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Abstract
Integral operators play a fundamental role in mathematical analysis and have found numerous applications in
various scientic disciplines. In this article, we introduce a new multi-dimensional nonlinear integral operator,
named the C operator, which oers a novel approach to transforming functions in a specic domain. It has
some relationships between the Box-Cox transformation and a special case of the multi-dimensional version
of the Urysohn nonlinear integral operator. We present the theoretical foundations of the C operator and
examine its main features. This includes diverse scale and nonlinear properties, manageable series expansions
and partial derivatives, lower and upper bounds, and convex properties. The presence of a tuning parameter
plays an important role in this regard. In addition, we demonstrate deep connections between the C operator
and several important mathematical tools, such as the standard and modied exponential integral functions,
beta function, gamma function, Dawson function, error function, etc. The C operator of some precise functions
is given, some of them constituting new integral results in the literature. Our theoretical results highlight the
advantages and potential of this new multi-dimensional nonlinear integral operator.

Keywords: Integral operators; nonlinear operators; multi-dimensional operator; convexity; special functions.

Introduction

Integral operators have long been recognized as powerful tools for analyzing and solving a wide range of mathe-
matical and scientic problems. The classical integral operators include the Fourier transform and the Laplace
transform (see [7]). They have been extensively studied and have proven to be invaluable in diverse elds.
However, the continuous advancement of science and technology constantly presents new challenges that may
require innovative mathematical approaches.

Basically, we distinguish two types of integral operators: linear integral operators and nonlinear integral
operators. Recent developments on the uni-dimensional linear integral operator topic include the Laplace-
Carson transform introduced in [19], the natural transform established in [12], the Elzaki transform created
in [8], the integral polynomial transform introduced in [1], the integral ratio transform proposed in [20], the
Hadamard fractional integral operator established in [9], the generalized Riemann-Liouville-Hadamard frac-
tional integral operator created in [11] and the k-fractional integral of the Riemann-Liouville integral operator
developed in [15]. Concerning the nonlinear integral operators, we may mention the Musielak nonlinear inte-
gral operator as described in [16], the Urysohn nonlinear integral operator (also called the nonlinear Fredholm
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integral operator) as presented in [21] and [4], and the Hammerstein nonlinear integral operator dened in
[17]. Overall, we may refer to [3], [10], and [14].

Creating original nonlinear integral operators is of great importance as they oer a powerful mathematical
framework to model and analyze complex, nonlinear phenomena in various scientic and engineering disci-
plines, enabling more accurate and comprehensive solutions beyond the limitations of linear operators. These
novel operators hold the potential to enhance our understanding of intricate systems and provide innovative
approaches to problem-solving and optimization tasks.

In this article, we contribute to this direction of research in a theoretical manner: we introduce a new non-
linear integral operator, the C operator, which provides a fresh perspective on transforming functions in a
specic domain. It is constructed as the integral on the unit hypercube of a special ratio function; the numer-
ator term depends on an exponential transformation of a general function, and the denominator term is equal
to this general function. This ratio form follows the functional spirit of the Box-Cox transformation (see [5]).
The C operator can also be viewed as a special case of a multi-dimensional version of the Urysohn nonlinear
integral operator (see [4]). The interest behind its development arises from (i) its original multi-dimensional
denition, (ii) its attractive mathematical properties, including diverse scale and nonlinear properties, con-
trollable series expansions and partial derivatives, lower and upper bounds, and convex qualities based on a
single tuning parameter, and (iii) its deep connections with diverse important mathematical tools, including
the Laplace transform, standard and modied exponential integral functions, beta function, standard and in-
complete gamma function, Dawson function, error function, logarithmic integral function, andmodied Bessel
function. By incorporating key principles and integral techniques, we develop a comprehensive framework for
the C operator. By considering simple functions, various closed-form expressions of this operator are given.
These expressions applied to the established general lower and upper bounds can yield new inequalities, in-
cluding some involving special functions in particular. As with any integral operator, the ndings can be used
in various scientic disciplines, including physics, engineering, and signal processing.

The rest of the article contains the following sections: Section presents the C operator as well as some of
its general properties. The expression of the C operator for a wide panel of functions is given in Section . A
conclusion is given in Section .

Presentation and general properties

Presentation

The mathematical denition of the C operator is presented below.

Denition 2.1 Let n be a non-positive integer, f be a function dened on the unit hypercube [0, 1]n =

[0, 1] × . . . × [0, 1]︸                     ︷︷                     ︸
n times

and with values into ℝ, and a ∈ ℝ. Let x(n) = (x1 , . . . , xn), where, for any i = 1, . . . , n,

xi is a variable into [0, 1],
∫
[0,1]n

=

∫
[0,1]

. . .
∫
[0,1]︸              ︷︷              ︸

n times

and dx(n) = dx1 . . . dxn︸       ︷︷       ︸
n times

. With these notations, we dene the C

operator as

Cn ( f ; a) =
∫
[0,1]n

exp[a f (x(n) )] − 1
f (x(n) )

dx(n) ,

provided that it exists in the integral convergence sense. In the case f (x(n) ) = 0 for any x(n) ∈ [0, 1]n , we set Cn ( f ; a) =
a. Eventually, we can name the C operator, the C functional, or the C transform.

For any given function f (x(n) ), the existence of the C operator can be checked by employing the classical
Riemann integral convergence rules. As a specic comment, it is obvious that the C operator exists if f is con-
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tinuous and minx(n) ∈[0,1]n | f (x(n) ) | > 0. In the rest of the article, when the C operator or any other quantities
are presented, it is implicitly assumed that they exist in the mathematical sense.

As sketched in the introduction, the ratio form of the integrated term is derived from the Box-Cox trans-
formation, which has numerous applications, mainly in statistics and econometric (see [5]). Here, we use it to
oer a fresh perspective on transforming multi-dimensional functions. We can also write the C operator as

Cn ( f ; a) =
∫
D

K [a, x(n) , f (x(n) )]dx(n) ,

with D = [0, 1]n and K (a, x(n) , y) = [exp(ay) − 1]/y (which is in fact independent of x(n) ). This form can be
assimilated into a particular multi-dimensional version of the Urysohn nonlinear integral operator. We refer
to [4] for more detail on this operator.

Eventually, another possible expression of the C operator involving the exponential and hyperbolic sine
functions is

Cn ( f ; a) = 2
∫
[0,1]n

exp[(a/2) f (x(n) )] sinh[(a/2) f (x(n) )]
f (x(n) )

dx(n) .

As an important fact, the C operator enjoys several attractive properties, which are examined in the next
section.

General properties

Some basic properties of the C operator are given in the next proposition.

Proposition 2.2 The following properties hold:

1. We have Cn ( f ; 0) = 0.

2. For any b ∈ ℝ/{0}, we have

Cn (b f ; a) =
1
b
Cn ( f ; ab).

As a result, the C operator is obviously nonlinear.

3. Let (1 − x) (n) = (1 − x1 , . . . , 1 − xn) and f∗ be the function dened by f∗ (x(n) ) = f [(1 − x) (n) ]. Then we have

Cn ( f∗; a) = Cn ( f ; a).

More generally, by considering the function f∗∗ dened by f∗∗ (x(n) ) = f (z(n) ), where z(n) = (z1 , . . . , zn) and, for
any i = 1, . . . , n, zi = xi or zi = 1 − xi , we have

Cn ( f∗∗; a) = Cn ( f ; a).

4. Under the multi-dimensional interchange of integral and sum rule assumptions, the following expansion holds:

Cn ( f ; a) =
+∞∑︁
i=0

ai+1bi
(i + 1)! ,

where bi =
∫
[0,1]n [ f (x(n) )]

idx(n) .

5. Under the multi-dimensional Leibniz integral rule assumptions, we have

𝜕

𝜕a
Cn ( f ; a) =

∫
[0,1]n

exp[a f (x(n) )]dx(n) .
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Proof. Let us prove the ve points in turn.

1. Since exp(0) = 1, it is clear that

Cn ( f ; 0) =
∫
[0,1]n

exp[0 × f (x(n) )] − 1
f (x(n) )

dx(n) =
∫
[0,1]n

0dx(n) = 0.

2. We have

Cn (b f ; a) =
∫
[0,1]n

exp{a[b f (x(n) )]} − 1
b f (x(n) )

dx(n) =
1
b

∫
[0,1]n

exp[ab f (x(n) )] − 1
f (x(n) )

dx(n)

=
1
b
Cn ( f ; ab).

3. By applying the multi-dimensional change of variables y(n) = (1 − x) (n) , with y(n) ∈ [0, 1]n and the
corresponding Jacobian equals to (−1)n , we get

Cn ( f∗; a) =
∫
[0,1]n

exp[a f∗ (x(n) )] − 1
f∗ (x(n) )

dx(n) = | (−1)n |
∫
[0,1]n

exp[a f (y(n) )] − 1
f (y(n) )

dy(n)

= Cn ( f ; a).

For the general case, the proof follows immediately from the change of variables y(n) = z(n) , with y(n) ∈
[0, 1]n and the absolute value of the corresponding Jacobian equals to 1 in all circumstances.

4. Using the exponential series expansion, we obtain

exp[a f (x(n) )] − 1
f (x(n) )

=
1

f (x(n) )

{[ +∞∑︁
i=0

[a f (x(n) )]i

i!

]
− 1

}
=

+∞∑︁
i=1

ai [ f (x(n) )]i−1

i!

=

+∞∑︁
i=0

ai+1 [ f (x(n) )]i

(i + 1)! .

It follows from the supposed multi-dimensional interchange of integral and sum rule assumptions that

Cn ( f ; a) =
∫
[0,1]n

+∞∑︁
i=0

ai+1 [ f (x(n) )]i

(i + 1)! dx(n) =
+∞∑︁
i=0

ai+1

(i + 1)!

∫
[0,1]n

[ f (x(n) )]idx(n)

=

+∞∑︁
i=0

ai+1bi
(i + 1)! .

5. Using the multi-dimensional Leibniz integral rule assumptions, we obtain

𝜕

𝜕a
Cn ( f ; a) =

𝜕

𝜕a

{∫
[0,1]n

exp[a f (x(n) )] − 1
f (x(n) )

dx(n)

}
=

∫
[0,1]n

𝜕

𝜕a

{
exp[a f (x(n) )] − 1

f (x(n) )

}
dx(n)

=

∫
[0,1]n

f (x(n) )
f (x(n) )

exp[a f (x(n) )]dx(n) =
∫
[0,1]n

exp[a f (x(n) )]dx(n) .

This ends the proof. �

Proposition 2.2 shows that the C operator has notable properties and is exploitable from an analytical view-
point. In particular, the second and third points show that, for any function f such that Cn ( f ; a) is manageable,
we can dene a family of functions of the form b f∗ with a manageable C operator. Furthermore, based on
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the fourth point, a series expansion involving simple integral terms is established, opening the door to some
approximation aspects. Owing to the rst and last points, we can calculate Cn ( f ; a) as

Cn ( f ; a) =
∫
[0,a]

𝜕

𝜕a
Cn ( f ; y)dy =

∫
[0,a]

∫
[0,1]n

exp[y f (x(n) )]dx(n)dy.

Some examples of calculus based on this integral-dierentiation scheme will be discussed throughout the arti-
cle.

The following lemma will be useful in some of our proofs. On the other hand, it can also be viewed as an
independent interest.

Lemma 2.3 For any a ∈ ℝ, let us set

g (x) = exp(ax) − 1
x

, x ∈ ℝ, (1)

(with the natural extension for continuity g (0) = a). Then, for a ≥ 0, g is convex, and for a ≤ 0, g is concave.

Proof. By applying standard dierentiation rules, we obtain

g ′′(x) = exp(ax) (a2x2 − 2ax + 2) − 2
x3

.

Let us set h(x) = exp(ax) (a2x2 − 2ax + 2) − 2, which corresponds to the numerator of g ′′(x). Then we have
h′(x) = a3x2 exp(ax). Let us now distinguish the cases a ≥ 0 and a ≤ 0.

• For the case a ≥ 0, we have h′(x) ≥ 0 and h(x) is non-decreasing. Hence, for any x ≥ 0, we have
h(x) ≥ h(0) = 0 and, since x3 ≥ 0, we have g ′′(x) ≥ 0. On the other hand, for x ≤ 0, we have
h(x) ≤ h(0) = 0 and, since x3 ≤ 0, we also have g ′′(x) ≥ 0. As a result, for any x ∈ ℝ, we have
g ′′(x) ≥ 0, thus g is convex.

• On the other hand, for the case a ≤ 0, since a3 ≤ 0 and exp(ax) ≥ 0, let us remark that h′(x) =

a3x2 exp(ax) ≤ 0, so h(x) is non-increasing. Hence, for any x ≥ 0, we have h(x) ≤ h(0) = 0 and, since
x3 ≥ 0, we have g ′′(x) ≤ 0. On the other hand, for x ≤ 0, we have h(x) ≥ h(0) = 0 and, since x3 ≤ 0,
we also have g ′′(x) ≤ 0. As a result, for any x ∈ ℝ, we have g ′′(x) ≤ 0, thus g is concave.

The proof is now complete. �

Lemma 2.3 is the key result to study the convex property of the C operator, as formulated in the next result.

Proposition 2.4 For any a ≥ 0, the C operator is convex, i.e., for any functions h and k dened on [0, 1]n , and
_ ∈ [0, 1], we have

Cn [_h + (1 − _ )k; a] ≤ _Cn (h; a) + (1 − _ )Cn (k; a).

On the other hand, for any a ≤ 0, the C operator is concave, i.e., for any functions h and k dened on [0, 1]n , and
_ ∈ [0, 1], we have

_Cn (h; a) + (1 − _ )Cn (k; a) ≤ Cn [_h + (1 − _ )k; a].

Proof.We can write the C operator as

Cn ( f ; a) =
∫
[0,1]n

g [ f (x(n) )]dx(n) ,

where g is the function dened in Equation (1) . Let us now distinguish the cases a ≥ 0 and a ≤ 0.
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• For the case a ≥ 0, it is established in Lemma 2.3 that g is convex. Therefore, for a ≥ 0, by using the
standard integral properties, we have

Cn [_h + (1 − _ )k; a] =
∫
[0,1]n

g [_h(x(n) ) + (1 − _ )k(x(n) )]dx(n)

≤
∫
[0,1]n

{
_ g [h(x(n) )] + (1 − _ )g [k(x(n) )]

}
dx(n)

= _

∫
[0,1]n

g [h(x(n) )]dx(n) + (1 − _ )
∫
[0,1]n

g [k(x(n) )]dx(n)

= _Cn (h; a) + (1 − _ )Cn (k; a).

• On the other hand, for the case a ≤ 0, it is established in Lemma 2.3 that g is concave. Hence, with
similar developments as above, we have

Cn [_h + (1 − _ )k; a] =
∫
[0,1]n

g [_h(x(n) ) + (1 − _ )k(x(n) )]dx(n)

≥
∫
[0,1]n

{
_ g [h(x(n) )] + (1 − _ )g [k(x(n) )]

}
dx(n)

= _Cn (h; a) + (1 − _ )Cn (k; a).

This ends the proof. �

Thus, for a ≥ 0, the C operator belongs to the family of convex operators. Such operators are of great
interest due to their ability to preserve the convexity of sets, enabling ecient optimization and guaranteeing
convergence to global optima. Their mathematical properties oer powerful tools for a wide range of applica-
tions in elds such as machine learning, signal processing, and operations research. The concave property of
the C operator for a ≤ 0 can also be used for various mathematical purposes.

Bounds

The C operator can be bounded in diverse ways. In this part, some of them are examined.
We begin with an ordering property of the C operator with respect to the parameter a.

Proposition 2.5 For any a ∈ ℝ and b ∈ ℝ such that a ≤ b, we have

Cn ( f ; a) ≤ Cn ( f ; b).

Proof. The exponential function is increasing. With ths in mind, let us prove the result by distinguishing the
cases f (x(n) ) ≥ 0 and f (x(n) ) ≤ 0, where x(n) ∈ [0, 1]n is xed.

• For the case f (x(n) ) ≥ 0, the inequality a ≤ b implies that a f (x(n) ) ≤ b f (x(n) ), so exp[a f (x(n) )] − 1 ≤
exp[b f (x(n) )] − 1, and we obtain

exp[a f (x(n) )] − 1
f (x(n) )

≤
exp[b f (x(n) )] − 1

f (x(n) )
.

• On the other hand, for the case f (x(n) ) ≤ 0, the inequality a ≤ b implies that b f (x(n) ) ≤ a f (x(n) ), so
exp[b f (x(n) )] − 1 ≤ exp[a f (x(n) )] − 1, and we still obtain

exp[a f (x(n) )] − 1
f (x(n) )

≤
exp[b f (x(n) )] − 1

f (x(n) )
.
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For the two cases, upon integration for x(n) ∈ [0, 1]n , we get

Cn ( f ; a) =
∫
[0,1]n

exp[a f (x(n) )] − 1
f (x(n) )

dx(n) ≤
∫
[0,1]n

exp[b f (x(n) )] − 1
f (x(n) )

dx(n) = Cn ( f ; b).

The stated ordering property is proved.

Remark: An alternative proof involving some additional assumptions is as follows: using the multi-dimensional
Leibniz integral rule assumptions, the last point of Proposition 2.2 and exp[a f (x(n) )] ≥ 0, we obtain

𝜕

𝜕a
Cn ( f ; a) =

∫
[0,1]n

exp[a f (x(n) )]dx(n) ≥ 0.

Hence, Cn ( f ; a) is non-decreasing with respect to a, implying that, for a ≤ b, we have Cn ( f ; a) ≤ Cn ( f ; b). �

The comparison of Cn ( f ; a) and Cn (− f ; a) is made in the next result.

Proposition 2.6 For any a ∈ ℝ and f such that, for any x(n) ∈ [0, 1]n , f (x(n) ) ≥ 0, we have

Cn ( f ; a) ≥ Cn (− f ; a).

On the other hand, for any a ∈ ℝ and f such that, for any x(n) ∈ [0, 1]n , f (x(n) ) ≤ 0, we have

Cn ( f ; a) ≤ Cn (− f ; a).

We recall that the following relation holds: Cn (− f ; a) = −Cn ( f ;−a) (by the second point of Proposition 2.2 with b = −1).

Proof. First of all, let us notice that

Cn ( f ; a) =
∫
[0,1]n

exp[a f (x(n) )] − 1
f (x(n) )

dx(n) =
∫
[0,1]n

{
− exp[a f (x(n) )]

} exp[−a f (x(n) )] − 1
f (x(n) )

dx(n) . (2)

• First, let us consider the case f (x(n) ) ≥ 0 for any x(n) ∈ [0, 1]n , and let us distinguish the cases a ≤ 0
and a ≥ 0.

– For the case a ≤ 0, we have a f (x(n) ) ≤ 0, implying that − exp[a f (x(n) )] ≥ −1 and exp[−a f (x(n) )]−
1 ≥ 0, so

{
exp[−a f (x(n) )] − 1

}
/ f (x(n) ) ≥ 0. Therefore, based on Equation (2) , we have

Cn ( f ; a) ≥ −
∫
[0,1]n

exp[−a f (x(n) )] − 1
f (x(n) )

dx(n) = Cn (− f ; a).

– On the other hand, for the case a ≥ 0, we have a f (x(n) ) ≥ 0, implying that − exp[a f (x(n) )] ≤ −1
and exp[−a f (x(n) )] − 1 ≤ 0, so

{
exp[−a f (x(n) )] − 1

}
/ f (x(n) ) ≤ 0. Therefore, we have

Cn ( f ; a) ≥ −
∫
[0,1]n

exp[−a f (x(n) )] − 1
f (x(n) )

dx(n) = Cn (− f ; a).

• Now, let us consider the case f (x(n) ) ≤ 0 for any x(n) ∈ [0, 1]n , and let us distinguish the cases a ≤ 0
and a ≥ 0.

– For the case a ≤ 0, we have a f (x(n) ) ≥ 0, implying that − exp[a f (x(n) )] ≤ −1 and exp[−a f (x(n) )]−
1 ≤ 0, so

{
exp[−a f (x(n) )] − 1

}
/ f (x(n) ) ≥ 0. Therefore, we have

Cn ( f ; a) ≤ −
∫
[0,1]n

exp[−a f (x(n) )] − 1
f (x(n) )

dx(n) = Cn (− f ; a).
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– On the other hand, for the case a ≥ 0, we have a f (x(n) ) ≤ 0, implying that − exp[a f (x(n) )] ≥ −1
and exp[−a f (x(n) )] − 1 ≥ 0, so

{
exp[−a f (x(n) )] − 1

}
/ f (x(n) ) ≤ 0. Therefore, we have

Cn ( f ; a) ≤ −
∫
[0,1]n

exp[−a f (x(n) )] − 1
f (x(n) )

dx(n) = Cn (− f ; a).

The results are proved. �

The results in Proposition 2.6 can give original inequalities, with use beyond the scope of this article. The
precise examples emphasized in Section can be useful in this regard.

Below, we determine simple bounds for Cn ( f ; a) for non-negative or non-positive functions f .

Proposition 2.7 For any a ∈ ℝ and f such that, for any x(n) ∈ [0, 1]n , f (x(n) ) ≥ 0, we have

Cn ( f ; a) ≥ a.

On the other hand, for any a ∈ ℝ and f such that, for any x(n) ∈ [0, 1]n , f (x(n) ) ≤ 0, we have

Cn ( f ; a) ≤ a.

Proof. The proof is based on the following well-known exponential inequality: for any x ∈ ℝ, we have exp(x) ≥
1 + x. Therefore, for any a ∈ ℝ, we have exp[a f (x(n) )] ≥ 1 + a f (x(n) ). Let us now distinguish the cases
f (x(n) ) ≥ 0 for any x(n) ∈ [0, 1]n and f (x(n) ) ≤ 0 for any x(n) ∈ [0, 1]n.

• For the case f (x(n) ) ≥ 0 for any x(n) ∈ [0, 1]n , upon dividing with f (x(n) ), we get

exp[a f (x(n) )] − 1
f (x(n) )

≥ a.

Upon integration for x(n) ∈ [0, 1]n , we obtain

Cn ( f ; a) =
∫
[0,1]n

exp[a f (x(n) )] − 1
f (x(n) )

dx(n) ≥ a
∫
[0,1]n

dx(n) = a.

• On the other hand, for the case f (x(n) ) ≤ 0 for any x(n) ∈ [0, 1]n , upon dividing with f (x(n) ), we get

exp[a f (x(n) )] − 1
f (x(n) )

≤ a.

Upon integration for x(n) ∈ [0, 1]n , we obtain

Cn ( f ; a) =
∫
[0,1]n

exp[a f (x(n) )] − 1
f (x(n) )

dx(n) ≤ a
∫
[0,1]n

dx(n) = a.

The proof is completed. �

The next proposition is devoted to some bound involving the function g in Equation (1) and the integral∫
[0,1]n f (x(n) )dx(n) beyond the non-negative or non-positive assumptions on f .

Proposition 2.8 For any a ≥ 0, we have

Cn ( f ; a) ≥
exp(ab ) − 1

b
,

where b =
∫
[0,1]n f (x(n) )dx(n) , provided that it exists in the integral convergence sense.

On the other hand, for any a ≤ 0, we have

Cn ( f ; a) ≤
exp(ab ) − 1

b
.
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Proof.

• Owing to Lemma 2.3, for a ≥ 0, the function g in Equation (1) is convex. It follows from the Jensen
inequality that

∫
[0,1]n g [ f (x(n) )]dx(n) ≥ g (b ), i.e.,

Cn ( f ; a) ≥
exp(ab ) − 1

b
.

• On the other hand, still applying Lemma2.3, for a ≤ 0, g is concave. It follows from the Jensen inequality
that g (b ) ≥

∫
[0,1]n g [ f (x(n) )]dx(n) , i.e.,

Cn ( f ; a) ≤
exp(ab ) − 1

b
.

The desired results are obtained. �

Owing to the following exponential inequality: for any x ∈ ℝ, we have exp(x) ≥ 1 + x, one can prove
that the bounds obtained in Proposition 2.8 are sharper than those obtained in Proposition 2.7, but under the
non-negative or non-positive assumptions on f only.

The result below can be viewed as an alternative result to Proposition 2.8; polynomial bounds depending
on the integral

∫
[0,1]n f (x(n) )dx(n) are established under some assumptions on a and f .

Proposition 2.9 For any a ∈ ℝ and f such that, for any x(n) ∈ [0, 1]n , f (x(n) ) ≥ 0 and a f (x(n) ) < 1.79, we
have

Cn ( f ; a) ≤ a + a2b .

On the other hand, for any a ∈ ℝ and f such that, for any x(n) ∈ [0, 1]n , f (x(n) ) ≤ 0 and a f (x(n) ) < 1.79, we have

Cn ( f ; a) ≥ a + a2b .

Proof. The proof is based on the following well-known exponential inequality: for any x < 1.79, we have
exp(x) ≤ 1+ x + x2. Therefore, for any a ∈ ℝ and f such that, for any x(n) ∈ [0, 1]n , a f (x(n) ) < 1.79, we have
exp[a f (x(n) )] ≤ 1 + a f (x(n) ) + [a f (x(n) )]2. Let us now distinguish the cases f (x(n) ) ≥ 0 for any x(n) ∈ [0, 1]n
and f (x(n) ) ≤ 0 for any x(n) ∈ [0, 1]n.

• For the case f (x(n) ) ≥ 0 for any x(n) ∈ [0, 1]n , upon dividing with f (x(n) ), we get
exp[a f (x(n) )] − 1

f (x(n) )
≤ a + a2 f (x(n) ).

Upon integration for x(n) ∈ [0, 1]n , we obtain

Cn ( f ; a) =
∫
[0,1]n

exp[a f (x(n) )] − 1
f (x(n) )

dx(n) ≤
∫
[0,1]n

[
a + a2 f (x(n) )

]
dx(n)

= a + a2
∫
[0,1]n

f (x(n) )dx(n) = a + a2b .

• On the other hand, for the case f (x(n) ) ≤ 0 for any x(n) ∈ [0, 1]n , upon dividing with f (x(n) ), we get
exp[a f (x(n) )] − 1

f (x(n) )
≥ a + a2 f (x(n) ).

Upon integration for x(n) ∈ [0, 1]n , we get

Cn ( f ; a) =
∫
[0,1]n

exp[a f (x(n) )] − 1
f (x(n) )

dx(n) ≥
∫
[0,1]n

[
a + a2 f (x(n) )

]
dx(n)

= a + a2
∫
[0,1]n

f (x(n) )dx(n) = a + a2b .

9
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This ends the proof. �

Thus, the interest in Proposition 2.9 is to complete Propositions 2.7 and 2.8 by providing alternative or
complementary bounds under some assumptions. In particular, if we focus on Propositions 2.8 and 2.9, for
any a ≥ 0 and f such that, for any x(n) ∈ [0, 1]n , f (x(n) ) ≥ 0 and a f (x(n) ) < 1.79, we have

exp(ab ) − 1
b

≤ Cn ( f ; a) ≤ a + a2b .

In addition, for any a ≤ 0 and f such that, for any x(n) ∈ [0, 1]n , f (x(n) ) ≤ 0 and a f (x(n) ) < 1.79, we have

a + a2b ≤ Cn ( f ; a) ≤
exp(ab ) − 1

b
.

The result below presents a bound based on the product of two functions.

Proposition 2.10 For any functions h and k dened on [0, 1]n , under the multi-dimensional interchange of integral
and sum rule assumptions for both of them, the two following inequalities hold:

1. For the sum function h + k, we have

|Cn (h + k; a) | ≤
1
4
[Cn ( |h|; 2|a |) + Cn ( |k |; 2|a |)] .

2. For the product function hk, we have

|Cn (hk; a) | ≤
√︃
Cn (h2; |a |)

√︃
Cn (k2; |a |).

Proof. The proof is based on the fourth point of Proposition 2.2, under the multi-dimensional interchange of
integral and sum rule assumptions.

1. We have

Cn (h + k; a) =
+∞∑︁
i=0

ai+1bi
(i + 1)! ,

where bi =
∫
[0,1]n [h(x(n) ) + k(x(n) )]

idx(n) . By virtue of the inequality |x + y |i ≤ 2i−1 ( |x |i + |y |i ) for any
(x , y) ∈ ℝ2 and non-negative integer i (including i = 0), we have

|bi | ≤
∫
[0,1]n

|h(x(n) ) + k(x(n) ) |idx(n) ≤ 2i−1
[∫

[0,1]n
|h(x(n) ) |idx(n) +

∫
[0,1]n

|k(x(n) ) |idx(n)
]
.

Therefore, we have

|Cn (h + k; a) | ≤
+∞∑︁
i=0

|a |i+1 |bi |
(i + 1)!

≤
+∞∑︁
i=0

|a |i+1
(i + 1)!2

i−1
[∫

[0,1]n
|h(x(n) ) |idx(n) +

∫
[0,1]n

|k(x(n) ) |idx(n)
]

=
1
4

[ +∞∑︁
i=0

(2|a |)i+1
(i + 1)!

∫
[0,1]n

|h(x(n) ) |idx(n) +
+∞∑︁
i=0

(2|a |)i+1
(i + 1)!

∫
[0,1]n

|k(x(n) ) |idx(n)

]
=
1
4
[Cn ( |h|; 2|a |) + Cn ( |k |; 2|a |)] .

10



Asian J. Math. Appl. (2023) 2023:6

2. We have

Cn (hk; a) =
+∞∑︁
i=0

ai+1bi
(i + 1)! ,

where bi =
∫
[0,1]n [h(x(n) )k(x(n) )]

idx(n) . The Cauchy-Schwarz inequality (integral version) gives

|bi | ≤
∫
[0,1]n

|h(x(n) )k(x(n) ) |idx(n) ≤
√︄∫

[0,1]n
|h(x(n) ) |2idx(n)

√︄∫
[0,1]n

|k(x(n) ) |2idx(n) .

Therefore, we have

|Cn (hk; a) | ≤
+∞∑︁
i=0

|a |i+1 |bi |
(i + 1)!

≤
+∞∑︁
i=0

|a |i+1
(i + 1)!

√︄∫
[0,1]n

|h(x(n) ) |2idx(n)

√︄∫
[0,1]n

|k(x(n) ) |2idx(n)

=

+∞∑︁
i=0

√︄
|a |i+1
(i + 1)!

∫
[0,1]n

|h(x(n) ) |2idx(n)

√︄
|a |i+1
(i + 1)!

∫
[0,1]n

|k(x(n) ) |2idx(n) .

Owing to the Cauchy-Schwarz inequality (sum version), we obtain

|Cn (hk; a) | ≤

√√ +∞∑︁
i=0

|a |i+1
(i + 1)!

∫
[0,1]n

|h(x(n) ) |2idx(n)

√√ +∞∑︁
i=0

|a |i+1
(i + 1)!

∫
[0,1]n

|k(x(n) ) |2idx(n)

=

√︃
Cn (h2; |a |)

√︃
Cn (k2; |a |).

This ends the proof. �

The bounds obtained reveal the limits of the potential of the C operator and unlock deeper information.
The proposition below is about a Lipschitz-type inequality satised by the C operator.

Proposition 2.11 For any functions h and k dened on [0, 1]n such that there exist two constantsm andM satisfying,
for any x(n) ∈ [0, 1]n , m ≤ h(x(n) ) ≤ M and m ≤ k(x(n) ) ≤ M , we have

|Cn (h; a) − Cn (k; a) | ≤ Q
∫
[0,1]n

|h(x(n) ) − k(x(n) ) |dx(n) ,

where

Q =


exp(aM) (aM − 1) + 1

M2
if a > 0

exp(am) (am − 1) + 1
m2

if a < 0
.

Proof. By considering the function g as described in Equation (1) , we have

|Cn (h; a) − Cn (k; a) | =
����∫

[0,1]n

{
g [h(x(n) )] − g [k(x(n) )]

}
dx(n)

����
≤

∫
[0,1]n

��g [h(x(n) )] − g [k(x(n) )]�� dx(n) .
Let us now achieve the proof by demonstrating that, for any x(n) ∈ [0, 1]n , the following inequality holds:��g [h(x(n) )] − g [k(x(n) )]�� ≤ Q |h(x(n) ) − k(x(n) ) |. Owing to the mean value inequality, for any (u , v) ∈ [m,M]2,
we obtain

|g (u) − g (v) | ≤ Q |u − v | ,

11
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whereQ = supy∈[m,M ] |g ′(y) |. We have

g ′(y) = exp(ay) (ay − 1) + 1
y2

.

Note that for y = 0, which is the only ambiguous point at a rst glance, we have limy→0 g ′(y) = a2/2, soQ exists.
Moreover, since g is either convex or concave by Lemma 2.3, g ′ is monotonic, and since lim |y |→+∞ g ′(y) ≥ 0,
g ′ is non-negative. Therefore, again based on the convex properties of g as described in Lemma 2.3, we get

Q = sup
y∈[m,M ]

g ′(y) =
{
g ′(M) if a > 0
g ′(m) if a < 0

=


exp(aM) (aM − 1) + 1

M2
if a > 0

exp(am) (am − 1) + 1
m2

if a < 0
.

Hence, with u = h(x(n) ) and v = k(x(n) ), since (u , v) ∈ [m,M]2 by assumptions, we obtain��g [h(x(n) )] − g [k(x(n) )]�� ≤ Q |h(x(n) ) − k(x(n) ) | ,

implying the desired Lipschitz-type inequality. The proposition is proved. �

Among the consequences of Proposition 2.11, for any sequence of bounded functions ( fi )i∈ℕ that converges
to a certain function f in the 𝕃1 sense, i.e.,

lim
i→+∞

∫
[0,1]n

| fi (x(n) ) − f (x(n) ) |dx(n) = 0,

then (Cn ( fi ; a))i∈ℕ converges in the simple sense to Cn ( f ; a), i.e.,

lim
i→+∞

|Cn ( fi ; a) − Cn ( f ; a) | = 0.

The next section gives more concrete formulas for the C operator by considering standard functions, be-
ginning with the uni-dimensional case, i.e., n = 1.

Some formulas

The C operator of some specic functions can be expressed via standard and special functions. Several results
in this vein are presented below.

Focus on the case n = 1

In this part, we focus on the C operator dened with n = 1, i.e.,

C1 ( f ; a) =
∫
[0,1]

exp[a f (x)] − 1
f (x) dx.

Naturally, Propositions 2.2, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10 and 2.11 hold with n = 1. For this simple case,
more results can be given, including one connecting the C operator and the Laplace transform as described
below.

Proposition 3.12 Assume that f is bijective and dierentiable. Then, under the standard Leibniz integral rule as-
sumptions, we have

𝜕

𝜕a
C1 ( f ; a) = L(ℓ) (−a) ,

where

ℓ (y) = 1
f ′[ f −1 (y)]

1[ f (0) , f (1) ] (y) ,

1 denotes the indicator function, and L(ℓ) (b) =
∫
ℝ
exp(−by)ℓ (y)dy is the Laplace transform of the function ℓ at b.

12
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Proof. By the last point of Proposition 2.2 with n = 1, we have

𝜕

𝜕a
C1 ( f ; a) =

∫
[0,1]

exp[a f (x)]dx.

By applying the change of variables y = f (x), we immediately obtain

𝜕

𝜕a
C1 ( f ; a) =

∫
[ f (0) , f (1) ]

exp(ay) 1
f ′[ f −1 (y)]

dy = L(ℓ) (−a).

This ends the proof. �

Thus, connections exist between the C operator and the Laplace transform, but they are not direct, and
some stringent assumptions on f are supposed.

The next result shows some examples of functions such that the associated C operator has a simple analytical
expression.

Proposition 3.13

1. For f (x) equals to any constant, say c, we have

C1 ( f ; a) =
exp(ac) − 1

c
.

2. For f (x) =
√
x + b with b ≥ 0, we have

C1 ( f ; a) =
2
a

{
exp

[
a
√
b + 1

]
− exp

[
a
√
b
]}

+ 2
[√
b −

√
b + 1

]
.

In particular, for f (x) =
√
x, i.e., by taking b = 0 in the formula above, we have

C1 ( f ; a) =
2
a
[exp(a) − 1] − 2.

3. For f (x) = log(x) and a > −1, we have

C1 ( f ; a) = log(1 + a).

Proof.

1. For f (x) equals to any constant, say c, we have

C1 ( f ; a) =
∫
[0,1]

exp(ac) − 1
c

dx =
exp(ac) − 1

c

∫
[0,1]

dx =
exp(ac) − 1

c
.

2. For f (x) =
√
x + b with b ≥ 0, we have

C1 ( f ; a) =
∫
[0,1]

exp
[
a
√
x + b

]
− 1

√
x + b

dx =
∫
[0,1]

exp
[
a
√
x + b

]
√
x + b

dx −
∫
[0,1]

1
√
x + b

dx

=
2
a
exp

[
a
√
x + b

] ����x=1
x=0

− 2
√
x + b

���x=1
x=0

=
2
a

{
exp

[
a
√
b + 1

]
− exp

[
a
√
b
]}

+ 2
[√
b −

√
b + 1

]
.

13
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3. For f (x) = log(x) and a > −1, we have

C1 ( f ; a) =
∫
[0,1]

exp[a log(x)] − 1
log(x) dx =

∫
[0,1]

xa − 1
log(x) dx.

Therefore, by the last point of Proposition 2.2 with n = 1, we have

𝜕

𝜕a
C1 ( f ; a) =

∫
[0,1]

xadx =
1

1 + a .

Hence, upon integration with respect to a and since C1 ( f ; 0) = 0 (by the rst point of Proposition 2.2),
we have

C1 ( f ; a) =
∫
[0,a]

1
1 + y dy = log(1 + y) |y=ay=0 = log(1 + a).

The desired formulas are obtained. �

Proposition 3.13 shows that the C operator can have quite manageable expressions for some classical func-
tions. Also, based on the third point of Proposition 2.2, note that Proposition 3.13 applies for f∗ (x) = f (1− x),
with all the functions f considered, i.e., f∗ (x) =

√
1 − x + b and f∗ (x) = log(1 − x).

As an example of application, if we consider the function f (x) = log(x) and a ≥ 0, since b =∫
[0,1] log(x)dx = −1, then Propositions 3.13 and 2.8 give

log(1 + a) = C1 ( f ; a) ≥
exp(ab ) − 1

b
= 1 − exp(−a).

To the best of our knowledge, this inequality is new in the literature. It is sharper than the following famous
logarithmic inequality: log(1 + a) ≥ a/(1 + a), but it doesn’t improve the one established in [13], i.e., log(1 +
a) ≥ a/(1 + a/2) for a ≥ 0. It also gives the following simple logarithmic-logarithmic inequality by taking
a = − log(x) for x ∈ (0, 1):

log[1 − log(x)] ≥ 1 − x.

For any a ∈ (−1, 0), still thanks to Propositions 3.13 and 2.8, we establish that

log(1 + a) = C1 ( f ; a) ≤
exp(ab ) − 1

b
= 1 − exp(−a) ,

which is also new.
The next proposition shows some specic examples of functions such that the associated C operator involves

well-known special functions. It is supposed that a ∈ ℝ by default.

Proposition 3.14

1. For f (x) = x, we have

C1 ( f ; a) = −Ein(−a) ,

where Ein(x) =
∫ x
0 [1 − exp(−t)]/tdt is the modied exponential integral function (see [18]).

2. For f (x) = x + b with b > 0, we have

C1 ( f ; a) = Ei[a(b + 1)] − Ei(ab) + log
(
b

1 + b

)
,

where Ei(x) = −
∫
[−x ,+∞) [exp(−t)/t]dt is the standard exponential integral function, which must be interpreted

as the following Cauchy principal value:

Ei(x) = − lim
s→0

(∫
[−x , s)

exp(−t)
t

dt +
∫
(s,+∞)

exp(−t)
t

dt
)
.

14
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3. For f (x) = log[x(1 − x)] and a ≥ 0, we have

C1 ( f ; a) =
∫
[0,a]

B(y + 1, y + 1)dy ,

where B(x , y) =
∫
[0,1] t

x−1 (1 − t)y−1dt is the standard beta function.

4. For f (x) = log[−b log(x)] with b > 0 and a ≥ 0, we have

C1 ( f ; a) =
∫
[0,a]

byΓ(y + 1)dy ,

where Γ(x) =
∫
[0,+∞) t

x−1 exp(−t)dt is the standard gamma function.

Proof.

1. For f (x) = x, by applying the change of variables y = −ax, we have

C1 ( f ; a) =
∫
[0,1]

exp(ax) − 1
x

dx =
∫
[0,−a]

exp(−y) − 1
y

dy = −Ein(−a).

2. For f (x) = x + b with b > 0, by applying the change of variables y = −a(x + b), we have

C1 ( f ; a) =
∫
[0,1]

exp[a(x + b)] − 1
x + b dx =

∫
[−ab ,−a (b+1) ]

exp(−y) − 1
y

dy

=

∫
[−ab ,+∞)

exp(−y)
y

dy −
∫
[−a (b+1) ,+∞)

exp(−y)
y

dy −
∫
[−ab ,−a (b+1) ]

1
y
dy

= Ei[a(b + 1)] − Ei(ab) − log( |y |) |y=−a (b+1)y=−ab

= Ei[a(b + 1)] − Ei(ab) + log
(
b

1 + b

)
.

3. For f (x) = log[x(1 − x)] and a ≥ 0, we have

C1 ( f ; a) =
∫
[0,1]

exp{a log[x(1 − x)]} − 1
log[x(1 − x)] dx =

∫
[0,1]

xa (1 − x)a − 1
log[x(1 − x)] dx.

Therefore, by the last point of Proposition 2.2 with n = 1, we have

𝜕

𝜕a
C1 ( f ; a) =

∫
[0,1]

xa (1 − x)adx = B(a + 1, a + 1).

Hence, upon integration with respect to a and since C1 ( f ; 0) = 0 (by the rst point of Proposition 2.2),
we have

C1 ( f ; a) =
∫
[0,a]

B(y + 1, y + 1)dy.

4. For f (x) = log[−b log(x)] with b > 0 and a ≥ 0, we have

C1 ( f ; a) =
∫
[0,1]

exp{a log[−b log(x)]} − 1
log[−b log(x)] dx =

∫
[0,1]

[−b log(x)]a − 1
log[−b log(x)] dx.

Therefore, by the last point of Proposition 2.2 with n = 1 and the change of variables x = exp(−y), we
have

𝜕

𝜕a
C1 ( f ; a) = ba

∫
[0,1]

[− log(x)]adx = ba
∫
[0,+∞)

ya exp(−y)dy = baΓ(a + 1).

Hence, upon integration with respect to a and since C1 ( f ; 0) = 0, we have

C1 ( f ; a) =
∫
[0,a]

byΓ(y + 1)dy.
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This ends the proof. �

As an example of application, if we consider the function f (x) = log[x(1 − x)] and a ≥ 0, since b =∫
[0,1] log[x(1 − x)]dx = −2, then Propositions 3.14 and 2.8 give∫

[0,a]
B(y + 1, y + 1)dy = C1 ( f ; a) ≥

exp(ab ) − 1
b

= 2[1 − exp(−2a)].

To the best of our knowledge, this inequality is new in the literature.
It is worth mentioning that the derived integrals of special functions in Proposition 3.14 are computation-

able with most of the existing software like Matlab, Mathematica, etc. since they are often implemented in
associated packages. To illustrate this claim, with the help of the R software, we display the values of the C
operator for f (x) = log[−b log(x)] with b > 0, which is given in the fourth point in Proposition 3.14, i.e.,

C1 ( f ; a) =
∫
[0,a]

byΓ(y + 1)dy.

Table 1 gives these values for varying a and b.

Table 1: Numerical values of the C operator of f (x) = log[−b log(x)] for varying values of a and b

a =→ 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

b = 0.1 0 0.153 0.244 0.301 0.338 0.362 0.379 0.391 0.399 0.405 0.41

b = 0.7 0 0.184 0.346 0.494 0.636 0.776 0.917 1.064 1.22 1.389 1.575

b = 1 0 0.191 0.371 0.548 0.73 0.923 1.132 1.366 1.632 1.942 2.308

b = 1.5 0 0.199 0.402 0.619 0.861 1.139 1.466 1.863 2.353 2.97 3.762

b = 2 0 0.204 0.426 0.677 0.973 1.333 1.783 2.36 3.115 4.123 5.494

b = 4 0 0.219 0.493 0.849 1.331 2.005 2.973 4.399 6.543 9.833 14.97

b = 10 0 0.242 0.603 1.17 2.091 3.639 6.311 11.037 19.578 35.323 64.867

b = 15 0 0.252 0.662 1.358 2.587 4.825 9.015 17.054 32.814 64.321 128.445

b = 25 0 0.267 0.746 1.65 3.416 6.98 14.373 30.085 64.205 139.768 310.121

Complementary study

We now list a certain number of sophisticated formulas involving the C operator. Some of them connect the
C operator with referenced special functions, including famous integral operators. The detailed proofs are
omitted for the sake of space.

• For f (x) = x2,

– and a ≥ 0, we have

C1 ( f ; a) = 1 + exp(a)
{
2
√
aF [

√
a] − 1

}
,

where F (x) = exp(−x2)
∫ x
0 exp(t

2)dt is the Dawson (integral) function (see [6]).
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– and a < 0, we have

C1 ( f ; a) = −
√
−a𝜋 erf [

√
−a] + 1 − exp(a) ,

where erf (x) = (2/
√
𝜋)

∫ x
0 exp(−t

2)dt is the error function.

• For f (x) = 1/x and a ≤ 0, we have

C1 ( f ; a) = −1
2
[a2 Ei(a) + 1] + 1

2
(1 + a) exp(a).

• For f (x) = 1/(1 + x), we have

C1 ( f ; a) =
1
2

{
a2

[
Ei(a) − Ei

( a
2

)]
+ 2(a + 2) exp

( a
2

)
− (a + 1) exp(a) − 3

}
.

• For f (x) = 1/[1 +
√
x], we have

C1 ( f ; a) =
1
3

{
(a − 3)a2

[
Ei(a) − Ei

( a
2

)]
− 5 + exp(a) [1 − (a − 2)a] + 2 exp

( a
2

)
[2 + (a − 1)a]

}
.

• For f (x) = x/(1 + x) and a ∈ ℝ/{0}, we have

C1 ( f ; a) =

− exp(a) (a − 1)
[
Ei(−a) − Ei

(
− a
2

)]
+ Ei

( a
2

)
− 2 + 2 exp

( a
2

)
− 𝛾 − log( |a |) ,

where 𝛾 is the Euler-Mascheroni constant, i.e., 𝛾 ≈ 0.57721.

• For f (x) = 1/x2 and a ≤ 0, we have

C1 ( f ; a) =
1
3

{
2
√
𝜋 (−a)3/2 erfc[

√
−a] − exp(a) [exp(−a) − 2a − 1]

}
,

where erfc(x) = 1 − erf (x) is the complementary error function.

• For f (x) = log(1 + x) and a > −1, we have

C1 ( f ; a) = Ei [(1 + a) log(2)] − li(2) − log(1 + a) ,

where li(x) =
∫ x
0 [1/log(t)]dt is the logarithmic integral function.

• For f (x) = b + log(1 + x) with b > 0, we have

C1 ( f ; a) = exp(−b) {Ei{(a + 1) [b + log(2)]} − Ei[(a + 1)b] + Ei(b) − Ei[b + log(2)]} .

• For f (x) = exp(bx) with b ∈ ℝ, we have

C1 ( f ; a) = −1
b
{a Ei(a) − a Ei[a exp(b)] − exp(−b) + exp[a exp(b) − b] + 1 − exp(a)} .

• For f (x) =
√︁
− log(x) and a ≤ 0, we have

C1 ( f ; a) =
√
𝜋

{
exp

(
a2

4

) [
erf

( a
2

)
+ 1

]
− 1

}
.
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• For f (x) = 1/log(x) and a ≥ 0, we have

C1 ( f ; a) = 1 − 2aK2 [2
√
a] ,

where K2 (x) is the modied Bessel function of the second kind, i.e., satisfying the following dierential
equation: x2y′′ + xy′ − (x2 + 4)y = 0 (see [2]).

• For f (x) = xb with b > 0 and a ≤ 0, we have

C1 ( f ; a) =
1

b − 1

{
1 − exp(a) + a(−a)−1/b

[
Γ

(
1
b

)
− Γ

(
1
b
, −a

)]}
,

where Γ(x) =
∫
[0,+∞) t

x−1 exp(−t)dt is the standard gamma function, and Γ(x , y) =
∫
[y ,+∞) t

x−1 exp(−t)dt
is the standard incomplete gamma function.

• For f (x) = arcsinh(x) and a ∈ (−1, 1), we have

C1 ( f ; a) =
1
2

{
−2Chi[arcsinh(1)] + Ei[(−1 + a) arcsinh(1)] + Ei[(1 + a) arcsinh(1)] − log(1 − a2)

}
,

where Chi(x) = 𝛾 + log(x) +
∫ x
0 {[cosh(t) − 1]/t}dt is the hyperbolic cosine integral.

• For f (x) = log[1 +
√
x], we have

C1 ( f ; a) =
− 2Ei[(1 + a) log(2)] + 2Ei[(2 + a) log(2)] + 2 li(2) − 2 li(4) + log(4) − 4 arccoth(3 + 2a).

• For f (x) =
√︁
1 +

√
x, we have

C1 ( f ; a) =
1
a3

{[
4a2 − 8

√
2a + 8

]
exp[

√
2a] + 8 exp(a) (a − 1)

}
+ 4
3
[
√
2 − 2].

Again, for numerical purposes, most of the involved integral operators are already implemented in most of the
mathematical software, making the C operator quite computable.

The rest of the article investigates some formulas in the general multi-dimensional case.

The higher-dimension case

In this part, we consider the C operator with n supposed to be greater than 1 or 2. The next result shows some
examples of functions for which the associated C operator has a simple analytical expression.

Proposition 3.15

1. For f (x(n) ) equals to any constant, say c, we have

Cn ( f ; a) =
exp(ac) − 1

c
.

2. For f (x(n) ) =
∑n
i=1 log(xi ) with n greater or equal to 2 and a > −1, we have

Cn ( f ; a) =
1

n − 1

[
1 − 1

(1 + a)n−1

]
.

For the case n = 1, we recall that Cn ( f ; a) = log(1 + a) (see Proposition 3.13).
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3. For f (x(n) ) =
∑n
i=1 log[xi (1 − xi )] and a ≥ 0, we have

Cn ( f ; a) =
∫
[0,a]

[B(y + 1, y + 1)]n dy.

4. For f (x(n) ) =
∑n
i=1 log[−b log(xi )] with b > 0 and a ≥ 0, we have

Cn ( f ; a) =
∫
[0,a]

bny [Γ(y + 1)]n dy.

Proof.

1. For f (x(n) ) equals to any constant, say c, we have

Cn ( f ; a) =
∫
[0,1]n

exp(ac) − 1
c

dx(n) =
exp(ac) − 1

c

∫
[0,1]n

dx(n) =
exp(ac) − 1

c
.

2. For f (x(n) ) =
∑n
i=1 log(xi ) = log(

∏n
i=1 xi ) with n greater or equal to 2 and a > −1, we obtain

Cn ( f ; a) =
∫
[0,1]n

exp[a log(∏n
i=1 xi )] − 1

log(∏n
i=1 xi )

dx(n) =
∫
[0,1]n

(∏n
i=1 xi

) a − 1
log(∏n

i=1 xi )
dx(n) .

It follows from the last point of Proposition 2.2 that

𝜕

𝜕a
Cn ( f ; a) =

∫
[0,1]n

(
n∏
i=1

xai

)
dx(n) =

n∏
i=1

(∫
[0,1]

xai dxi

)
=

1
(1 + a)n .

Hence, upon integration with respect to a and since Cn ( f ; 0) = 0 (by the rst point of Proposition 2.2),
we have

Cn ( f ; a) =
∫
[0,a]

1
(1 + y)n dy =

1
(1 − n) (1 + y)n−1

����y=a
y=0

=
1

n − 1

[
1 − 1

(1 + a)n−1

]
.

3. For f (x(n) ) =
∑n
i=1 log[xi (1 − xi )] = log

[∏n
i=1 xi (1 − xi )

]
and a ≥ 0, we have

Cn ( f ; a) =
∫
[0,1]n

exp
{
a log

[∏n
i=1 xi (1 − xi )

]}
− 1

log
[∏n

i=1 xi (1 − xi )
] dx(n)

=

∫
[0,1]n

[∏n
i=1 xi (1 − xi )

] a − 1
log

[∏n
i=1 xi (1 − xi )

] dx(n) .
Therefore, by the last point of Proposition 2.2, we get

𝜕

𝜕a
Cn ( f ; a) =

∫
[0,1]n

[
n∏
i=1

xai (1 − xi )
a

]
dx(n)

=

n∏
i=1

(∫
[0,1]

xai (1 − xi )
adxi

)
= [B(a + 1, a + 1)]n .

Hence, upon integration with respect to a and since Cn ( f ; 0) = 0, we have

Cn ( f ; a) =
∫
[0,a]

[B(y + 1, y + 1)]n dy.
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4. For f (x(n) ) =
∑n
i=1 log[−b log(xi )] = log

{
bn

∏n
i=1 [− log(xi )]

}
with b > 0 and a ≥ 0, we have

Cn ( f ; a) =
∫
[0,1]n

exp
[
a log

{
bn

∏n
i=1 [− log(xi )]

}]
− 1

log
{
bn

∏n
i=1 [− log(xi )]

} dx(n)

=

∫
[0,1]n

{
bn

∏n
i=1 [− log(xi )]

}a − 1
log

{
bn

∏n
i=1 [− log(xi )]

} dx(n) .
Therefore, by the last point of Proposition 2.2 and the change of variables xi = exp(−y) for i = 1, . . . , n,
we have

𝜕

𝜕a
Cn ( f ; a) = bna

∫
[0,1]n

{
n∏
i=1

[− log(xi )]a
}
dx(n) = bna

n∏
i=1

(∫
[0,+∞)

ya exp(−y)dy
)

= bna [Γ(a + 1)]n .

Hence, upon integration with respect to a and since Cn ( f ; 0) = 0, we have

Cn ( f ; a) =
∫
[0,a]

bny [Γ(y + 1)]n dy.

This ends the proof. �

We end this part with some others formulas involving the C operator of special functions with n = 2
exclusively.

• For f (x1 , x2) =
√
x1 + x2 and a ≠ 0, we have

C2 ( f ; a) =
4
3a3

{
6(1 − a) exp(a) − 2[

√
2 − 1]a3 + 3[a

√
2 − 1] exp[a

√
2] − 3

}
.

• For f (x1 , x2) =
√
1 + x1 + x2 and a ≠ 0, we have

C2 ( f ; a) =
4
3

{
3
a3

[
exp(a) (a − 1) + (2 − 2

√
2a) exp[

√
2a] + [

√
3a − 1] exp[

√
3a]

]
− 3

√
3 + 4

√
2 − 1

}
.

• For f (x1 , x2) =
√
x1 + x2 if 0 ≤ x2 ≤ x1 ≤ 1, and f (x1 , x2) = 0 otherwise, and a ≠ 0, we have

C2 ( f ; a) = − 2
a3

{2 exp(a) (a − 1) + 2} + 2
a3

{exp[
√
2a] [

√
2a − 1] + 1} − 4

3

√
2 + 4

3
.

• For f (x1 , x2) =
√
x1 + x2 if 0 ≤ x2 ≤ (1 + x21)/2 ≤ 1, and f (x1 , x2) = 0 otherwise, and a ≠ 0, we have

C2 ( f ; a) = − 2
a3

{2 exp(a) (a − 1) + 2} + 2
√
2

a2
exp

[
a
√
2

] {
exp

[
a
√
2

]
− 1

}
− 3
√
2
+ 4
3
.

• For f (x1 , x2) =
√
x1 + x2 if 0 ≤ x2 ≤ 1 − x1 ≤ 1, and f (x1 , x2) = 0 otherwise, and a ≠ 0, we have

C2 ( f ; a) = − 2
a3

{2 exp(a) (a − 1) + 2} + 2
a
exp(a) − 2

3
.

• For f (x1 , x2) =
√︁
x1 − log(x2) and a ≠ 0, we have

C2 ( f ; a) = −
√
𝜋

{
exp

(
1 + a

2

4

) [
erf

(
1 − a

2

)
− 1

]
+ exp

(
a2

4

) [
erf

( a
2

)
+ 1

]
+ exp(1) erfc(1) − 1

}
− 2 + 2exp(a) − 1

a
.
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• For f (x1 , x2) = x1/x2 and a < 0, we have

C2 ( f ; a) =

− 1
4
exp(a)

{
exp(−a)

[
−2Ei(a) + a2 Ei(a) + 1 + 2𝛾 + 2 log(−a)

]
− 1 − a

}
.

• For f (x1 , x2) = x1 + log(x2) and a > 0, we have

C2 ( f ; a) =
1

exp(1) [Ei(1) − Ei(1 + a)] + Ei(a) − 𝛾 + log
(
1 + 1

a

)
.

• For f (x1 , x2) =
√
x1x2 and a < 0, we have

C2 ( f ; a) = −4
a
[a + log(−a) + Γ(0, −a) + 𝛾] .

• For f (x1 , x2) =
√
x1 − x2 if 0 ≤ x2 ≤ x1 ≤ 1, and f (x1 , x2) = 0 otherwise, and a ≠ 0, we have

C2 ( f ; a) =
4
a3

[exp(a) (a − 1) + 1] − 2
a
− 4
3
.

• For f (x1 , x2) = x21/x
2
2 if 0 ≤ x2 ≤ x1 ≤ 1, and f (x1 , x2) = 0 otherwise, and a < 0, we have

C2 ( f ; a) =
1
6

{
−4a3/2 exp(a)F [

√
a] + 2

√
𝜋 (−a)3/2 + (2a + 1) exp(a) − 1

}
.

To the best of our knowledge, some of the above multi-dimensional integral formulas are new in the liter-
ature, which reveal the unexplored potential of the C operator for purposes beyond the theory.

Conclusion

In this article, we have presented a new and original multi-dimensional nonlinear integral operator called the
C operator. Its construction is distantly inspired by the Box-Cox transformation. We emphasized the fact
that the C operator enjoys attractive mathematical properties, including various scale properties, manageable
series expansions and partial derivatives, original lower and upper bounds, and convex properties. A wide
panel of functions has expressions involving simple or special functions, making the C operator able to capture
complex relationships and dynamics in various elds, such as physics, mathematics, and machine learning,
enabling more accurate modeling and analysis of nonlinear phenomena. However, the applied aspect needs
further developments that we leave for future work.
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