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Abstract
In this correspondence, lower bound and upper bound on the covering radii of DNA codes in Finite Alphabet
with Finite Ring R = ℤ2 + uℤ2 , u2 = 0 by using dierent distance are given. Some classes bounds for various
Repetition DNA codes, Simplex DNA codes of both Type 𝛼 and Type 𝛽 and MacDonald DNA codes of both
Type 𝛼 and Type 𝛽 in R by using covering radii are obtain.
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Introduction

Nucleic acids such as the DNA stores the genetic information of all living beings. DNA is a twisted double
stranded helical ladder like structure, which consists of four nitrogenous bases such as Adenine, thiamine,
cytosine and guanine, as well as alternating chain of sugars and phosphates. DNAmolecules exhibit antiparallel
structure, where the dual strands of this helical molecule run in opposite directions of each other. Both these
strands are held together by hydrogen bond and they possess distinct 5’ and a 3’ end and are held in-between
the base pairs of nitrogenous bases where adenine pairs with thymine and cytosine pairs with guanine(Watson-
Crick[22] complements of each other - A matches by T and C matches by G, also 3’ end matches with 5’end).

The problem of designing DNA codes with same length, that satisfy certain combinatorial constraints has
applications for reliably storing and retrieving information in synthetic DNA strands. These codes can be used
in particular for DNA computing[1] or as molecular bar-codes.

In nite eld, there are many researchers doing research on code and the particular, codes overℤ4 received
much attention [2, 4–6, 14, 16, 20, 21]. The covering radius of binary linear codes were studied [4, 5]. In
1999, Sole et al gave many upper and lower bounds on the covering radius of a code over ℤ4 with dierent
distances. In [6–8], the covering radius of some particular codes over ℤ2 + uℤ2 , u2 = 0 for some block repe-
tition code in ℤ4 have been investigated. Recently the covering radius of dna codes over nite ring has been
investigated [9].

In this correspondence, a survey of the covering radius of some classes for same type and dierent type
block repetition code in the type 𝛼 and type 𝛽 for both Simplex DNA codes and MacDonald DNA codes. In
[2], some of the known, lower bond and upper bound have been generalized.
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Preliminary

Coding theory has several applications in Genetics and Bioengineering. The problem of designing DNA codes
[length of the codeword is xed in the the Finite Alphabet ℕ = {A, C ,G ,T }, that satisfy certain combinatorial
constraints] has applications for reliably storing and retrieving information in synthetic DNA strands.

Let (x1 , x2 , · · · , xn) with xi ∈ ℕ be the set of codeword in DNA code with length n. By using the Watson-
Crick complement of a nucleotide, therefore the matches of four nucleotides, Amatches byT and C matches
byG .

In ℕ = {A, C ,G ,T } be a alphabet and let DNA code is the sets of codewords of xed length n ∈ ℕ. We
know that, components of nite ringℤ2+uℤ2 with u2 = 0which is one-one and onto mapping to the nucleotide
DNA basis ACTG respectively such that (A,T → 0, 2) and (C ,G → 1, u). Thus the problem of the DNA
codes is corresponding to the problem of the R-linear codes. These transpositions do not aect theGC-weight
of the codeword. In this paper, by using the above map in R with dierent weight for Lee(L), Euclidean(E),
Chinese Euclidean(CE) and Bachoc(B)). Obtain the covering radius for some block repetition DNA codes .

Let d = (d1 , d2 , · · · , dn) ∈ ℕn , where n is a length of code. If z is an element of {A, C ,G ,T }. Dene a
weight of z at b is wz (d) = |{i |yi = z}|.

A DNA linear code C ⊆ ℕ is an additive subgroup of ℕn . The element of C is said to be a DNA codeword
of code. A matrix whose rows generate C is the generator matrix of C .
In, [3, 18] are dened as the weight for Lee(L), Euclidean(E), Chinese Euclidean(CE) and Bachoc(B) to the
followings

ℕ(R) L E CE B
0 0 0 0 0
1 1 1 2 1
u 2 4 4 2
1 + u 1 1 2 2

Let 𝛶 : ℕ(R) → ℤ22 be a gray mapping and dene 𝛶 (l + 2m) = (m, l + m) , ∀l + 2m ∈ ℕ. Therefore, the
image f a linear cde C in ℕ of length is n , uing the above map is a binary code of length 2n with equal number
of elements [20].

Any DNA linear code C ⊆ ℕ is equivalent to a code with, the Generator Matrix(GM ). Then the following,

GM =

[
Ik0 A′ B′

0 2Ik1 2D′

]
, here A′, B′, D are matrices in ℕ.

Therefore, a DNA code C contain all DNA codewords [c0 , c1]GM , here c0 is a codeword of length k1 in
ℕ and c1 is a codeword of length k2 in ℤ2. So, C contains a total number of 22k1+k2 codewords. Thus, the
parameters of C is an

[
n , 22k1+k2 , d

]
code, here d is the minimum dierent distance of C .

A DNA linear code C ⊆ ℕn , where n is a length of codeword in code, dimension of code is k , and nally
the minimum distance of C is d , then the code is said to be a

[
n , k , d♯

]
code, where ♯ ∈ {L, E , CE , B} and it is

denoted by [n , k , d] code.

DNARepetition Codes with Covering Radii

The covering radius of DNA Repetition Codes C :
rd (C) = maxu∈ℕn {minc∈C {d(c , u)}} , where d is an various distance of the code in ℕn .
Let C be an q-ary repetition code C over a nite eld Fq =

{
0, 1, 𝛾2 , 𝛾3 , · · · , 𝛾q−1

}
is an [n , 1, n] code,

where C =
{
�̄� | 𝛾 ∈ Fq

}
and �̄� = (𝛾 , 𝛾 , · · · , 𝛾). In [17], the covering radius of C is

⌈
n (q−1)
q

⌉
. By using above, it

2



Asian J. Math. Appl. (2024) 2024:2

can be found that the covering radius of block of size n repetition code of the parameter:[n(q −1) , 1, n(q −1)]
is generated by

GM = [

n︷   ︸︸   ︷
11 · · · 1

n︷       ︸︸       ︷
𝛾2𝛾2 · · · 𝛾2

n︷       ︸︸       ︷
𝛾3𝛾3 · · · 𝛾3 · · ·

n︷                ︸︸                ︷
𝛾q−1𝛾q−1 · · · 𝛾q−1]

is
⌈
n (q−1)2

q

⌉
, since it will be equivalent to a repetition code of length (q − 1)n.

Consider the repetition dna code over ℕ. There are two type

• cytosine

The parameter of cytosine repetition code C𝛽 : [n , 1, n , n , n , n] is generator matrixGM𝛽 = [

n︷     ︸︸     ︷
C C · · ·C]

• thymine

The parameter of thymine repetition code C𝛼 : (n , 2, 2n , 2n , 4n , 2n) is generator matrix GM𝛼 =

[

n︷     ︸︸     ︷
T T · · ·T ] , where n is a length of the code.

Theorem 3.1. Let C𝛽 and C𝛼 be the dna code of type 𝛽 and 𝛼 type in generator matricesGM𝛽 andGM𝛼 . Then,

1.
⌊ n
2

⌋
≤ rL (C𝛼) ≤ 2n and n ≤ rL

(
C𝛽

)
≤ 5n

3 ,

2. 4
⌊ n
2

⌋
≤ rE (C𝛼) ≤ 2n and rE

(
C𝛽

)
≤ 3n

2 ,

3. 4
⌊ n
2

⌋
≤ rCE (C𝛼) ≤ 2n and rCE

(
C𝛽

)
= 2n ,

4. 2
⌊ n
2

⌋
≤ rB (C𝛼) ≤ 2n and n ≤ rB

(
C𝛽

)
≤ 2n.

Proof. The code of C = {A A · · · A,T T · · ·T } is generated by [T T · · ·T ] is an [n , 1, 2n] code. Then,
dL (x , AA · · · A) = wL (x − AA · · · A) =

⌈ n
2

⌉
and dL (x ,TT · · ·T ) = wtL (x − TT · · ·T ) =

⌊ n
2

⌋
. Therefore

dL (x , C𝛼) = min
{⌈ n
2

⌉
,
⌊ n
2

⌋}
, where x =

b n2 c︷     ︸︸     ︷
T T · · ·T

d n2 e︷     ︸︸     ︷
A A · · · A ∈ ℕn .

Using by denition,

rL (C𝛼) ≥
⌊ n
2

⌋
(3.1)

Let x be the codewords inℕn and let us take x has𝜔′
0 coordinates as 0’s,𝜔

′
1 coordinates as 1’s,𝜔

′
2 coordinates

as 2’s, 𝜔′
3 coordinates as 3’s, so 𝜔′

0 + 𝜔′
1 + 𝜔′

2 + 𝜔′
3 = n. Since C𝛼 = {AA · · · A,TT · · ·T } and lee weight of

ℕ : A is 0, C andG is 1 and T is 2. Therefore, dL (x , 00 · · · 0) = n − 𝜔′
0 + 𝜔′

1 + 𝜔′
2 + 𝜔′

3 and dL (x ,TT · · ·T ) =
n − 𝜔′

2 + 𝜔′
1 + 𝜔′

0 + 𝜔′
3.

Thus dL (x , C𝛼) = min
{
n − 𝜔′

0 + 𝜔′
1 + 𝜔′

2 + 𝜔′
3 , n − 𝜔′

2 + 𝜔′
1 + 𝜔′

0+𝜔
′
3

}
and hence,

dL (x , C𝛼) ≤ n + n = 2n. (3.2)

By using, (3.1) and (3.2), so
⌊ n
2

⌋
≤ rL (C𝛼) ≤ 2n.

In C𝛽 code, with lee weight. Then dL (x , AA · · · A) = n − 𝜔′
0 + 𝜔′

1 + 3𝜔
′
2 + 𝜔′

3,dL (x , CC · · ·C) = n − 𝜔′
1 +

𝜔′
0 + 𝜔′

2 + 𝜔′
3,dL (x ,TT · · ·T ) = n − 𝜔′

2 + 𝜔′
1 + 𝜔′

3 and dL (x ,GG · · ·G) = n − 𝜔′
3 + 𝜔′

1 + 𝜔′
0 + 𝜔′

2 , here x ∈ ℕn .
Therefore, dL (x , C𝛽 ) = min{n−𝜔′

0+𝜔
′
1+𝜔

′
2+𝜔

′
3,n−𝜔

′
1+𝜔

′
0+𝜔

′
2+𝜔

′
3 , n−𝜔

′
2+𝜔

′
1+𝜔

′
3 , n−𝜔

′
3+𝜔

′
1+𝜔

′
0+𝜔

′
2} ≤

5n
3 . So, r (C𝛽 ) ≤ 5n

3 .

Let x =

t︷    ︸︸    ︷
AA · · · A

t︷    ︸︸    ︷
CC · · ·C

t︷     ︸︸     ︷
TT · · ·T

n−3t︷     ︸︸     ︷
GG · · ·G , where t =

⌊ n
4

⌋
,

then dL (x , AA · · · A) = n , dL (x , CC · · ·C) = 2n − 4t , dL (x ,TT · · ·T ) = n and dL (x ,GG · · ·G) = 4t.
Therefore rL

(
C𝛽

)
≥ min{2n , 2n − 4t , 4t} ≥ n.

The above arguments are follows for the remaining weights. �
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Block Repetition Code

LetGM = [

n︷     ︸︸     ︷
C C · · ·C

n︷     ︸︸     ︷
T T · · ·T

n︷     ︸︸     ︷
G G · · ·G] be a generator matrix of ℕ in each block of repetition code. There-

fore, the code of BRC = {c0 = A · · · AA · · · AA · · · A,
c1 = C · · ·CT · · ·TG · · ·G , c2 = T · · ·TA · · · AT · · ·T , c3 = G · · ·GT · · ·TC · · ·C}. Then, the parametrs of
Block Repetition Code(BRC)

ℕ(R) L E CE B
length 3n 3n 3n 3n
dimension 1 1 1 1
weight(distance) 4n 6n 8n 4n

Remark:
The same length of a block repetition code has permanent lee weight is 4n. Obtain, the following

Theorem 3.2. 1. 3n ≤ rL
(
BRC3n

)
≤ 7n

2

2. rE
(
BRC3n

)
= 5n.

3. 4
⌊ n
2

⌋
+ 4n ≤ rCE

(
BRC3n

)
≤ 6n ,

4. 2b n2 c + 2n ≤ rB
(
BRC3n

)
≤ 4n.

Proof. Let y′ = AA · · · A ∈ ℕ3n . Then, d(x , BRC3n) = 3n and hence, rL
(
BRC3n

)
≥ 3n.

If y′ = (𝛾 ′ |𝛿 ′ |Z ′) ∈ ℕ3n , here 𝛾 ′, 𝛿 ′ and Z ′ have compositions (𝜍0 , 𝜍1 , 𝜍2 , 𝜍3) ,

(𝜐0 , 𝜐1 , 𝜐2 , 𝜐3) and (𝜑0 , 𝜑1 , 𝜑2 , 𝜑3) respectively such that
3∑
i=0

𝜍i = n ,
3∑
i=0

𝜐i = n and
3∑
i=0

𝜑i = n , then

dL (y′, c0) = 3n − 𝜍0 + 𝜍1 + 𝜍2 + 𝜍3 − 𝜐0 + 𝜐1 + 𝜐2 + 𝜐3 − 𝜑0 + 𝜑1 + 𝜑2 + 𝜑3 , dL (y′, c1) = 3n − 𝜍1 + 𝜍0 + 𝜍2 + 𝜍3 −
𝜐2 + 𝜐0 + 𝜐1 + 𝜐0 − 𝜑3 + 𝜑0 + 𝜑1 + 𝜑2 , dL (y′, c2) = 3n − 𝜍2 + 𝜍1 + 𝜍0 + 𝜍3 − 𝜐0 + 𝜐1 + 𝜐2 + 𝜐3 − 𝜑2 + 𝜑0 + 𝜑1 + 𝜑3

and dL (y′, c3) = 3n − 𝜍3 + 𝜍1 + 𝜍0 + 𝜍2 − 𝜐2 + 𝜐0 + 𝜐1 + 𝜐3 − 𝜑1 + 𝜑3 + 𝜑0 + 𝜑2.
Thus, dL (y′, BRC3n) = min{3n − 𝜍0 + 𝜍1 + 𝜍2 + 𝜍3 − 𝜐0 + 𝜐1 + 𝜐2 + 𝜐3 − 𝜑0 + 𝜑1 + 𝜑2 + 𝜑3 , 3n − 𝜍1 + 𝜍0 +

𝜍2 + 𝜍3 − 𝜐2 + 𝜐0 + 𝜐1 + 𝜐3 − 𝜑3 + t′0 + 𝜑1 + 𝜑2 , 3n − 𝜍2 + 𝜍1 + 𝜍0 + 𝜍3 − 𝜐0 + 𝜐1 + 𝜐2 + 𝜐3 − 𝜑2 + 𝜑0 + 𝜑1 + 𝜑3 , 3n −
𝜍3 + 𝜍1 + 𝜍0 + 𝜍2 − 𝜐2 + 𝜐0 + 𝜐1 + 𝜐3 − 𝜑1 + 𝜑3 + 𝜑0 + 𝜑2} ≤ 7n

2 and hence, rL
(
BRC3n

)
≤ 7n

2 . Similar proof of

the all other weight. �

Dene a two block repetition dna code over ℕ of each of length is n and the parameters of two block
repetition code BRC:

ℕ(R) L E CE B
length 2n 2n 2n 2n
dimension 1 1 1 1
weight(distance) 2n 2n 4n 2n

are generated byG = [

n︷    ︸︸    ︷
CC · · ·C

n︷     ︸︸     ︷
TT · · ·T ]. Use the above and obtain a following

Theorem 3.3. 1. 2n ≤ rL
(
BRC2n

)
≤ 11n

3

2. rE
(
BRC2n

)
= 7n

2 .

3. 4
⌊ n
2

⌋
+ 2n ≤ rCE

(
BRC2n

)
≤ 4n ,

4
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4. 2b n2 c + n ≤ rB
(
BRC2n

)
≤ 4n.

LetGM = [

m︷     ︸︸     ︷
C C · · ·C

n︷     ︸︸     ︷
T T · · ·T ] be the generalized generator matrix for two dierent block repetition dna

code of length are m and n respectively. In the parameters of two dierent block repetition code(BRCm+n) are

ℕ(R) L E CE B
length m + n m + n m + n m + n
dimension 1 1 1 1
weight(distance) w∗ w∗ min{4m, 3m + 3n} w∗

here w∗ = min{2m, m + n}

and Theorem 3.3 can be easily generalized for two alternating length by using alike arguments to the following.

Theorem 3.4. 1. m + n ≤ rL (BRCm+n) ≤ 2m + 5n
3 ,

2. rE (BRCm+n) ≤ 3m
2 + 2n

3. 2m + 4
⌊ n
2

⌋
≤ rCE (BRCm+n) ≤ 2m + 2n ,

4. m + 2b n2 c+ ≤ rB
(
BRC2n

)
≤ 2m + 2n.

Type 𝛼 and Type 𝛽 of Simplex DNA Code over ℕ

The Quaternary Simplex codes of type 𝛼 and type 𝛽 have been studied[4]. Here S𝛼k is an Type 𝛼 Simplex
code of a linear DNA code ℕ and its parameters

[
4k , k

]
and an inductively generator matrix is

GM𝛼
k =

[
A · · · A C · · ·C T · · ·T G · · ·G
GM𝛼

k−1 GM𝛼
k−1 GM𝛼

k−1 GM𝛼
k−1

]
(4.3)

withGM𝛼
1 = [A C T G].

Type 𝛼 simplex code S 𝛽

k is a pricked versioning of S𝛼k with parameterized [2k−1 ,
(
2k − 1

)
, k] and an in-

ductive generator matrix given by

GM 𝛽

2 =

[
C C C C A T
A C T G C C

]
(4.4)

GM 𝛽

k =

[
CC · · ·C AA · · · A TT · · ·T
GM𝛼

k−1 GM 𝛽

k−1 GM 𝛽

k−1

]
(4.5)

and for k > 2, where GM𝛼
k−1 is a type 𝛼 simplex cde of the generator matrix of S𝛼k−1 and ref. to [4]. The

minimum weight of Type 𝛼 code with various weight(such as, L, E, CE and B) are 4, 8, 4 and 4 respectively
for the [A C T G].

Theorem 4.5. 1. rL (S𝛼k ) ≤ 2
2k + 1,

2. rE (S𝛼k ) ≤
5·4k+5
3 ,

3. rCE
(
S𝛼k

)
≤ 22k+1 − 3,

4. rB (S𝛼k ) ≤
22(k+1)−1

3 .

5
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Proof. Let x = CC · · ·C ∈ ℕn . The generator matrix of type 𝛼(4.3), Proposition [10] and using Theorem 3.2,
then

rL
(
S𝛼k

)
≤ rL

(
S𝛼k−1

)
+ rL (<

4(k−1)︷    ︸︸    ︷
CC · · ·C

4(k−1)︷     ︸︸     ︷
TT · · ·T

4(k−1)︷     ︸︸     ︷
GG · · ·G >)

= rL
(
S𝛼k−1

)
+ 3.4(k−1)

= 3.4(k−1) + 3.4(k−2) + 3.4(k−3) + . . . . . . + 3.41 + rL
(
S𝛼1

)
rL

(
S𝛼k

)
≤ 22k + 1

(
since rL

(
S𝛼1

)
= 5

)
.

The proof of remaining part is alike way of same for the above. �

Theorem 4.6. 1. rL (S 𝛽

k ) ≤ 2
k
(
2k − 1

)
− 1,

2. rE (S 𝛽

k ) ≤
5·4k−6·2k−8

6 ,

3. rCE
(
S 𝛽

k

)
≤ 22k − 2k − 7,

4. rB (S 𝛽

k ) ≤
4k+1+3·4k−1−9·2k−2−20

3

Proof. In the generator matrix of type 𝛽 (4.5), Proposition [10] and Theorem 3.4, thus

rL
(
S 𝛽

k

)
≤ rL

(
S 𝛽

k−1

)
+ rL (<

22(k−1)︷    ︸︸    ︷
CC · · ·C

2(2k−3)−2(k−2)︷     ︸︸     ︷
TT · · ·T >)

= rL
(
S 𝛽

k−1

)
+ 2(2k−2) + 2(2k−3) − 2(k−2)

≤2
(
4(k−1) + 4(k−2) + . . . + 42

)
+
(
4(2k−3) + 4(2k−5) + . . . + 42

)
−(

4(k−2) + 4(k−3) + . . . + 4
)
+ rL

(
S 𝛽

2

)
rL

(
S 𝛽

k

)
≤2k−1

(
2k − 1

)
− 1

(
since rL

(
S 𝛽

2

)
= 5

)
.

The remaining part of proof is alike above way with various weights. �

Type 𝛼 and Type 𝛽 for MacDonald DNA Code Over ℕ

In [15],Mk ,t (q) be the q-ary MacDonald code Over the Finite Field Fq and its parameter
[
qk−qt
q−1 , k , q

k−1 − qt−1
]

code, but every non-zero codeword of code has weight is either qk−1 or qk−1 − qt−1. The author has studied the
covering radius of MacDonald codes over a nite eld and also many exact values for smaller dimension are
givan[17].

Dene a MacDonald codes over a ring by us ing the generator matrices of Simplex Codes[12]. Then the
generator matrices of MacDonald Code of Type 𝛼 and Type 𝛽 are

GM𝛼
k ,t =

[
GM𝛼

k \
0

GM𝛼
t

]
(k−t)×22t

(5.6)

and

GM 𝛽

k ,t =

[
GM 𝛽

k \
0

GM 𝛽
t

]
(k−t)×2t−1 (2t−1)

, (5.7)

here the symbol “ \ ” is denoted by deleting corresponding columns for both matrix and 2 ≤ t ≤ k. Therefore,

6
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Type 𝛼 Macdonald code:

LetGM𝛼
k ,t i a generator matrix, that generator by codes and its parameter

[
4k − 4t , k

]
and

Type 𝛽 Macdonald code:

Let GM 𝛽

k ,t i a generator matrix, that generator by codes and its parameter
[(
2k−1 − 2t−1

) (
2k + 2t − 1

)
, k
]

code over ℕ.

In fact, these codes are punctured code of S𝛼k and S
𝛽

k respectively and obtain the following,

Theorem 5.7. 1. rL
(
M𝛼
k ,t

)
≤ 22k − 22r + r

(
M𝛼
r ,t

)
, for t < r ≤ k

2. rE
(
M𝛼
k ,t

)
≤ 5

3 (4
k − 4r ) + r

(
M𝛼
r ,t

)
, for t < r ≤ k

3. rCE
(
M𝛼
k ,t

)
≤ 22k+1 − 22r+1 + r

(
M𝛼
r ,t

)
, for t < r ≤ k.

4. rB
(
M𝛼
k ,t

)
≤ 4k+1−4r+1

3 + r
(
M𝛼
r ,t

)
, for t < r ≤ k.

Proof. In equation(5.6), Proposition [10] and Theorem 3.2, thus

rL
(
M𝛼
k ,t

)
≤ rL (<

4(k−1)︷    ︸︸    ︷
CC · · ·C

4(k−1)︷     ︸︸     ︷
TT · · ·T

4(k−1)︷     ︸︸     ︷
GG · · ·G >) + rL

(
M𝛼
r ,t
)

= 3.4k−1 + rL
(
M𝛼
k−1,t

)
, for k ≥ r > t.

≤ 3.4k−1 + 3.4k−2 + · · · + 3.4r + rL
(
M𝛼
r ,t
)
for k ≥ r > t

rL
(
M𝛼
k ,t

)
≤ 22k − 22r + rL

(
M𝛼
r ,t
)
, fork ≥ r > t.

The proof of the other part is same arguments to 1. �

Theorem 5.8. 1. rL
(
M 𝛽

k ,t

)
≤ 22k−1 − 2k−1 + 2r−1 − 22r−1 + rL

(
M 𝛽
r ,t

)
, for t < r ≤ k

2. rE
(
M 𝛽

k ,t

)
≤ 2k (5·2k−6)+2r (6−5·2r )

6 + rE
(
M 𝛽
r ,t

)
, for t < r ≤ k.

3. rCE
(
M 𝛽

k ,t

)
≤ 2k

(
2k − 1

)
+ 2r (1 − 2r ) + rCE

(
M 𝛽
r ,t

)
, for t < r ≤ k.

4. rB
(
M 𝛽

k ,t

)
≤ 4k+1−4r+1+3(4k−1−4r−1)+9(2r−1−2k−1)

6 + rB
(
M 𝛽
r ,t

)
, for t < r ≤ k.

Proof. Using Proposition [10], Theorem 3.4 and in equation(5.7), obtain

rL
(
M 𝛽

k ,t

)
≤ rL (<

4(k−1)︷    ︸︸    ︷
CC · · ·C

4(k−1)−1−2(k−2)︷     ︸︸     ︷
TT · · ·T >) + rL

(
M 𝛽

k−1,t

)
rL

(
M 𝛽

k ,t

)
≤ 22k−1 − 2k−1 + 2r−1 − 22r−1 + rL

(
M 𝛽
r ,t

)
, for t < r ≤ k.

The remaining part of the proof is similar idea to 1. �
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