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Abstract
Hub number is a graph parameter introduced by modelling a transportation problem for rapid transit in any
system. In this paper, we coin a new hub parameter called hup total hub number of graphs and we determine
the hop total hub number of some standard graphs. Also upper and lower bounds for the hop hub number are
obtained.
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Introduction

By a graph G = (V , E), we mean a nite, undirected graph without loops or multiple edges. For any graph
G, let V (G) and E(G) denote the vertex set and the edge set of G, respectively. The vertices and edges of a
graph are called its elements. Two elements of a graph are neighbors if they are either incident or adjacent.
For graph theoretic terminology, we refer to [2]. Let G be such a graph, and let p and q be the number of its
vertices and edges, respectively. Then we say thatG is an (p, q)-graph. A graph is said to be connected if every
pair of its vertices are joined by a path. A graph which is not connected is said to be disconnected. A maximal
connected subgraph ofG is called a component ofG. The maximum degree of a graphG is denoted by 4(G)
while 𝛿 (G) denotes the minimum degree of G. A vertex of degree one is called a pendant vertex. The vertex
which is adjacent to the pendant vertex is called a support vertex. A set S ⊆ V (G) is called a dominating set of
G if each vertex ofV − S is adjacent to at least one vertex of S. The domination number of a graphG denoted
as 𝛾 (G) is the minimum cardinality of a dominating set inG [3]. A set S ⊆ V of a graphG is a hop dominating
set of G if for every v ∈ V − S, there exists u ∈ S such that d(u , v) = 2. The minimum cardinality of a hop
dominating set ofG is called the hop domination number and is denoted by 𝛾h (G) [1].

Consider the graphs that represent transportation networks, that is the vertices can be taken to be locations
or destinations, and an edge exists between two vertices precisely when there is an “easy passage” between
the corresponding locations. For example, a city’s network of streets, with vertices representing intersections
or other points of intersect, and edges road segments. We are connected with a certain kind of connectivity,
specically we want a set S such that any trac between disparate points in our network passes solely through
vertices in this set.

In 2006, M. Walsh [13] introduced the concept of hub number to provide an optimal solution for rapid
transit from one place to another in any system. A hub set S ofG is a subset of vertices inG such that any two
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vertices u , v ∈ V (G) −S are connected by a path with all internal vertices from S. (This includes the degenerate
cases where the path consists of the single edge uv or a single vertex u if u = v call such an S − path trivial.) The
minimum cardinality of a hub set is the hub number of G, and is denoted by h(G). In 2014, Veena et al [11]
introduced the concept of the total hub set in graphs. A total hub set S ofG is a subset ofV (G) such that every
pair of vertices (whether adjacent or nonadjacent) of V − S are connected by a path, whose all intermediate
vertices are in S. The total hub number ht (G) is then dened to be the minimum cardinality of a total hub set
ofG.

The concept of hub number quanties the connectivity of vertices in graphs. Due to which it has wide
application in the eld of networks. For this reason, several hub parameters have been explored and studied
extensively [5–7, 9, 10, 12]. Motivated by this, in this article we try to term a new hub parameter called hop
hub number of graphs as follows.

Denition 1.1. A total hub set S ⊆ V is a hop total hub set of G if for every v ∈ V − S, there exists u ∈ S such that
d(u , v) = 2. The minimum cardinality of a hop hub set ofG is called the hop hub number and is denoted by hht (G).

We need the following to prove main result.

Proposition 1.1 [11]. For any connected graphG, 𝛾 (G) ≤ ht (G).

Main Results

It is clear that hht (G) is well-dened for any graph G, since V (G) is a hop total hub set. In all situations of
interest, we will assume G to be connected, if G is a disconnected graph then any hop total hub set must
contain union of the set of vertices from all but one largest component, and the hop total hub set of the largest
component.

It is obvious that any hop total hub set in a graph G is also a total hub set, and thus we obtain the obvious
bound ht (G) ≤ hht (G) and the inequality is sharp ifG � T , and h(G) ≥ 2.

We now proceed to compute hht (G) for some standard graphs. It can be easily veried that

Proposition 2.2. 1. For any complete graph Kp , hht (Kp) = p

2. For any path Pp with p ≥ 4, hht (Pp) = p − 2.

3. For any cycle Cp ,

hht (Cp) =


2, if p = 4 ;
3, if p = 3 ;
p − 3, if p ≥ 5 .

.

4. For the wheelW1,p−1, p ≥ 5, hht (Wp−1) = 3.

5. For the double star Sn ,m , n , m ≥ 1, hht (Sn ,m) = 2.

Theorem 2.3. IfG � Km1 ,m2 , ...,mk be the complete k−partite graph, with m1 ≤ m2 ≤ m3 ≤ ... ≤ mk . Then.

hht (G) =
{
2, if k = 2 ;
k , if k ≥ 3 .

.

Proof. Let m1 , m2 , ..., mk be the component of partitions ofG. the following two cases are considered:
Case 1:When k = 2, we haveG is a complete bipartite graph. Suppose that S = {v1 , v2} such that v1 ∈ m1

and v2 ∈ m2, we have for any two vertices ofV (G) − S are connected by a path whose internal vertex in S and
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for any vertex u ∈ V (G) − S, there exists a vertex v1 or v2 in S such that the distance between u and v1 or u and
v2 is equal to two, clearly S is a minimum hop hub set of G. Therefore hht (G) = 2.

Case 2: When k ≤ 3, any two vertices u and v are not in the same component of G are adjacent, so the
distance between u and v is equal to one but any two vertices in the same component are not adjacent and the
distance between them is equal to two. So, we can choose the set S contains one vertex from each component
m1 , m2 , ..., mk. So, |S | = k is a hop hub set of G and if removed any vertex v ∈ mi , 1 ≤ i ≤ k from S, we get
the distance between any vertex of mi , 1 ≤ i ≤ k and any vertex of S − v is equal to one. Thus S is a minimum
hop hub set ofG. Therefore, hht (G) = k. �

Lemma 2.4. For any graphG. hth (G) = 2 if and only if h(G) ≤ 2.

Theorem 2.5. For any treeT of order p ≥ 4, hht (T ) = p − n, where n is the number of pendant vertices.

Proof. Suppose thatH is the set of a pendant vertices ofT and S =V (G) −H , we have every two vertices ofH
are connected by a path whose internal vertex in S and for any vertex v ∈ H , there exists a vertex u ∈ S such
that the distance between v and u is equal to two and if removed u from S, there is two vertices outside S have
no S-path between them. Thus S a minimum hop hub set ofG. Therefore, hht (T ) = p − n. �

Lemma 2.6. For any treeT of order p ≥ 4, h(T ) = ht (T ) = hht (T ) = 𝛾c (T ).

Theorem 2.7. For any connected graphG, 𝛾 (G) ≤ hht (G).

Proof. Since every hop hub set ofG is a hub set, we have the proof follows by Proposition 1.1. �

A dominating set ofG need not be a hop total hub set ofG. For example, in C5 = {v1 , v2 , ..., v5}, {v1 , v3}
is a dominating set but not a hop total hub set.

Theorem 2.8. LetG be a connected graph has a pendant vertex v such that . 4(G) = p − 1. Then hht (G) = 2.

Proof. Suppose that G is a connected graph with 4(G) = p − 1 if S = {v, u} such that v is a pendant vertex of
G and u its support such that deg (u) = p − 1, then any two vertices of V − S are connected by a path whose
internal vertex is u and the distance between any vertex ofV − S and a vertex v is equal to two. So, S is a hop
hub set ofG. If removed u or v from S, there is two vertices outside S have no S-path between them or there is
no vertex in S such that the distance between any vertex ofV − S and a vertex of S is equal to two. Therefore,
hht (G) = 2. �

Lemma 2.9. For any graphG, hht (G) ≤ 2p − (4(G) + 1).

Proof. Since for any graphG, hht (G) ≤ p, we get the result.
�

Lemma 2.10. A graphG is complete graph if and only if, hht (G) = p.

Theorem 2.11. LetG be a disconnected graph havingM1 ,M2 , ...,Ml components. Then hht (G) = min
1≤k≤l

{Xk}, where

Xk = hht (Mk) +
l∑︁

i=1,i≠k

|V (Mi ) |.

Proof. From the denition of a hop total hub set, any hop total hub set S of a graph G must contains all the
vertices of k − 1 components and the vertices of hop total hub set of the remaining component. To show that
S is a minimum. The union of all components except one and taking the hop total hub set of the remaining

component, we can compute all hop total hub sets ofG, and more detailed S =
k⋃

i=1,i≠ j
Mi ∪H k

ht , where H
k
th is a

hop total hub set ofMk.

Let Xk = hht (Ml ) +
l∑︁

i=1,i≠k

|V (Mi ) |, then min
1≤k≤l

{Xk} = hht (G). �
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Theorem 2.12. For any connected graphG, 2 ≤ hht (G) ≤ p.

Proof. By the denition of a hop total hub set S of a graphG we have |S | ≥ 2 and the upper bound is achieved
ofG � Kp. Therefore, 2 ≤ hht (G) ≤ p. �

Theorem 2.13. LetG be a connected graph of order p, hth (G) = p if and only ifG � Kp .

Proof. Suppose that hht (G) = p, this means that all vertices of a graphG are adjacent and henceG � Kp.
Conversely, ifG � Kp, the proof follow form Proposition 2.1 part 1. �

Theorem 2.14. For any connected graphG, if hth (G) = 2 then diam(G) ≤ 3.

Proof. Suppose that hth (G) = 2. We prove that diam(G) ≤ 3, if diam(G) > 3, then by the denition of
diam(G), there exists a path between at least ve vertices and we get hht (G) ≥ 3, but this contradiction that
hht (G) = 2, then diam(G) ≤ 3. �

Remark 2.15. The converse of Theorem 2.14 is not true. For example for G � K3 we have diam(K3) = 1 and
hht (K3) = 3.

Theorem 2.16. LetT be a tree, then hht (T ) = 2 if and only if diam(T ) ≤ 3.

Proof. Suppose that hht (T ) = 2, then diam(T ) ≤ 3 by Theorem 2.14.
Conversely, suppose that diam(T ) ≤ 3 and we prove that hh (T ) = 2. Since diam(T ) ≤ 3 and a treeT has not
closed path, then the largest distance inT contains four vertices. LetT � P4 since hht (P4) = 2, by Proposition
2.1 part 2, and without loss of generally, hht (T ) = 2. �

Theorem 2.17. LetG be a graph with p vertices, then

1. hht (G) + hht (G) ≤ 2p.

2. hht (G)hht (G) ≤ p2.

the each inequality is sharp ifG � KP
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