

f (x)dx
) (∫ 𝜆

𝛾

g (y)dy
)
= 0.

The proof ends. �

For illustrative purposes, two scholar examples are given below.

Example 1: Let us consider P (x , y) = sin(𝜋x) cos(𝜋y) for (x , y) ∈ [0, 1]2. Thus, in relation to the notations
of Proposition 2.1, we have 𝛼 = 0, 𝛽 = 1, 𝛾 = 0, 𝜆 = 1, and we can write P (x , y) = f (x)g (y) with f (x) =
sin(𝜋x) and g (y) = cos(𝜋y). Since

∫ 1
0 g (y)dy = (1/𝜋) sin(𝜋y) |y=1y=0 = 0, we have

∫ 1
0

∫ 1
0 P (x , y)dxdy = 0.
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Example 2: Let us consider P (x , y) = x3 exp(y) for (x , y) ∈ [−1, 1] × [0, 1]. Thus, in relation to the notations
of Proposition 2.1, we have 𝛼 = −1, 𝛽 = 1, 𝛾 = 0, 𝜆 = 1, and we can write P (x , y) = f (x)g (y) with
f (x) = x3 and g (y) = exp(y). Since

∫ 1
−1 f (x)dx = (1/4)x4

��x=1
x=−1 = 0, we have

∫ 1
0

∫ 1
−1 P (x , y)dxdy = 0.

Of course, in many situations, the separable assumption on P (x , y) is very optimistic and can be immedi-
ately refuted. More sophisticated conditions are investigated below.

Centered integral conditions

Other conditions for two-dimensional functions to have an integral equal to zero over a rectangle are the
centered integral conditions consisting of subtracting with an intermediary integral term. These conditions are
presented in several propositions below.

Proposition 2.2 Let 𝛼, 𝛽 , 𝛾 and 𝜆 be real numbers such that 𝛼 < 𝛽 and 𝛾 < 𝜆 (possibly equal to −∞ or +∞). We
consider an integrable two-dimensional function P (x , y) de�ned on [𝛼 , 𝛽 ] × [𝛾 , 𝜆 ] under the assumption below.

Suppose that there exists a two-dimensional integrable functionQ (x , y) de�ned on [𝛼 , 𝛽 ] × [𝛾 , 𝜆 ] such that, for any
(x , y) ∈ [𝛼 , 𝛽 ] × [𝛾 , 𝜆 ], we have

P (x , y) = Q (x , y) − 1
( 𝛽 − 𝛼) (𝜆 − 𝛾)

∫ 𝜆

𝛾

∫ 𝛽

𝛼

Q (x , y)dxdy.

Then we have
∫ 𝜆

𝛾

∫ 𝛽

𝛼
P (x , y)dxdy = 0.

Proof. By setting 𝜃 =
∫ 𝜆

𝛾

∫ 𝛽

𝛼
Q (x , y)dxdy, we obtain∫ 𝜆

𝛾

∫ 𝛽

𝛼

P (x , y)dxdy =
∫ 𝜆

𝛾

∫ 𝛽

𝛼

[
Q (x , y) − 𝜃

( 𝛽 − 𝛼) (𝜆 − 𝛾)

]
dxdy

=

∫ 𝜆

𝛾

∫ 𝛽

𝛼

Q (x , y)dxdy − 𝜃

( 𝛽 − 𝛼) (𝜆 − 𝛾)

∫ 𝜆

𝛾

∫ 𝛽

𝛼

dxdy

= 𝜃 − 𝜃

( 𝛽 − 𝛼) (𝜆 − 𝛾) ( 𝛽 − 𝛼) (𝜆 − 𝛾) = 𝜃 − 𝜃 = 0.

This ends the proof. �

Two examples are provided below for explanatory purposes.

Example 1: Let us consider P (x , y) = (1 − xy)2 − 11/18 for (x , y) ∈ [0, 1]2. Thus, in relation to
the notations of Proposition 2.2, we have 𝛼 = 0, 𝛽 = 1, 𝛾 = 0, 𝜆 = 1, and we can write
P (x , y) = Q (x , y) −

∫ 1
0

∫ 1
0 Q (x , y)dxdy with Q (x , y) = (1 − xy)2, by noticing that

∫ 1
0

∫ 1
0 Q (x , y)dxdy =∫ 1

0 − (1/(3y)) (1 − xy)3
��x=1
x=0 dy = (1/3)

∫ 1
0 (y2 − 3y + 3)dy = (1/3) ×

(
(1/3)y3 − (3/2)y2 + 3y

) ��y=1
y=0 =

11/18. Hence we have
∫ 1
0

∫ 1
0 P (x , y)dxdy = 0.

Example 2: Let us consider P (x , y) = x cos(xy) − 2/𝜋 for (x , y) ∈ [0, 𝜋] × [0, 1]. Thus, in relation to
the notations of Proposition 2.2, we have 𝛼 = 0, 𝛽 = 𝜋, 𝛾 = 0, 𝜆 = 1, and we can write P (x , y) =

Q (x , y) − (1/𝜋)
∫ 1
0

∫ 𝜋

0 Q (x , y)dxdy with Q (x , y) = x cos(xy), by noticing that
∫ 1
0

∫ 𝜋

0 Q (x , y)dxdy =∫ 𝜋

0 sin(xy) |y=1y=0 dx =
∫ 𝜋

0 sin(x)dx = − cos(x) |x=𝜋x=0 = 2. Hence we have
∫ 1
0

∫ 𝜋

0 P (x , y)dxdy = 0.

Another kind of centered integral conditions are presented below.

Proposition 2.3 Let 𝛼, 𝛽 , 𝛾 and 𝜆 be real numbers such that 𝛼 < 𝛽 and 𝛾 < 𝜆 (possibly equal to −∞ or +∞). We
consider an integrable two-dimensional function P (x , y) de�ned on [𝛼 , 𝛽 ] × [𝛾 , 𝜆 ] under the assumption below.

Suppose that there exist
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• an uni-dimensional bijective and di�erentiable functionT (y) de�ned on [𝛾 , 𝜆 ] such thatT (𝛾) = 𝛾 andT (𝜆 ) = 𝜆 ,
and with t(y) =T ′(y),

• a two-dimensional integrable function Q (x , y) de�ned on [𝛼 , 𝛽 ] × [𝛾 , 𝜆 ],

such that, for any (x , y) ∈ [𝛼 , 𝛽 ] × [𝛾 , 𝜆 ], we have

P (x , y) = Q (x , y) − 1
𝛽 − 𝛼

t(y)
∫ 𝛽

𝛼

Q (x ,T (y))dx.

Then we have
∫ 𝜆

𝛾

∫ 𝛽

𝛼
P (x , y)dxdy = 0.

Proof. Let us set 𝜏 (y) = t(y)
∫ 𝛽

𝛼
Q (x ,T (y))dx. By applying the change of variables v = T (y), so thatT ′(y) =

t(y),T (𝛾) = 𝛾 andT (𝜆 ) = 𝜆 , we get∫ 𝜆

𝛾

𝜏 (y)dy =
∫ 𝜆

𝛾

t(y)
∫ 𝛽

𝛼

Q (x ,T (y))dxdy =
∫ 𝜆

𝛾

∫ 𝛽

𝛼

Q (x , v)dxdv.

By setting 𝜃 =
∫ 𝜆

𝛾

∫ 𝛽

𝛼
Q (x , y)dxdy, we have∫ 𝜆

𝛾

∫ 𝛽

𝛼

P (x , y)dxdy =
∫ 𝜆

𝛾

∫ 𝛽

𝛼

[
Q (x , y) − 1

𝛽 − 𝛼
𝜏 (y)

]
dxdy

=

∫ 𝜆

𝛾

∫ 𝛽

𝛼

Q (x , y)dxdy − 1
𝛽 − 𝛼

∫ 𝜆

𝛾

𝜏 (y)dy
∫ 𝛽

𝛼

dx

= 𝜃 − 𝜃

𝛽 − 𝛼
( 𝛽 − 𝛼) = 𝜃 − 𝜃 = 0.

This ends the proof. �

The next example is provided for illustration only.

Example: Let us consider P (x , y) = xy2− y5 for (x , y) ∈ [0, 1]2. Thus, in relation to the notations of Proposi-
tion 2.3, we have 𝛼 = 0, 𝛽 = 1, 𝛾 = 0, 𝜆 = 1, and we can write P (x , y) = Q (x , y) − t(y)

∫ 1
0 Q (x ,T (y))dx

with Q (x , y) = xy2 andT (y) = y2 satisfyingT (0) = 0 andT (1) = 1, and t(y) = T ′(y) = 2y, by noticing
that t(y)

∫ 1
0 Q (x ,T (y))dx = 2y (1/2)x2y4

��x=1
x=0 = y

5. Hence we have
∫ 1
0

∫ 1
0 P (x , y)dxdy = 0.

Proposition 2.4 Let 𝛼, 𝛽 , 𝛾 and 𝜆 be real numbers such that 𝛼 < 𝛽 and 𝛾 < 𝜆 (possibly equal to −∞ or +∞). We
consider an integrable two-dimensional function P (x , y) de�ned on [𝛼 , 𝛽 ] × [𝛾 , 𝜆 ] under the assumption below.

Suppose that there exist

• an uni-dimensional bijective and di�erentiable functionT (x) de�ned on [𝛼 , 𝛽 ] such that T (𝛼) = 𝛼 andT ( 𝛽 ) =
𝛽 , and with t(x) =T ′(x),

• a two-dimensional integrable function Q (x , y) de�ned on [𝛼 , 𝛽 ] × [𝛾 , 𝜆 ],

such that, for any (x , y) ∈ [𝛼 , 𝛽 ] × [𝛾 , 𝜆 ], we have

P (x , y) = Q (x , y) − 1
𝜆 − 𝛾

t(x)
∫ 𝜆

𝛾

Q (T (x) , y)dy.

Then we have
∫ 𝜆

𝛾

∫ 𝛽

𝛼
P (x , y)dxdy = 0.

The proof is almost identical to that of Proposition 2.3. For this reason, it is omitted.

The next example is provided for illustration only.
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Example: Let us consider P (x , y) = xy2 − (2/3)x3 for (x , y) ∈ [0, 1]2. Thus, in relation to the notations
of Proposition 2.4, we have 𝛼 = 0, 𝛽 = 1, 𝛾 = 0, 𝜆 = 1, and we can write P (x , y) = Q (x , y) −
t(x)

∫ 1
0 Q (T (x) , y)dy with Q (x , y) = xy2 and T (x) = x2 satisfying T (0) = 0 and T (1) = 1, and t(x) =

T ′(x) = 2x, by noticing that t(x)
∫ 1
0 Q (T (x) , y)dy = 2x (1/3)x2y3

��y=1
y=0 = (2/3)x3. Hence we have∫ 1

0

∫ 1
0 P (x , y)dxdy = 0.

A limitation in the conditions presented in this section is that the involved integral terms on Q (x , y), i.e.,∫ 𝜆

𝛾

∫ 𝛽

𝛼
Q (x , y)dxdy or

∫ 𝛽

𝛼
Q (x , y)dx or

∫ 𝜆

𝛾
Q (x , y)dy, have not always a closed form or can be complicated

to calculate. Furthermore, they are a bit arti�cial in the sense that they are rarely encountered in natural
phenomena. Alternative conditions are developed in the next sections.

Odd conditions

It is common to deal with two-dimensional functions involving odd functions with respect to a single vari-
able. In this case, the corresponding integral can be zero under precise conditions, as formulated in the next
proposition.

Proposition 3.5 Let 𝛼, 𝛽 , 𝛾 and 𝜆 be real numbers such that 𝛼 < 𝛽 and 𝛾 < 𝜆 (possibly equal to −∞ or +∞). We
consider an integrable two-dimensional function P (x , y) de�ned on [𝛼 , 𝛽 ] × [𝛾 , 𝜆 ] under the assumption below.

Suppose that there exist

• an uni-dimensional bijective and di�erentiable functionT (y) de�ned on [𝛾 , 𝜆 ], and with t(y) =T ′(y),

• a real number 𝜉 satisfying T (𝛾) = −𝜉 andT (𝜆 ) = 𝜉 ,

• a two-dimensional functionU (x , y) de�ned on [𝛼 , 𝛽 ] × [−𝜉 , 𝜉 ] satisfying, for any (x , y) ∈ [𝛼 , 𝛽 ] × [−𝜉 , 𝜉 ],

U (x , −y) = −U (x , y) ,

such that, for any (x , y) ∈ [𝛼 , 𝛽 ] × [𝛾 , 𝜆 ], we have

P (x , y) = t(y)U (x ,T (y)).

Then we have
∫ 𝜆

𝛾

∫ 𝛽

𝛼
P (x , y)dxdy = 0.

Proof. By the change of variables v = T (y), so that T ′(y) = t(y), T (𝛾) = −𝜉 and T (𝜆 ) = 𝜉 , (the switch
the order of integration, assumed as possible in all the article), the change of variables w = −v, the property
U (x , −w) = −U (x , w), and the change of variables w =T (z), we obtain

I =
∫ 𝜆

𝛾

∫ 𝛽

𝛼

P (x , y)dxdy =
∫ 𝜆

𝛾

∫ 𝛽

𝛼

t(y)U (x ,T (y))dxdy

=

∫ 𝜉

−𝜉

∫ 𝛽

𝛼

U (x , v)dxdv =
∫ 𝛽

𝛼

∫ 𝜉

−𝜉
U (x , v)dvdx

=

∫ 𝛽

𝛼

∫ 𝜉

−𝜉
U (x , −w)dwdx = −

∫ 𝛽

𝛼

∫ 𝜉

−𝜉
U (x , w)dwdx

= −
∫ 𝛽

𝛼

∫ 𝜆

𝛾

t(z)U (x ,T (z))dzdx = −
∫ 𝜆

𝛾

∫ 𝛽

𝛼

P (x , z)dxdz = −I .

As a result, we have I = 0. This ends the proof. �

Of course, Proposition 3.5 can be applied to a functionU (x , y) with a high level of complexity. This is one
of the interests of the determination of general conditions.
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Example 1: Let us consider P (x , y) = exp(x + y) − exp(x − y) − exp(−x + y) + exp(−x − y) for (x , y) ∈ [0, 1] ×
[−1, 1]. Thus, in relation to the notations of Proposition 3.5, we have 𝛼 = 0, 𝛽 = 1, 𝛾 = −1, 𝜆 = 1, and
we can write P (x , y) = t(y)U (x ,T (y)) withU (x , y) = exp(x + y) − exp(x− y) − exp(−x + y) + exp(−x− y)
and T (y) = y with t(y) = T ′(y) = 1. We have T (−1) = −1 and T (1) = 1, so 𝜉 = 1. Since U (x , −y) =
exp(x − y) − exp(x + y) − exp(−x − y) + exp(−x + y) = −U (x , y), we have

∫ 1
−1

∫ 1
0 P (x , y)dxdy = 0.

Example 2: Let us consider P (x , y) = exp(x(y − 1/2)) − exp(−x(y − 1/2)) for (x , y) ∈ [0, 1]2. Thus, in
relation to the notations of Proposition 3.5, we have 𝛼 = 0, 𝛽 = 1, 𝛾 = 0, 𝜆 = 1, and we can write
P (x , y) = t(y)U (x ,T (y)) withU (x , y) = exp(xy) − exp(−xy) andT (y) = y − 1/2 with t(y) =T ′(y) = 1.
We haveT (0) = −1/2 andT (1) = 1/2, so 𝜉 = 1/2. SinceU (x , −y) = exp(−xy) − exp(xy) = −U (x , y),
we have

∫ 1
0

∫ 1
0 P (x , y)dxdy = 0.

A twin result to Proposition 3.5 is given below.

Proposition 3.6 Let 𝛼, 𝛽 , 𝛾 and 𝜆 be real numbers such that 𝛼 < 𝛽 and 𝛾 < 𝜆 (possibly equal to −∞ or +∞). We
consider an integrable two-dimensional function P (x , y) de�ned on [𝛼 , 𝛽 ] × [𝛾 , 𝜆 ] under the assumption below.

Suppose that there exist

• an uni-dimensional bijective and di�erentiable functionT (x) de�ned on [𝛼 , 𝛽 ], and with t(x) =T ′(x),

• a real number 𝜉 satisfying T (𝛼) = −𝜉 andT ( 𝛽 ) = 𝜉 ,

• a two-dimensional functionU (x , y) de�ned on [−𝜉 , 𝜉 ] × [𝛾 , 𝜆 ], satisfying, for any (x , y) ∈ [−𝜉 , 𝜉 ] × [𝛾 , 𝜆 ],

U (−x , y) = −U (x , y)

such that, for any (x , y) ∈ [𝛼 , 𝛽 ] × [𝛾 , 𝜆 ], we have

P (x , y) = t(x)U (T (x) , y).

Then we have
∫ 𝜆

𝛾

∫ 𝛽

𝛼
P (x , y)dxdy = 0.

The proof is almost identical to that of Proposition 3.5; only the domain of integration and the change of
variables di�er. For this reason, it is omitted.

The next two examples are provided for illustration only.

Example 1: Let us consider P (x , y) = sin(xy2) for (x , y) ∈ [−1, 1] × [0, 1]. Thus, in relation to the notations
of Proposition 3.6, we have 𝛼 = −1, 𝛽 = 1, 𝛾 = 0, 𝜆 = 1, and we can write P (x , y) = t(x)U (T (x) , y)
with U (x , y) = sin(xy2) and T (x) = x with t(x) = T ′(x) = 1. We have T (−1) = −1 and T (1) = 1, so
𝜉 = 1. SinceU (−x , y) = − sin(xy2) = −U (x , y), we have

∫ 1
0

∫ 1
−1 P (x , y)dxdy = 0.

Example 2: Let us consider P (x , y) = (x − 1/2) cos(y) − y sin(x − 1/2) for (x , y) ∈ [0, 1]2. Thus, in relation
to the notations of Proposition 3.6, we have 𝛼 = 0, 𝛽 = 1, 𝛾 = 0, 𝜆 = 1, and we can write P (x , y) =

t(x)U (T (x) , y) withU (x , y) = x cos(y) − y sin(x) and T (x) = x − 1/2 with t(x) = T ′(x) = 1. We have
T (0) = −1/2 and T (1) = 1/2, so 𝜉 = 1/2. Since U (−x , y) = −x cos(y) + y sin(x) = −U (x , y), we have∫ 1
0

∫ 1
0 P (x , y)dxdy = 0.

Antisymmetric conditions

We recall that an antisymmetric two-dimensional function is a function U (x , y) that satis�es the condition
U (x , y) = −U (y , x) for any (x , y) ∈ ℝ2. This property is also known as skew symmetry. More information on
this notion can be found in [13]. Antisymmetric functions have important applications in physics, particularly

7
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in the study of electromagnetism and quantummechanics. They also play a role in signal processing and image
analysis, where they are used to represent certain types of data with symmetries.

In the result below, we show how antisymmetric two-dimensional functions are involved in functions with
an integral over a rectangle equal to zero.

Proposition 4.7 Let 𝛼, 𝛽 , 𝛾 and 𝜆 be real numbers such that 𝛼 < 𝛽 and 𝛾 < 𝜆 (possibly equal to −∞ or +∞). We
consider an integrable two-dimensional function P (x , y) de�ned on [𝛼 , 𝛽 ] × [𝛾 , 𝜆 ] under the assumption below.

Suppose that there exist

• an uni-dimensional bijective and di�erentiable functionT (y) de�ned on [𝛾 , 𝜆 ] such thatT (𝛾) = 𝛼 andT (𝜆 ) = 𝛽 ,
and with t(y) =T ′(y),

• a two-dimensional functionU (x , y) de�ned on [𝛼 , 𝛽 ]2 satisfying, for any (x , y) ∈ [𝛼 , 𝛽 ]2,

U (x , y) = −U (y , x) ,

such that, for any (x , y) ∈ [𝛼 , 𝛽 ] × [𝛾 , 𝜆 ], we have

P (x , y) = t(y)U (x ,T (y)).

Then we have
∫ 𝜆

𝛾

∫ 𝛽

𝛼
P (x , y)dxdy = 0.

Proof. By the change of variables v = T (y), so that T ′(y) = t(y), T (𝛾) = 𝛼 and T (𝜆 ) = 𝛽 , the property
U (x , v) = −U (v, x), and the change of variable x =T (w), we have

I =
∫ 𝜆

𝛾

∫ 𝛽

𝛼

P (x , y)dxdy =
∫ 𝜆

𝛾

∫ 𝛽

𝛼

t(y)U (x ,T (y))dxdy

=

∫ 𝛽

𝛼

∫ 𝛽

𝛼

U (x , v)dxdv = −
∫ 𝛽

𝛼

∫ 𝛽

𝛼

U (v, x)dxdv

= −
∫ 𝛽

𝛼

∫ 𝛽

𝛼

U (v, x)dvdx = −
∫ 𝜆

𝛾

∫ 𝛽

𝛼

t(w)U (v,T (w))dvdw = −I .

As a result, we have I = 0. This ends the proof. �

The interest of Proposition 4.7 is that, despite the degree of complexity of the antisymmetric function
U (x , y), the resulting integral is always 0 under the precise stated conditions. Most of the symbolic software
does not detect the antisymmetric property, which can lead to an exorbitantly long time of computation to
�nally obtain zero (if they are able to �nish).

The next two examples are provided for illustration only.

Example 1: Let us consider P (x , y) = (x − y) sin(x + y) for (x , y) ∈ [0, 1]2. Thus, in relation to the notations
of Proposition 4.7, we have 𝛼 = 0, 𝛽 = 1, 𝛾 = 0, 𝜆 = 1, and we can write P (x , y) = t(y)U (x ,T (y)) with
U (x , y) = (x − y) sin(x + y) andT (y) = y with t(y) =T ′(y) = 1. We haveT (0) = 0 andT (1) = 1. Since
U (x , y) = −(y − x) sin(y + x) = −U (y , x), we have

∫ 1
0

∫ 1
0 P (x , y)dxdy = 0.

Example 2: Let us consider P (x , y) = 8y sinh(3(x − 4y2)) for (x , y) ∈ [0, 1] × [0, 1/2]. Thus, in relation to
the notations of Proposition 4.7, we have 𝛼 = 0, 𝛽 = 1, 𝛾 = 0, 𝜆 = 1/2, and we can write P (x , y) =

t(y)U (x ,T (y)) withU (x , y) = sinh(3(x − y)) andT (y) = 4y2 with t(y) =T ′(y) = 8y. We haveT (0) = 0
andT (1/2) = 1. SinceU (x , y) = − sinh(3(y − x)) = −U (y , x), we have

∫ 1/2
0

∫ 1
0 P (x , y)dxdy = 0.

A twin result can be presented as follows:

8
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Proposition 4.8 Let 𝛼, 𝛽 , 𝛾 and 𝜆 be real numbers such that 𝛼 < 𝛽 and 𝛾 < 𝜆 (possibly equal to −∞ or +∞). We
consider an integrable two-dimensional function P (x , y) de�ned on [𝛼 , 𝛽 ] × [𝛾 , 𝜆 ] under the assumption below.

Suppose that there exist

• an uni-dimensional bijective and di�erentiable functionT (x) de�ned on [𝛼 , 𝛽 ] such that T (𝛼) = 𝛾 andT ( 𝛽 ) =
𝜆 , and with t(x) =T ′(x),

• a two-dimensional functionU (x , y) de�ned on [𝛾 , 𝜆 ]2 satisfying, for any (x , y) ∈ [𝛾 , 𝜆 ]2,

U (x , y) = −U (y , x) ,

such that, for any (x , y) ∈ [𝛼 , 𝛽 ] × [𝛾 , 𝜆 ], we have

P (x , y) = t(x)U (T (x) , y).

Then we have
∫ 𝜆

𝛾

∫ 𝛽

𝛼
P (x , y)dxdy = 0.

The proof is almost identical to that of Proposition 4.7; only the domain of integration and the change of
variables di�er. For this reason, it is omitted.

The next two examples are provided for illustration only.

Example 1: Let us consider P (x , y) = (x2 − y2) exp(xy) for (x , y) ∈ [0, 1]2. Thus, in relation to the notations
of Proposition 4.8, we have 𝛼 = 0, 𝛽 = 1, 𝛾 = 0, 𝜆 = 1, and we can write P (x , y) = t(x)U (T (x) , y) with
U (x , y) = (x2 − y2) exp(xy) and T (x) = x with t(x) = T ′(x) = 1. We have T (0) = 0 and T (1) = 1.
SinceU (x , y) = −(y2 − x2) exp(yx) = −U (y , x), we have

∫ 1
0

∫ 1
0 P (x , y)dxdy = 0.

Example 2: Let us consider P (x , y) = 2(4x2 − y2)/(4x2 + y2) for (x , y) ∈ [0, 1/2] × [0, 1]. Thus, in relation
to the notations of Proposition 4.8, we have 𝛼 = 0, 𝛽 = 1/2, 𝛾 = 0, 𝜆 = 1, and we can write P (x , y) =
t(x)U (T (x) , y) withU (x , y) = (x2−y2)/(x2+y2) andT (x) = 2x with t(x) =T ′(x) = 2. We haveT (0) =
0 andT (1/2) = 1. SinceU (x , y) = −(y2 − x2)/(y2 + x2) = −U (y , x), we have

∫ 1
0

∫ 1/2
0 P (x , y)dxdy = 0.

Our results thus contribute to understanding the properties and behavior of the antisymmetric functions,
which is essential for mastering the techniques and applications of integration in mathematics and its diverse
scienti�c and engineering applications.

In the next section, we focus on a di�erent approach based on trigonometric conditions.

Trigonometric conditions

The next proposition presents conditions on two-dimensional functions with an integral equal to zero over a
rectangle based on trigonometric functions.

Proposition 5.9 Let 𝛼, 𝛽 , 𝛾 and 𝜆 be real numbers such that 𝛼 < 𝛽 and 𝛾 < 𝜆 (possibly equal to −∞ or +∞). We
consider an integrable two-dimensional function P (x , y) de�ned on [𝛼 , 𝛽 ] × [𝛾 , 𝜆 ] under the assumption below.

Suppose that there exist

• an integer m (it can be non-positive),

• a real number 𝜖 ,

• an uni-dimensional function S (x) de�ned on [𝛼 , 𝛽 ],

• an uni-dimensional integrable function k(x) de�ned on [𝛼 , 𝛽 ],

9
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• a bijective and di�erentiable function T (y) de�ned on [𝛾 , 𝜆 ] such that T (𝛾) = 0 and T (𝜆 ) = 1, and with
t(y) =T ′(y),

such that, for any (x , y) ∈ [𝛼 , 𝛽 ] × [𝛾 , 𝜆 ], we have

P (x , y) = k(x)t(y) sin [2𝜋 (S (x) + mT (y)) + 𝜖 ]

or

P (x , y) = k(x)t(y) cos [2𝜋 (S (x) + mT (y)) + 𝜖 ] .

Then we have
∫ 𝜆

𝛾

∫ 𝛽

𝛼
P (x , y)dxdy = 0.

Proof. Let us consider the sine de�nition of P (x , y). By using the complex formula sin(u) = Imag(exp(iu)),
where i2 = −1 and Imag denotes the imaginary part operator, we obtain∫ 𝜆

𝛾

∫ 𝛽

𝛼

P (x , y)dxdy =
∫ 𝜆

𝛾

∫ 𝛽

𝛼

k(x)t(y) sin [2𝜋 (S (x) + mT (y)) + 𝜖 ] dxdy

=

∫ 𝜆

𝛾

∫ 𝛽

𝛼

k(x)t(y) Imag {exp [i2𝜋 (S (x) + mT (y)) + i𝜖 ]} dxdy

= Imag (exp(i𝜖 ) × I × J ) , (1)

where

I =
∫ 𝛽

𝛼

k(x) exp (i2𝜋S (x)) dx , J =

∫ 𝜆

𝛾

t(y) exp (i2𝜋mT (y)) dy.

Let us prove that J = 0. By the change of variables v = T (y), so that t(y) = T ′(y), T (𝛾) = 0 and T (𝜆 ) = 1,
and since m is an integer, implying that exp(i2𝜋m) = cos(2𝜋m) + i sin(2𝜋m) = 1 + i × 0 = 1, we have

J =

∫ 𝜆

𝛾

t(y) exp (i2𝜋mT (y)) dy =
∫ 1

0
exp(i2𝜋mv)dv = 1

i2𝜋m
(exp(i2𝜋m) − 1) = 0.

Therefore, we have ∫ 𝜆

𝛾

∫ 𝛽

𝛼

P (x , y)dxdy = Imag (exp(i𝜖 ) × I × 0) = 0.

For the cosine de�nition of P (x , y), by using the complex formula cos(u) = Real(exp(iu)), where Real denotes
the real part operator, and proceeding in a similar way than for the sine de�nition, we get∫ 𝜆

𝛾

∫ 𝛽

𝛼

P (x , y)dxdy = Real (exp(i𝜖 ) × I × J ) = Real (exp(i𝜖 ) × I × 0) = 0.

This ends the proof. �

The next two examples are provided for illustration only.

Example 1: Let us consider P (x , y) = sin
(
2𝜋 (2x2 − 3y) + 4

)
for (x , y) ∈ [0, 1]2. Thus, in relation to the

notations of Proposition 5.9, we have 𝛼 = 0, 𝛽 = 1, 𝛾 = 0, 𝜆 = 1, and we can write P (x , y) =

k(x)t(y) sin [2𝜋 (S (x) + mT (y)) + 𝜖 ], with m = −3, 𝜖 = 4, S (x) = 2x2, k(x) = 1, and T (y) = y with
t(y) =T ′(y) = 1. We haveT (0) = 0 andT (1) = 1. Therefore, we have

∫ 1
0

∫ 1
0 P (x , y)dxdy = 0.

Example 2: Let us consider P (x , y) = 𝜋y𝜋−1ex cos (2𝜋 (cos(x) + y𝜋 ) − 1/2) for (x , y) ∈ [0, 1]2. Thus, in re-
lation to the notations of Proposition 5.9, we have 𝛼 = 0, 𝛽 = 1, 𝛾 = 0, 𝜆 = 1, and we can write
P (x , y) = k(x)t(y) cos [2𝜋 (S (x) + mT (y)) + 𝜖 ], with m = 1, 𝜖 = −1/2, S (x) = cos(x), k(x) = ex ,
and T (y) = y𝜋 with t(y) = T ′(y) = 𝜋y𝜋−1. We have T (0) = 0 and T (1) = 1. Therefore, we have∫ 1
0

∫ 1
0 P (x , y)dxdy = 0.

10
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A twin result is presented below.

Proposition 5.10 Let 𝛼, 𝛽 , 𝛾 and 𝜆 be real numbers such that 𝛼 < 𝛽 and 𝛾 < 𝜆 (possibly equal to −∞ or +∞).
We consider an integrable two-dimensional function P (x , y) de�ned on [𝛼 , 𝛽 ] × [𝛾 , 𝜆 ] under the assumption below.

Suppose that there exists

• an integer m (it can be non-positive),

• a real number 𝜖 ,

• an uni-dimensional function S (y) de�ned on [𝛾 , 𝜆 ],

• an uni-dimensional integrable function k(y) de�ned on [𝛾 , 𝜆 ],

• a bijective and di�erentiable function T (x) de�ned on [𝛼 , 𝛽 ] such that T (𝛼) = 0 and T ( 𝛽 ) = 1, and with
t(x) =T ′(x),

such that, for any (x , y) ∈ [𝛼 , 𝛽 ] × [𝛾 , 𝜆 ], we have

P (x , y) = t(x)k(y) sin [2𝜋 (mT (x) + S (y)) + 𝜖 ]

or

P (x , y) = t(x)k(y) cos [2𝜋 (mT (x) + S (y)) + 𝜖 ] .

Then we have
∫ 𝜆

𝛾

∫ 𝛽

𝛼
P (x , y)dxdy = 0.

The proof is almost identical to the one of Proposition 5.9, so it is omitted.
The next sophisticated example is provided for illustration only.

Example: Let us consider P (x , y) = 2e−2x sinh(y) sin[2𝜋 (2(1− e−2x) −3y2) +5] for (x , y) ∈ [0, +∞) × [0, 1].
Thus, in relation to the notations of Proposition 5.10, we have 𝛼 = 0, 𝛽 = +∞, 𝛾 = 0, 𝜆 = 1, and we can
write P (x , y) = t(x)k(y) sin [2𝜋 (mT (x) + S (y)) + 𝜖 ], with m = 2, 𝜖 = 5, S (y) = −3y2, k(y) = sinh(y),
and T (x) = 1 − e−2x with t(x) = T ′(x) = 2e−2x. We have T (0) = 0 and limx→+∞T (x) = 1. Therefore,
we have

∫ 1
0

∫ +∞
0 P (x , y)dxdy = 0.

It is interesting to note that, for this example among others, symbolic software failed to give the result 0 be-
cause of the high complexity of the integrated function; thanks to the proposed condition, the result follows
immediately.

Composite function di�erence conditions

This section investigates more marginal conditions based on composite function di�erences. They can be
applied only if one domain of integration is ℝ and the functions of interest have imposed forms involving
di�erences of functions with di�erent variables.

Proposition 6.11 Let 𝛾 and 𝜆 be real numbers such that 𝛾 < 𝜆 (possibly equal to −∞ or +∞). We consider an
integrable two-dimensional function P (x , y) de�ned on ℝ × [𝛾 , 𝜆 ] under the assumption below.

Suppose that there exist

• an uni-dimensional di�erentiable functionT (y) de�ned on [𝛾 , 𝜆 ],

• a two-dimensional functionU (x , y) de�ned on ℝ × [𝛾 , 𝜆 ] satisfying∫ 𝜆

𝛾

∫ +∞

−∞
U (x , y)dxdy = 0,

11
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such that, for any (x , y) ∈ ℝ × [𝛾 , 𝜆 ], we have

P (x , y) =U (x −T (y) , y).

Then we have
∫ 𝜆

𝛾

∫ +∞
−∞ P (x , y)dxdy = 0.

Proof. By the two-dimensional change of variables (v, y) = (x −T (y) , y) which has the Jacobian equals to 1,
with limx→−∞ [x −T (y)] = −∞ and limx→+∞ [x −T (y)] = +∞, we have∫ 𝜆

𝛾

∫ +∞

−∞
P (x , y)dxdy =

∫ 𝜆

𝛾

∫ +∞

−∞
U (x −T (y) , y)dxdy =

∫ 𝜆

𝛾

∫ +∞

−∞
U (v, y)dvdy = 0.

This ends the proof. �

Such composite function di�erence conditions are classical in probability theory when dealing with the
two-dimensional Gaussian distribution in particular.

An example is detailed below.

Example: Let us consider P (x , y) = exp(−|x − ey |) cos(𝜋y) for (x , y) ∈ ℝ × [0, 1]. Thus, in relation to the
notations of Proposition 6.11, we have 𝛾 = 0, 𝜆 = 1, and we can write P (x , y) = U (x −T (y) , y), with
U (x , y) = exp(−|x |) cos(𝜋y) andT (y) = ey. Since

∫ 1
0 cos(𝜋y)dy = 0, due to the separability ofU (x , y),

we have
∫ 𝜆

𝛾

∫ +∞
−∞ U (x , y)dxdy = 0. Hence, we have

∫ 1
0

∫ +∞
−∞ P (x , y)dxdy = 0.

The twin version of Proposition 6.11 is presented below.

Proposition 6.12 Let 𝛼 and 𝛽 be real numbers such that 𝛼 < 𝛽 (possibly equal to −∞ or +∞). We consider an
integrable two-dimensional function P (x , y) de�ned on [𝛼 , 𝛽 ] ×ℝ under the assumption below.

Suppose that there exist

• an uni-dimensional di�erentiable functionT (x) de�ned on [𝛼 , 𝛽 ],

• a two-dimensional functionU (x , y) de�ned on [𝛼 , 𝛽 ] ×ℝ satisfying∫ +∞

−∞

∫ 𝛽

𝛼

U (x , y)dxdy = 0,

such that, for any (x , y) ∈ [𝛼 , 𝛽 ] ×ℝ, we have

P (x , y) =U (x , y −T (x)).

Then we have
∫ +∞
−∞

∫ 𝛽

𝛼
P (x , y)dxdy = 0.

The proof is similar to the one in Proposition 6.11, so it is omitted.
A proposition of example is presented below.

Example: Let us consider P (x , y) = x exp(−x2 − (y − x)4) for (x , y) ∈ ℝ2. Thus, in relation to the notations
of Proposition 6.12, we have 𝛼 = −∞, 𝛽 = +∞, and we can write P (x , y) = U (x , y − T (x)), with
U (x , y) = x exp(−x2) exp(−y4) and T (x) = x. Since

∫ +∞
−∞ x exp(−x2)dx = 0, due to the separability of

U (x , y), we have
∫ +∞
−∞

∫ +∞
−∞ U (x , y)dxdy = 0. Hence, we have

∫ +∞
−∞

∫ +∞
−∞ P (x , y)dxdy = 0.

A general remark about all the results presented in the above sections is formulated below.

Remark 6.13 All the conditions presented in the previous propositions can be combined under a mixture form in the
following sense: Let m be a positive integer and P1 (x , y) , . . . , Pm (x , y) be two-dimensional functions satisfying the
conditions in Propositions 2.1, 2.2, 2.3, 2.4, 3.5, 3.6, 4.7, 4.8, 5.9, 5.10, 6.11, or 6.12, and a1 , . . . , am be m real
numbers. Then the function Pmix (x , y) =

∑m
i=1 aiPi (x , y) satis�es

∫ 𝜆

𝛾

∫ 𝛽

𝛼
Pmix (x , y)dxdy = 0. However, in practice, it

can be complicated to identify the main functional components of Pmix (x , y).

The remainder of the article focuses on how the �ndings can be applied to the two-dimensional Gaussian
distribution, a crucial probability tool used in many di�erent �elds.
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Application: Perturbed two-dimensional Gaussian distributions

The creation of some modi�ed Gaussian distributions is presented in this section. They are based on the
trigonometric conditions described in Section .

A general result

A general result on perturbed two-dimensional Gaussian distributions is presented below.

Proposition 7.14 Let

• 𝜇1 ∈ ℝ, 𝜇2 ∈ ℝ, 𝜎1 > 0 and 𝜎2 > 0,

• 𝜙1 (x) be the probability density function associated with a Gaussian distribution with parameters 𝜇1 and 𝜎1, i.e.,

𝜙1 (x) =
1√︃
2𝜋𝜎2

1

exp

[
−
(
x − 𝜇1

𝜎1

)2]
, x ∈ ℝ,

• Φ1 (x) be the cumulative distribution function associated with 𝜙1 (x), i.e., Φ1 (x) =
∫ x
−∞ 𝜙1 (t)dt,

• 𝜙2 (y) be the probability density function associated with a Gaussian distribution with parameters 𝜇2 and 𝜎2, i.e.,

𝜙2 (y) =
1√︃
2𝜋𝜎2

2

exp

[
−
(
y − 𝜇2

𝜎2

)2]
, y ∈ ℝ,

• Φ2 (y) be the cumulative distribution function associated with 𝜙2 (y), i.e., Φ2 (y) =
∫ y
−∞ 𝜙2 (t)dt.

Let us set

f (x , y) = 𝜙1 (x)𝜙2 (y) + 𝜁P (x , y) , (x , y) ∈ ℝ2 , (2)

where

• P (x , y) is a two-dimensional function de�ned onℝ2 such that
∫ +∞
−∞

∫ +∞
−∞ P (x , y)dxdy = 0 (the support of P (x , y)

can be included into ℝ2),

• 𝜉 is a real number satisfying

|𝜁 | ≤
[
sup

(x ,y) ∈ℝ2

���� P (x , y)
𝜙1 (x)𝜙2 (y)

����]−1 . (3)

Then f (x , y) is a valid probability density function on ℝ2.

Proof. To prove that f (x , y) is a valid probability density function on ℝ2, we must demonstrate that, under
the mentioned conditions, for any (x , y) ∈ ℝ2, we have f (x , y) ≥ 0, and

∫ +∞
−∞

∫ +∞
−∞ f (x , y)dxdy = 1.

Proof of f (x , y) ≥ 0: It is clear that, for any (x , y) ∈ ℝ2, we have 𝜙1 (x)𝜙2 (y) ≥ 0. Moreover, thanks to
Equation (3) , with the use of the absolute value, for any (x , y) ∈ ℝ2, we have

f (x , y) = 𝜙1 (x)𝜙2 (y) + 𝜁P (x , y) ≥ 𝜙1 (x)𝜙2 (y) − |𝜁 | |P (x , y) |

= 𝜙1 (x)𝜙2 (y)
[
1 − |𝜁 | |P (x , y) |

𝜙1 (x)𝜙2 (y)

]
≥ 𝜙1 (x)𝜙2 (y)

[
1 − |𝜁 | sup

(x ,y) ∈ℝ2

|P (x , y) |
𝜙1 (x)𝜙2 (y)

]
≥ 0.

13
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Proof of
∫ +∞
−∞

∫ +∞
−∞ f (x , y)dxdy = 1: Since

∫ +∞
−∞ 𝜙1 (x)dx = 1,

∫ +∞
−∞ 𝜙2 (y)dy = 1 and∫ +∞

−∞

∫ +∞
−∞ P (x , y)dxdy = 0, by the additive and multiplicative laws, we have∫ +∞

−∞

∫ +∞

−∞
f (x , y)dxdy =

∫ +∞

−∞

∫ +∞

−∞
𝜙1 (x)𝜙2 (y)dxdy + 𝜁

∫ +∞

−∞

∫ +∞

−∞
P (x , y)dxdy

=

(∫ +∞

−∞
𝜙1 (x)dx

) (∫ +∞

−∞
𝜙2 (y)dy

)
+ 𝜁 × 0 = 1.

The desired results are obtained. �

The distribution associated with the probability density function f (x , y) as de�ned in Equation (2) is called a
perturbed Gaussian distribution, “perturbed” in the sense that P (x , y) has an e�ect on the independent Gaus-
sian probability density function de�ned by g (x , y) = 𝜙1 (x)𝜙2 (y), and 𝜁 modulates this e�ect; if 𝜁 ≠ 0 or
P (x , y) ≠ 0, the independence is broken. This functional perturbation of the independence principle is de-
rived from the idea of the Farlie-Gumbel-Morgenstern copula (see [19], [20] and [21]).

In this setting and based on the trigonometric conditions presented in Propositions 5.9 and 5.10, we pro-
pose two trigonometric perturbed Gaussian distributions.

Sine perturbed Gaussian distribution

In the setting of Proposition 7.14, for any integers m and n, and any real numbers 𝜖 , let us set

P (x , y) = 𝜙1 (x)𝜙2 (y) sin {2𝜋 [mΦ1 (x) + nΦ2 (y)] + 𝜖 } , (x , y) ∈ ℝ2.

Then, by Proposition 5.9 (or Proposition 5.10), we have
∫ +∞
−∞

∫ +∞
−∞ P (x , y)dxdy = 0, and���� P (x , y)

𝜙1 (x)𝜙2 (y)

���� = | sin {2𝜋 [mΦ1 (x) + nΦ2 (y)] + 𝜖 } | ≤ 1.

Hence, we de�ne the sine perturbed Gaussian (SPG) distribution by the following probability density function:

f (x , y) = 𝜙1 (x)𝜙2 (y) [1 + 𝜁 sin {2𝜋 [mΦ1 (x) + nΦ2 (y)] + 𝜖 }] , (x , y) ∈ ℝ2 ,

where 𝜇1 ∈ ℝ, 𝜇2 ∈ ℝ, 𝜎1 > 0, 𝜎2 > 0, 𝜖 ∈ ℝ, m and n are two integers (possibly non-positive), and 𝜁 satis�es
|𝜁 | ≤ 1.

Thus, the parameter 𝜁 modulates the sine term, and 𝜖 plays the role of an additional angle parameter. To
the best of our knowledge, the SPG distribution has not been studied in the literature. It can be viewed as a
trigonometric modi�cation of the two-dimensional independent Gaussian distribution, which has received rare
attention. In particular, the sine term introduces oscillations into the distribution, which leads to interesting
and non-trivial behavior. Especially, thanks to its action,

• multiple peaks can be produced in the shapes of the probability density function; the SPG distribution
can be multi-modal, unlike the two-dimensional Gaussian distribution, which is ideal for dealing with
clustering phenomena,

• wider tails than the two-dimensional independent distribution can be produced, which is ideal to capture
extreme values.

For an illustration of the SPG distribution, Figures 1, 2 and 3 display the standard and intensity plots of
the associated probability density function under the following parameter con�gurations:

• 𝜇1 = 1/2, 𝜇2 = 0, 𝜎1 = 1, 𝜎2 = 3/2, 𝜖 = 1, m = 1, n = 2, and 𝜁 = −1/2,

14
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• 𝜇1 = 1/2, 𝜇2 = 1, 𝜎1 = 1, 𝜎2 = 1/2, 𝜖 = −3/2, m = −1, n = 2, and 𝜁 = 1,

• 𝜇1 = 0, 𝜇2 = 0, 𝜎1 = 1/2, 𝜎2 = 2, 𝜖 = −2, m = 5, n = 3, and 𝜁 = 1/2,

respectively. These con�gurations are chosen to produce di�erent visual results. The plots are made with the
use of the free software R, and the libraries plot3D and plotly in particular (see [22]).
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Figure 1: Plots of the probability density function of the SPG distribution with 𝜇1 = 1/2, 𝜇2 = 0, 𝜎1 = 1,
𝜎2 = 3/2, 𝜖 = 1, m = 1, n = 2, and 𝜁 = −1/2: (a) standard plot and (b) intensity plot

15



Asian J. Math. Appl. (2023) 2023:5

x

−2.0
−1.5

−1.0
−0.5

0.0
0.5

1.0
1.5

2.02.53.0

y

−2.0
−1.5

−1.0
−0.5
0.0

0.5
1.0

1.5
2.0

2.5

3.0

z

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.0

0.1

0.2

0.3

0.4

0.5

0.6

(a)

(b)

Figure 2: Plots of the probability density function of the SPG distribution with 𝜇1 = 1/2, 𝜇2 = 1, 𝜎1 = 1,
𝜎2 = 1/2, 𝜖 = −3/2, m = −1, n = 2, and 𝜁 = 1: (a) standard plot and (b) intensity plot
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Figure 3: Plots of the probability density function of the SPG distribution with 𝜇1 = 0, 𝜇2 = 0, 𝜎1 = 1/2,
𝜎2 = 2, 𝜖 = −2, m = 5, n = 3, and 𝜁 = 1/2: (a) standard plot and (b) intensity plot
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From these �gures, we observe the high level of functional versatility of the SPG distribution, with multiple
modes, skew shapes, and various weights in the tails. These properties are ideal for modeling a wide variety of
phenomena in all �elds of applied science.

Cosine perturbed Gaussian distribution

Similarly, in the setting of Proposition 7.14, for any integers m and n, and any real numbers 𝜖 , let us set

P (x , y) = 𝜙1 (x)𝜙2 (y) cos {2𝜋 [mΦ1 (x) + nΦ2 (y)] + 𝜖 } , (x , y) ∈ ℝ2.

Then, by Proposition 5.9 (or Proposition 5.10), we have
∫ +∞
−∞

∫ +∞
−∞ P (x , y)dxdy = 0, and���� P (x , y)

𝜙1 (x)𝜙2 (y)

���� = | cos {2𝜋 [mΦ1 (x) + nΦ2 (y)] + 𝜖 } | ≤ 1.

Hence, we de�ne the cosine perturbed Gaussian (CPG) distribution by the following probability density func-
tion:

f (x , y) = 𝜙1 (x)𝜙2 (y) [1 + 𝜁 cos {2𝜋 [mΦ1 (x) + nΦ2 (y)] + 𝜖 }] , (x , y) ∈ ℝ2 ,

where 𝜇1 ∈ ℝ, 𝜇2 ∈ ℝ, 𝜎1 > 0, 𝜎2 > 0, 𝜖 ∈ ℝ, m and n are two integers (possibly non-positive), and 𝜁 satis�es
|𝜁 | ≤ 1.

As for the SPG distribution, the parameter 𝜁 modulates the cosine term, and 𝜖 play the role of an angle
parameter. To the best of our knowledge, the CPG distribution has not been studied in the literature.

For an illustration of the CPG distribution, Figures 4, 5 and 6 display the standard and intensity plots of
the associated probability density function under the following parameter con�gurations:

• 𝜇1 = 1/2, 𝜇2 = 1/2, 𝜎1 = 3/2, 𝜎2 = 1, 𝜖 = −4, m = 2, n = −1, and 𝜁 = 1,

• 𝜇1 = 1/3, 𝜇2 = 1/3, 𝜎1 = 3, 𝜎2 = 1, 𝜖 = 𝜋, m = −2, n = 2, and 𝜁 = 3/4,

• 𝜇1 = 1, 𝜇2 = 1, 𝜎1 = 2, 𝜎2 = 1, 𝜖 = 𝜋/4, m = 3, n = −2, and 𝜁 = −1,

respectively.
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Figure 4: Plots of the probability density function of the CPG distribution with 𝜇1 = 1/2, 𝜇2 = 1/2, 𝜎1 = 3/2,
𝜎2 = 1, 𝜖 = −4, m = 2, n = −1, and 𝜁 = 1: (a) standard plot and (b) intensity plot
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Figure 5: Plots of the probability density function of the CPG distribution with 𝜇1 = 1/3, 𝜇2 = 1/3, 𝜎1 = 3,
𝜎2 = 1, 𝜖 = 𝜋, m = −2, n = 2, and 𝜁 = 3/4: (a) standard plot and (b) intensity plot
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Figure 6: Plots of the probability density function of the CPG distribution with 𝜇1 = 1, 𝜇2 = 1, 𝜎1 = 2, 𝜎2 = 1,
𝜖 = 𝜋/4, m = 3, n = −2, and 𝜁 = −1: (a) standard plot and (b) intensity plot
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In light of the aforementioned �gures, the CPG distribution can be viewed as an alternative to the SPG
distribution with the same general characteristics. With multiple modes, di�erent skew shapes, and di�erent
weights in the tails, the CPG distribution exhibits a high degree of functional versatility. Thus, it is perfect for
modeling a wide range of phenomena in all branches of applied sciences.

Conclusion

In this article, we determined the main general conditions for a two-dimensional function to have an integral
over a rectangle equal to zero. In particular, nontrivial conditions were highlighted, including antisymmetric
conditions and trigonometric conditions. Numerous concrete examples were provided to support the �ndings.
The exhibited conditions are important because they allow us to immediately give the zero values of a
two-dimensional integral without extra calculus, whatever the complexity of the involved function. The
gain in terms of computation costs can be considerable. In addition, these conditions are important in the
development of numerical methods for computing integrals and can be involved in numerous applications
in various �elds such as physics, engineering, and mathematics. In addition, we produced two new modi�ed
two-dimensional Gaussian distributions as an implementation of the �ndings. These modi�cations were
performed by utilizing adaptable trigonometric perturbation functions, which can result in two-dimensional
multi-modality and di�erent tail weights. Numerous graphics illustrated this claim. With possible applications
in a wide range of domains, these new perturbed Gaussian distributions provide interesting directions for the
modeling of diverse natural phenomena.

Acknowledgments: The author would like to thank the associated editor and the reviewers for their positive
and constructive feedback.
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