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Abstract
In the present paper, we discuss the solvability of nonlinear elliptic problems in the setting anisotropic Orlicz
space, with the presence of a lower order term and a non polynomial growth which is described by an N−aplet
of N-functions not satisfying the Δ2-condition.
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Introduction

In this work, we discuss the existence of an entropy solution for a strongly nonlinear elliptic problem with
Dirichlet boundary value conditions:

A(w) −
N∑
i=1

𝜕i (Φi (x , w)) = f in Ω,

w = 0 on 𝜕Ω

(1.1)

where:

• Ω is a bounded subset of ℝN ;

• The operator A(w) = −
N∑
i=1

𝜕i
(
ai (x , 𝜕iw)

)
is a Leray-Lions operator dened on a subset ofW 1

0 L𝜓 (Ω)

where 𝜓 is an N−aplet of N-functions Orlicz;

• Φ is a Carathéodory function which satises the growth condition;

• The second term f ∈ L1 (Ω).

It is well known that anisotropic Orlicz spaces include many spaces as special cases, such as Lebesgue spaces,
weighted Lebesgue spaces, variable Lebesgue spaces, and Orlicz spaces; see [26]. Especially, in recent decades,
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variable exponent function spaces, such as Lebesgue, Sobolev spaces with a variable exponent, were introduced
in [11]. These spaces have several applications in various elds such as image restoration, electrorheological
uids; (see, [12, 14, 21]).

The main contribution of this article is to deal with a class of problems for which the classical methods of
monotone operators and Lions [22] in the caseW 1,p

0 (Ω)) do not apply. The reason for this is that a(x , w , ∇w)
does not need to satisfy the strict monotonicity condition, but only a condition of large monotonicity:(

a(x , s, [) − a(x , s, [ ′)
)
([ − [ ′) ≥ 0, for all [ , [ ′ ∈ ℝN , ([ ≠ [ ′).

Our objective is to demonstrate the existence of entropy solutions for (1.1) under the weakest assumption
of large monotony, without relying on the convergence almost everywhere of the gradients of the approximate
equations, since this is impossible to prove in our framework. Our proof is based on a version ofMinty’s lemma
(G. J. Minty [23]).

Other results for the existence of nite energy solutions can be found in [3–10]. These works contribute
to the understanding of nite energy solutions for various classes of nonlinear elliptic problems with dierent
assumptions and conditions.

The paper is organized as follows: In section , we introduce some basic denitions and properties in Orlicz-
Sobolev spaces and anisotropic Orlicz space as well as an abstract theorem and prepare some auxiliary results.
In Section , we give basic assumptions, and the denition of entropy solution is given as well as our main
theorem. Section is devoted to the proof of our main result.

Denitions and preliminary tools

Let’s initiate by revisiting a few denitions and properties associated with Orlicz spaces [1, 18]. Following this,
we proceed to introduce the concept of anisotropic Orlicz-Sobolev spaces.

N-functions:

In an Orlicz normed space, the fundamental concept revolves around the N function.

Denition 2.1. An N-function is dened as a mappingG : ℝ → ℝ that satises the following conditions:
i) G is convex in ℝ : G (_ s1 + (1 − _ )s2) ≤ _G (s1) + (1 − _ )G (s2), for all s1 , s2 ∈ ℝ and for all _ ∈ [0, 1].
ii) G is an even function: G (s) = G (−s) for all s ∈ ℝ.
iii) G (0) = 0 andG (s) > 0 for all s ∈ ℝ.
iv) G (s)

s → 0 as s → 0 and G (s)
s → +∞ as s → +∞.

An N-functionG is called to satisfy the Δ2-condition for all s ∈ ℝ if, for some k > 0,

G (2s) ≤ kG (s) or all s ∈ ℝ.

G is said to fulll the Δ2-condition for s large if there exist s0 ≥ 0 and k > 0 such that

G (2s) ≤ kG (s) for all s ≥ s0.

Another way to dene an N-function [18], is as a functionM that can be represented as

G (s) =
∫ |s |
0 m(𝜎)d𝜎 ,

where m : ℝ+ → ℝ+is a non-decreasing and right-continuous function, m(s) > 0 for all s > 0 and m(s) → +∞
as s → +∞.

For an N-functionG, the conjugate is dened by
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Ḡ (s) =
∫ |s |
0 m̄(𝜎)d𝜎 ,

where m̄ : ℝ+ → ℝ+is given by

m̄(t) = sup{s : m(s) ≤ t}.

We have the Young’s inequality

|ts | ≤ G (t) + Ḡ (s) for all t , s ∈ ℝ.

Suppose Ω represents an open set in ℝd , where d belongs to the set of natural numbers ℕ. The Orlicz
class 𝕃G (Ω) (resp. the Orlicz space LG (Ω) ) is characterized as the set of (equivalence classes of) real-valued
Lebesgue measurable functionswn Ω such that∫

Ω

G (w(x))dx < +∞ (resp.
∫
Ω

G
(
w(x)
_

)
dx < +∞ for some _ > 0 ).

Remark that LG (Ω) is established as a Banach space endowed with the Luxemburg norm.

‖w‖G = inf
{
_ > 0 :

∫
Ω

G
(
w(x)
_

)
dx ≤ 1

}
.

Morevoer, 𝕃G (Ω) is a convex subset of LG (Ω), where LG (Ω) is dened as the linear hull of 𝕃G (Ω).
The closure in LG (Ω) of the set bounded measurable functions with compact support in Ω̄ is symbolized

as EG (Ω). The equality EG (Ω) = LG (Ω) holds if and only ifM satises the Δ2-condition, for all s or for s large
according to whetherΩ has innite measure or not. The dual of EG (Ω) can be identied with LḠ (Ω) by means
of the duality pairing

∫
Ω
w(x)v(x)dx, and the dual norm on LḠ (Ω) is equivalent to ‖ · ‖G .

In LG (Ω), we introduce the Orlicz norm as follows:

‖w‖ (G) = sup
∫
Ω

w(x)v(x)dx (2.2)

where the supremum is taken over all v ∈ EḠ (Ω) such that ‖v‖Ḡ ≤ 1. Interestingly, the norms | · |G and | · | (G)
are found to be equivalent. Indeed, it can be demonstrated that

‖w‖G ≤ ‖w‖ (G) ≤ 2‖w‖G for all w ∈ LG (Ω). (2.3)

Moreover, the Holder inequality holds true.∫
Ω

|w(x)v(x) |dx ≤ ‖w‖G ‖v‖ (G) for all w ∈ LG (Ω) and v ∈ LG (Ω) ,

and by (2.3) ∫
Ω

|w(x)v(x) |dx ≤ 2‖w‖G ‖v‖G for all w ∈ LG (Ω) and v ∈ LG (Ω).

In particular, whenΩ possesses nite measure, Holder’s inequality yields the continuous inclusion LG (Ω) ⊂
L1 (Ω).

A crucial inequality in LG (Ω) is as follows::∫
Ω

G (w(x))dx ≤ ‖w‖ (G) for all w ∈ LG (Ω) such that ‖w‖ (G) ≤ 1, (2.4)

Hence, we readily conclude∫
Ω

G
(
w(x)
‖w‖ (G)

)
dx ≤ 1 for all w ∈ LG (Ω)\{0}. (2.5)
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Denition 2.2. The sequence (wn) ⊂ LG (Ω) converges to w ∈ LG (Ω) under the modular convergence in
LG (Ω) if for some _ > 0, one has∫

Ω

G
(
wn (x) −w(x)

_

)
dx → 0 as n → ∞.

Modular convergence is weaker than convergence in the norm of LG (Ω). Nonetheless, it suces for our
purposes. The following theorem indicates that modular convergence in LG implies the convergence in the
weak- ∗ topology 𝜎

(
LG , LḠ

)
.

Lemma 2.1. [15]
Let (wn) ⊂ LG (Ω) , w ∈ LG (Ω) and v ∈ LḠ (Ω) such that wn → u with respect to the modular convergence. Then

1. wnv → uv strongly in L1 (Ω). In particular,
∫
Ω

wnv →
∫
Ω

wv.

2. Furthermore, if (vn) ⊂ LG (Ω) is such that vn → v with respect to the modular convergence, then wnvn → wv
strongly in L1 (Ω).

Anisotropic Orlicz-Sobolev spaces.

LetΩ be an open subset ofℝd , andGi be anN-function for each i = 1, . . . , d. Wewrite G, = (G1 , . . . ,Gd) , G, =(
Ḡ1 , . . . , Ḡd ).

The anisotropic Orlicz space LG, (Ω) (respectively, EG, (Ω) ) is dened by

LG, (Ω) =
d∏
i=1

LGi (Ω) (respectively, EG, (Ω) =
d∏
i=1

EGi (Ω)
)
,

endowed with the norm

‖w‖ =
d∑︁
i=1

‖wi ‖G1 , (2.6)

In order to introduce the anisotropic Orlicz-Sobolev spaces, it would be pertinent to dene the function

G0 (s) = min
1≤i≤d

Gi (s). (2.7)

Remark 2.1. We can easily verify that:

1. The functionG0 is an N-function.

2. The embedding LGi (Ω) ↩→ LG0 (Ω) is continuous for each i ∈ {1, . . . , d}.

We dene the anisotropic Orlicz-Sobolev spaces as follows:

W 1LG, (Ω) =
{
w ∈ LG0 (Ω) : 𝜕iw ∈ LGi (Ω) , i = 1, . . . , d

}
,

W 1EG, (Ω) =
{
w ∈ EG0 (Ω) : 𝜕iw ∈ EGi (Ω) , i = 1, . . . , d

}
,

These spaces are Banach spaces under the norm

‖w‖1,G, = ‖w‖G0 +
d∑︁
i=1

‖𝜕i𝜐‖Gi (2.8)
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Both spaces,W 1LG, (Ω) andW
1EG, (Ω), can be identied as subspaces of the product space Π = LG0 (Ω) ×

LG, (Ω). Then, the predual space of Π, Π̂, is Π̂ = EM̄0
(Ω) × EG, (Ω). We will use the weak-* topology 𝜎 (Π, Π̂).

Let D(Ω) be the space of functions in C∞ (Ω) with compact support in Ω. The spaceW 1
0 EG, (Ω) is dened as

the (norm) closure of the space D(Ω) inW 1EG, (Ω), and the spaceW
1
0 LG, (Ω) as the 𝜎 (Π, Π̂)-closure of D(Ω)

inW 1LG, (Ω).

Lemma 2.2. [25] Let Ω be a bounded and open set in ℝd . Assume that mi (t) ≥ t for all t ≥ 0 and all i = 1, . . . , d.
Then the following continuous embeddings hold for i = 1, . . . , d :

LMi (Ω) ↩→ L2 (Ω) ↩→ LM̄i
(Ω).

In particular,W 1
0 LG, (Ω) ↩→ H1

0 (Ω) and H
−1 (Ω) ↩→W −1LG, (Ω).

Remark 1. Assume that, for each i = 1, . . . , d, one has mi (t) ≥ t for all t ≥ 0. Then∫
Ω

v2 dx ≤ 2
∫
Ω

Mi (v)dx , for all v ∈ 𝕃Gi (Ω).

Theorem 2.3. [27] Let Ω ⊂ ℝd be an open and bounded set with locally Lipschitz boundary. Then the embedding
W 1LG (Ω) ↩→ EG (Ω) is compact. Furthermore, the compact imbeddingW 1

0 LG (Ω) ↩→ EG (Ω) holds without the locally
Lipschitz boundary assumption.

Corollary 2.4. Let Ω be an open and bounded set in ℝd andG0 the N-function dened in (2.7) . Then, the embedding
W 1
0 LG, (Ω) ↩→ EG0 (Ω) is compact. Poincaré’s inequality inW 1

0 LG, (Ω) also holds.

Lemma 2.5. [15] Let Ω ⊂ ℝd be an open and bounded set. Then, there exist constants ^0 and ^1 = ^1 (Ω) such that∫
Ω

G0 (adx ≤ ^0

d∑︁
i=1

∫
Ω

Gi (^1𝜕ai ) dx for all a ∈W 1
0 LG, (Ω).

Corollary 2.6. The seminorm a ∈ W 1LG, (Ω) ↦→ ∑d
i=1 ‖𝜕i a ‖Gi is a norm inW 1

0 LG, (Ω) and it is equivalent to the
norm ‖ · ‖1,G, given in (2.8) .

Since the elements of the spaceW 1
0 LG, (Ω) have been dened as the weak-* limit of convergent sequences

in D(Ω), the following result states that, for certain domains Ω, D(Ω) is ’dense’ inW 1
0 LG, (Ω) with respect to

the modular convergence as well.

Denition 2.3. A bounded domain Ω ⊂ ℝd is said to satisfy the segment property, if there exist a locally nite
open covering {Ui } of 𝜕Ω and corresponding vectors {yi } ⊂ ℝd such that for all x ∈ Ω̄ ∩Ui and any ` ∈ (0, 1)
one has x + `yi ∈ Ω.

Lemma 2.7. Let Ω ⊂ ℝd be an open and bounded set satisfying the segment property and a ∈W 1
0 LG, (Ω). Then there

exists a sequence (an) ⊂ D(Ω) such that an → u with respect to the modular convergence inW 1LG, (Ω); that is, there
exists _ > 0 such that ∫

Ω

G0 ((an − a) /_ ) +
d∑︁
i=1

∫
Ω

Mi ((𝜕i an − 𝜕i a) /_ ) → 0 as n → ∞.

The proof of the above lemma is a straightforward adaptation of [[16], Theorem 4] for isotropic Orlicz-
Sobolev spaces. Finally, we introduce the following dual spaces

Theorem 2.8. [27] Let Ω ⊂ ℝd be an open and bounded set with locally Lipschitz boundary. Then the embedding
W 1LG (Ω) ↩→ EG (Ω) is compact. Furthermore, the compact imbeddingW 1

0 LG (Ω) ↩→ EG (Ω) holds without the locally
Lipschitz boundary assumption.
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Corollary 2.9. Let Ω be an open and bounded set in ℝd andG0 the N-function dened in (2.7) . Then, the embedding
W 1
0 LG, (Ω) ↩→ EG0 (Ω) is compact. Poincaré’s inequality inW 1

0 LG, (Ω) also holds.

[15] Let Ω ⊂ ℝd be an open and bounded set. Then, there exist constants ^0 and ^1 = ^1 (Ω) such that∫
Ω

G0 (u)dx ≤ ^0

d∑︁
i=1

∫
Ω

Mi (^1𝜕ai ) dx for all a ∈W 1
0 LG, (Ω).

Corollary 2.10.

Corollary 2.10. The seminorm a ∈W 1LG, (Ω) ↦→
∑d
i=1 ‖𝜕i a ‖Mi

is a norm inW 1
0 LG, (Ω) and it is equivalent to the

norm ‖ · ‖1,G, given in (2.8) .

Since the elements of the spaceW 1
0 LG, (Ω) have been dened as the weak-* limit of convergent sequences

in D(Ω), the following result states that, for certain domains Ω, D(Ω) is ’dense’ inW 1
0 LG, (Ω) with respect to

the modular convergence as well.

Denition 2.4. A bounded domain Ω ⊂ ℝd is said to satisfy the segment property, if there exist a locally nite
open covering {Ui } of 𝜕Ω and corresponding vectors {yi } ⊂ ℝd such that for all x ∈ Ω̄ ∩Ui and any ` ∈ (0, 1)
one has x + `yi ∈ Ω.

Lemma 2.11. Let Ω ⊂ ℝd be an open and bounded set satisfying the segment property and a ∈ W 1
0 LG, (Ω). Then

there exists a sequence (an) ⊂ D(Ω) such that an → u with respect to the modular convergence inW 1LG, (Ω); that is,
there exists _ > 0 such that∫

Ω

G0 ((an − a) /_ ) +
d∑︁
i=1

∫
Ω

Gi ((𝜕i an − 𝜕i a) /_ ) → 0 as n → ∞.

The proof of the above lemma is a straightforward adaptation of [[16], Theorem 4] for isotropic Orlicz-
Sobolev spaces. Finally, we introduce the following dual spaces

W −1LG, (Ω) =
{
f ∈ D′(Ω) : f =

d∑︁
i=1

𝜕i fi with fi ∈ LGi (Ω) , for all i , 1 ≤ i ≤ d
}

W −1EG,
(Ω) =

{
f ∈ D′(Ω) : f =

d∑︁
i=1

𝜕i fi with fi ∈ EM̄i
(Ω) , for all i , 1 ≤ i ≤ d

}
These spaces are equipped by their usual quotient norms.

Assumptions and main results

Hypotheses

We now state the assumptions on the dierential operator in divergence form given by A :
◦
W

1
−→
G (Ω) →

W −1L−→
G
(Ω)

A(w) = −
N∑︁
i=1

𝜕i
(
ai (x , 𝜕iw)

)
(H1) For each i = 1, . . . , N the function ai : Ω × ℝ → ℝ, ai = ai (x , z) satises the Caratheodory conditions,

that it is measurable in x for each xed z ∈ ℝ and continuous in z for all x in Ω.
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(H2) There exist N-functionsGi , i = 1, . . . , N , a function ^ (.) ∈ EG∗
i
and positive constants k and 𝛾 such that

a.e. x in Ω, for all zi ∈ ℝ and for i = 1, . . . , N

|ai (x , z) | ≤ [

(
^ (x) +G∗

i
−1 (Gi (K1 |z |))

)
. (3.9)

(H3) For a.e. x ∈ Ω, for all z, z′ ∈ ℝN with z ≠ z′, z = (z1 , . . . , zN ), z′ = (z′1 , . . . , z
′
N ) we have

N∑︁
i=1

[ai (x , zi ) − ai (x , z′i )] (zi − z
′
i ) ≥ 0 (3.10)

(H4) There exists w0 > 0 such that a.e. x in Ω, for all (z1 , . . . , zN ) ∈ ℝN we have

N∑︁
i=1

ai (x , zi )zi ≥ 𝛼

N∑︁
i=1

Gi
( zi
w0

)
(3.11)

(H5) For each i = 1, . . . , N the function Φi : Ω × ℝ → ℝ, is a Carathéodory function which satises the
following growth condition for a.e. x ∈ Ω and for all s ∈ ℝ,

|Φi (x , s) | ≤ 𝛾 (x)B∗−1 (B( 𝛽 |s |)); for each i = 1, . . . , N (3.12)

where B ≺≺ G0 and 𝛾 ∈ L∞ (Ω).

Consider the following problem:


A(w) −

N∑
i=1

𝜕i (Φi (x , w)) = f in Ω

w = 0 on 𝜕Ω

(3.13)

Denition of an entropy solution

Denition 3.5. Ameasurable function w : Ω → ℝ is called entropy solution of (3.13) if the following condi-
tions holds:

(C1) Tk (w) ∈
◦
W

1
−→
G (Ω) and ai (x , 𝜕iw) ∈ LG∗

i
(Ω), for i = 1, ..., N ;

(C2)
N∑︁
i=1

∫
Ω

ai (x , 𝜕iw))𝜕iTk (w − 𝜐) dx +
N∑︁
i=1

∫
Ω

Φi (x , w)𝜕iTk (w − 𝜐) dx ≤
∫
Ω

fTk (w − 𝜐) dx

for every 𝜐 ∈
◦
W

1
−→
G (Ω) ∩ L∞ (Ω), and for every k > 0.

Lemma 3.12. Let u be a measurable function such thatTk (w) belongs to
◦
W

1
−→
G (Ω) for every k > 0. Then

N∑︁
i=1

∫
Ω

ai (x , 𝜕i𝜐)𝜕iTk (w − 𝜐) dx ≤
∫
Ω

fTk (w − 𝜐) dx −
N∑︁
i=1

∫
Ω

Φi (x , w)𝜕iTk (w − 𝜐) dx (3.14)

is equivalent to

N∑︁
i=1

∫
Ω

ai (x , 𝜕iw)𝜕iTk (w − 𝜐) dx =
∫
Ω

fTk (w − 𝜐) dx −
N∑︁
i=1

∫
Ω

Φi (x , w)𝜕iTk (w − 𝜐) dx (3.15)

for every 𝜐 in
◦
W

1
−→
G ∩L∞ (Ω), and for every k > 0.
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Proof. Proof of (3.15) ⇒ (3.14) : Let k > 0 and u be a measurable function such thatTk (w) belongs to
◦
W

1
−→
G

(Ω), where 𝜐 in
◦
W

1
−→
G (Ω)∩L∞ (Ω) and assume (3.15). By adding and subtracting the term

N∑︁
i=1

∫
Ω

ai (x , 𝜕i𝜐) 𝜕iTk (w − 𝜐) dx,

we obtain

N∑︁
i=1

∫
Ω

(ai (x , 𝜕iw) − ai (x , 𝜕i𝜐)) 𝜕iTk (w − 𝜐) dx =
∫
Ω

fTk (w − 𝜐) dx

−
N∑︁
i=1

∫
Ω

Φi (x , w)𝜕iTk (w − 𝜐) dx −
N∑︁
i=1

∫
Ω

ai (x , 𝜕i𝜐)𝜕iTk (w − 𝜐) dx.

From (3.10), we get:

N∑︁
i=1

∫
Ω

ai (x , 𝜕i𝜐)𝜕iTk (w − 𝜐)dx ≤
∫
Ω

fTk (w − 𝜐)dx −
N∑︁
i=1

∫
Ω

Φi (x , w)𝜕iTk (w − 𝜐)dx.

Proof of (3.14) ⇒ (3.15) : Let h and k be positive real numbers, and let _0 ∈ [−1, 1]. For 𝜐 in
◦
W

1
−→
G

(Ω) ∩ L∞ (Ω), we take 𝜙 =Th (u − _0Tk (w − 𝜐)) as a test function in (3.14), yielding

I1 (h, k) + I2 (h, k) ≤ I3 (h, k) (3.16)

with 

I1 (h, k) =
N∑︁
i=1

∫
Ω

ai [x , 𝜕iTh (w − _0Tk (w − 𝜐))] 𝜕iTk (w −Th (w − _0Tk (w − 𝜐))) dx;

I2 (h, k) =
N∑︁
i=1

∫
Ω

Φi (x , w)𝜕iTk (w −Th (w − _0Tk (w − 𝜐))) dx;

and

I3 (h, k) =
∫
Ω

fTk (w −Th (w − _0Tk (w − 𝜐)))dx.

Put

E1 (h, k) = {x ∈ Ω; |w −Th (w − _0Tk (w − 𝜐)) | ≤ k} ,

and

E2 (h, k) = {x ∈ Ω; | (w − _0Tk (w − 𝜐)) | ≤ h} .

Then we obtain

I1 (h, k) =
N∑︁
i=1

∫
E1
ai [x , 𝜕iTh (w − _0Tk (w − 𝜐))] 𝜕iTk (w −Th (w − _0Tk (w − 𝜐))) dx

+
N∑︁
i=1

∫
EC1

ai [x , 𝜕iTh (w − _0Tk (w − 𝜐))] 𝜕iTk (w −Th (w − _0Tk (w − 𝜐))) dx.

Since 𝜕iTk (w −Th (w − _0Tk (w − 𝜐)) = 0 in EC1 , we have

N∑︁
i=1

∫
EC1

ai [x , 𝜕iTh (w − _0Tk (w − 𝜐))] 𝜕iTk (w −Th (w − _0Tk (w − 𝜐))) dx = 0,

8



Asian J. Math. Appl. (2024) 2024:3

I1 (h, k) =
N∑︁
i=1

∫
E1
ai [x , 𝜕iTh (w − _0Tk (w − 𝜐))] 𝜕i (w −Th (w − _0Tk (w − 𝜐))) dx

=

N∑︁
i=1

∫
E1∩E2

ai [x , 𝜕iTh (w − _0Tk (w − 𝜐))] 𝜕i (w −Th (w − _0Tk (w − 𝜐))) dx

+
N∑︁
i=1

∫
E1∩EC2

ai [x , 𝜕iTh (w − _0Tk (w − 𝜐))] 𝜕i (w −Th (w − _0Tk (w − 𝜐))) dx

Since 𝜕iTh (w − _0Tk (w − 𝜐)) = 0 on EC2 and 𝜕i (w −Th (w − _0Tk (w − 𝜐))) = _0𝜕i (Tk (w − 𝜐)) on E2, we
obtain

N∑︁
i=1

∫
E1∩EC2

ai [x , 𝜕iTh (w − _0Tk (w − 𝜐))] 𝜕i (w −Th (w − _0Tk (w − 𝜐))) dx = 0,

and

I1 (h, k) = _0

N∑︁
i=1

∫
E1∩E2

ai [x , 𝜕iTh (w − _0Tk (w − 𝜐))] 𝜕i (Tk (w − 𝜐)) dx.

Letting h → +∞ and |\ | ≤ 1, we have E1 ∩ E2 → Ω.
By using the Lebesgue theorem, we get

lim
h→+∞

I1 (h, k) = _0

N∑︁
i=1

∫
Ω

ai [x , 𝜕i (w − _0Tk (w − 𝜐))] 𝜕i (Tk (w − 𝜐)) dx. (3.17)

Using the same techniques, we show that

lim
h→+∞

I2 (h, k) = _0

N∑︁
i=1

∫
Ω

Φi (x , w) 𝜕i (Tk (w − 𝜐)) dx (3.18)

and
lim
h→+∞

I3 (h, k) = _0

∫
Ω

f (x)Tk (w − 𝜐)dx. (3.19)

From (3.16)-(3.19), and passing to the limit, we get

_0

N∑︁
i=1

∫
Ω

ai [x , 𝜕i (w − _0Tk (w − 𝜐))] 𝜕i (Tk (w − 𝜐)) dx

≤ _0

[
N∑︁
i=1

∫
Ω

Φi (x , w) 𝜕i (Tk (w − 𝜐)) dx +
∫
Ω

f (x)Tk (w − 𝜐)dx
]

For _0 > 0 and letting _0 → 0, we obtain

N∑︁
i=1

∫
Ω

ai (x , 𝜕iw) 𝜕i (Tk (w − 𝜐)) dx

≤
N∑︁
i=1

∫
Ω

Φi (x , w) 𝜕i (Tk (w − 𝜐)) dx +
∫
Ω

f (x)Tk (w − 𝜐)dx

(3.20)

Choosing _0 < 0 and letting _0 tend to zero, we obtain

N∑︁
i=1

∫
Ω

ai (x , 𝜕iw) 𝜕i (Tk (w − 𝜐)) dx

≥
N∑︁
i=1

∫
Ω

Φi (x , w) 𝜕i (Tk (w − 𝜐)) dx +
∫
Ω

f (x)Tk (w − 𝜐)dx

(3.21)

9
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Combining (3.20) and (3.21), we conclude

N∑︁
i=1

∫
Ω

ai (x , 𝜕iw) 𝜕i (Tk (w − 𝜐)) dx

=

N∑︁
i=1

∫
Ω

Φi (x , w) 𝜕i (Tk (w − 𝜐)) dx +
∫
Ω

f (x)Tk (w − 𝜐)dx

(3.22)

�

Existence results

Theorem 3.13. Let the hypotheses (H1)-(H5) hold, and let f be in L1 (Ω), then there exists an entropy solution w of
the problem (3.13).

Proof of Theorem 3.13

• Approximate problem and a priori estimate:
Let ( fn)n∈ℕ such that fn → f in L1 (Ω) and | fn | ≤ | f |. We consider the problem

−
N∑
i=1

𝜕i (ai (x , 𝜕iwn)) −
N∑
i=1

𝜕i (Φi ,n (x , wn)) = fn in Ω

wn = 0 on 𝜕Ω

(4.23)

with Φi ,n (x , s) = Φi (x ,Tn (s)). We dene the operator 𝔹n :
◦
W

1
−→
G (Ω) →W −1L−→

G
(Ω) by

𝔹n (wn) =
N∑︁
i=1

𝜕i (ai (x , 𝜕iwn)) +
N∑︁
i=1

𝜕i
(
Φi ,n (x , wn)

)
.

We prove that bi ,n (x , wn , ∇wn) = ai (x , 𝜕iwn) + Φi ,n (x , wn) satises the assumptions (A1), (A2), (A3), and
(A4) mentioned in [17]. From the assumptions (3.9), (3.10), (3.11), and (3.12), it’s quite easy to see that
bn = (bi ,n (x , wn , ∇wn))i satises (A1), (A2), and (A3). It remains to show (A4).

Let wn ∈
◦
W

1
−→
G (Ω), using (3.12) and Young’s inequality, we get����� N∑︁

i=1

Φi ,n (x , wn)𝜕iwn

����� ≤ 𝛼

2
G0

(
2
𝛼

���𝛾 (x)B∗−1B( 𝛽 |Tn (wn) |)
���)

+ 𝛼

2

N∑︁
i=1

G0 ( |𝜕iwn |) ,

(4.24)

which implies ����� N∑︁
i=1

Φi ,n (x , wn)𝜕iwn

����� ≤ Cn (x) + 𝛼

2

N∑︁
i=1

G0 ( |𝜕iwn |) , (4.25)

where

Cn (x) =
𝛼

2
G∗
0

[
2
𝛼
|𝛾 (x) | × B∗−1B(n 𝛽 )

]
.

Thus, we obtain

N∑︁
i=1

Φi ,n (x , wn)𝜕iwn ≥ −Cn (x) −
𝛼

2

N∑︁
i=1

G0 (|𝜕iwn |) . (4.26)

10
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From (3.11) and (4.26), we deduce

N∑︁
i=1

[
ai (x , 𝜕iwn) +Φi ,n (x , wn)

]
𝜕iwn ≥ −Cn (x) +

𝛼

2

N∑︁
i=1

G0 ( |𝜕iwn |) , (4.27)

then the hypothesis (A4) in [17] is veried. Consequently, the approximate problem (4.23) admits a weak

solution wn ∈
◦
W

1
−→
G (Ω).

Lemma 4.14. Assume that the hypotheses (3.9)-(3.12) hold true, and let wn be a solution of the approximate problem
(4.23). Then we have

a) For k > 0,
N∑︁
i=1

∫
Ω

Gi

(
𝜕iTk (wn)

`0

)
≤ Ck ,

where Ck is a positive constant independent of n.

b) limk→+∞ mes {x ∈ Ω ; |wn | > k} = 0.

Proof. Show a):We takeTk (wn) as a test function in (4.23), we get

N∑︁
i=1

∫
Ω

ai (x , 𝜕iwn)𝜕iTk (wn)dx +
N∑︁
i=1

∫
Ω

Φi ,n (x , wn)𝜕iTk (wn)dx =
∫
Ω

fnTk (wn)dx

which implies that,

N∑︁
i=1

∫
Ω

ai (x , 𝜕iTk (wn))𝜕iTk (wn)dx +
N∑︁
i=1

∫
Ω

Φi (x ,Tk (wn))𝜕iTk (wn)dx =
∫
Ω

fnTk (wn)dx (4.28)

While B ≺≺ G0, we have, for all Y > 0, there exists a constant cY such that

B(t) ≤ G0 (Yt) + cY , ∀t ≥ 0. (4.29)

Using the Poincaré inequality, there exist 𝛿p0 and cp0 two strictly positive constants such that∫
Ω

G0
(
𝛿p0 |𝜐 |

)
dx ≤

∫
Ω

cp0G0 ( |𝜕i𝜐 |) dx ∀𝜐 ∈
◦
W

1
−→
G (Ω). (4.30)

From (4.30) and (4.29), we get

N∑︁
i=1

∫
Ω

Φi (x ,Tk (wn))𝜕iTk (wn)dx ≤
N∑︁
i=1

∫
Ω

|𝛾 (x) |B∗−1B( 𝛽 |Tk (wn) |) |𝜕iTk (wn) |dx

≤
N∑︁
i=1

∫
Ω

|𝛾 (x) |B∗−1G0 ((Y 𝛽 |Tk (wn) |) + cY) |𝜕iTk (wn) |dx

≤
N∑︁
i=1

∫
Ω

|𝛾 (x) | [G0 (Y 𝛽 |Tk (wn) |) + cY) + B( |𝜕iTk (wn) |)] dx

≤
N∑︁
i=1

∫
Ω

|𝛾 (x) |
[
cp0G0 (

Y 𝛽

𝛿p0
|𝜕iTk (wn) |) +G0 (Y |𝜕iTk (wn) |) + 2cY

]
dx ,

(4.31)

11
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According to (3.11), (4.28), and (4.31), for Y =
𝛼_0𝛿p

4(1+𝛼) (1+cp0 ) (1+𝛿p0 ) (1+`0) (1+𝛽 ) (1+| |𝛾 | |∞)
, we get

(
𝛼
2

) ∑N
i=1

∫
Ω
Gi

(
|𝜕iTk (wn) |

`0

)
dx ≤ d | |𝛾 | |∞ (2cYmes(Ω)) + k | | f | |1 , (4.32)

hence

∑N
i=1

∫
Ω
Gi

(
|𝜕iTk (wn) |

`0

)
dx ≤ Ck , (4.33)

where Ck =
(
2d | |𝛾 | |∞ (2cYmes(Ω))+2k | | f | |1

𝛼

)
.

Show b): Using the Poincaré inequality (4.30), we get

G0
(
𝛿p0 k
`0

)
meas ({|wn | > k}) =

∫
{ |wn |>k }

G0

(
𝛿p0 |Tk (wn) |

_0

)
dx

≤
∫
Ω

cp0G0

(
|𝜕iTk (wn) |

`0

)
dx

≤
N∑︁
i=1

∫
Ω

Gi

(
|𝜕iTk (wn) |

`0

)
dx ≤ Ck .

(4.34)

This implies that

meas ({|wn | > k}) ≤ Ck

G0

(
𝛿p0 k
`0

) . (4.35)

By passing to the limit we get

lim
k→+∞

meas ({|wn | > k}) = lim
k→+∞

Ck
G0

(
𝛿pk
`0

) = 0. (4.36)

�

For every xed ` > 0 and every real positive k, we have

meas({ |wp −wq | > `}) ≤ meas({|wp | > k}) +meas({|wq | > k})
+meas({ |Tk (wp) −Tk (wq) | > `}). (4.37)

Given that (Tk (wn))n is bounded in
◦
W

1
−→
G (Ω) for every k > 0, there exists a certain bk ∈

◦
W

1
−→
G (Ω) such that

Tk (wn) ⇀ bk weakly in
◦
W

1
−→
G (Ω). (4.38)

Hence, we can conclude that (Tk (wn))n forms a Cauchy sequence in measure in Ω.
Then for all 𝜖 > 0, Using (4.37) and Lemma 4.14, there exists N0 (`, 𝜖 ) > 0 such that

meas({ |wp −wq | > `}) ≤ 𝜖 , for all p, q ≥ N0 ((`, 𝜖 )) , (4.39)

consequently (wn)n is a Cauchy sequence in measure in Ω. It follows that there exists a subsequence denoted
by (wn)n which converges almost everywhere to some u. Then

Tk (wn) ⇀Tk (w) weakly in
◦
W

1
−→
G (Ω) , (4.40)

which implies that
bk =Tk (w). (4.41)

•Modular convergence of (Φi (x ,Tk (wn)))n :

12
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Lemma 4.15. Let wn be a solution of the approximate problem (4.23). Then for almost every x in Ω, the sequence
(Φi (x ,Tk (wn)))n converges to Φi (x ,Tk (w)) with respect to the modular convergence in LB∗ (Ω).
Proof. Let us show that there exists ` > 0 such that∫

Ω

B∗
(
|Φi (x ,Tk (wn)) −Φi (x ,Tk (w)) |

`

)
dx → 0 as n → ∞.

First of all, the sequence (Tk (wn)) converges nearly everywhere toTk (w), and B∗ (0) = 0. Since B∗ is a convex
continuous function, and 𝜐 is a Carathéodory function, then

B∗
(
|Φi (x ,Tk (wn)) −Φi (x ,Tk (w)) |

`

)
→ 0 a.e. as n → ∞.

On the other hand, we have

|Φi (x ,Tk (wn)) −Φi (x ,Tk (w)) | ≤ |Φi (x ,Tk (wn)) | + |Φi (x ,Tk (w)) |
≤ 2| |𝛾 (x) | |∞B∗−1 (B( 𝛽 k))

so, choosing ` such that 2 | |𝛾 (x) | |∞
`

< 1 and using the convexity of B∗, we get

B∗
(
|Φi (x ,Tk (wn))−Φi (x ,Tk (w)) |

`

)
≤ B∗

(
2 | |𝛾 (x) | |∞B∗−1 (B ( 𝛽 k))

`

)
≤

(
2 | |𝛾 (x) | |∞

`

)
B( 𝛽 k) = gk (x).

Then, by Lebesgue’s dominated convergence theorem, we obtain∫
Ω

B∗
(
|Φi (x ,Tk (wn)) −Φi (x ,Tk (w)) |

`

)
dx → 0 as n → ∞,

�

•Minty’s inequality:

Lemma 4.16. Let wn be a solution of the approximate problem (4.23). Then for 𝜐 ∈
◦
W

1
−→
G (Ω) ∩L∞ (Ω), and for every

k > 0 we have:
N∑︁
i=1

∫
Ω

ai (x , 𝜕i𝜐)𝜕iTk (wn − 𝜐) dx ≤
∫
Ω

fnTk (wn − 𝜐) dx

−
N∑︁
i=1

∫
Ω

Φi (x , wn)𝜕iTk (wn − 𝜐) dx

(4.42)

Proof. Let 𝜐 ∈
◦
W

1
−→
G (Ω) ∩ L∞ (Ω), by takingTk (wn − 𝜐) as a test function in (4.23), we get

N∑︁
i=1

∫
Ω

ai (x , 𝜕iwn)𝜕iTk (wn − 𝜐) dx +
N∑︁
i=1

∫
Ω

Φi (x ,Tk (wn))𝜕iTk (wn − 𝜐) dx

=

∫
Ω

fnTk (wn − 𝜐))dx ,

by subtracting the term
N∑︁
i=1

∫
Ω

ai (x , 𝜕i𝜐)𝜕iTk (wn − 𝜐) dx , we obtain

N∑︁
i=1

∫
Ω

[ai (x , 𝜕iwn) − ai (x , 𝜕i𝜐)] 𝜕iTk (wn − 𝜐) dx

=

∫
Ω

fnTk (wn − 𝜐) dx −
N∑︁
i=1

∫
Ω

Φi (x , wn)𝜕iTk (wn − 𝜐) dx

−
N∑︁
i=1

∫
Ω

ai (x , 𝜕i𝜐)𝜕iTk (wn − 𝜐) dx.

13
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According to (3.10) and using the denition of truncation function, we may get

N∑︁
i=1

∫
Ω

[ai (x , 𝜕iwn) − ai (x , 𝜕i𝜐)] 𝜕iTk (wn − 𝜐) dx ≥ 0,

we deduce from the above that

N∑︁
i=1

∫
Ω

ai (x , 𝜕i𝜐)𝜕iTk (wn − 𝜐) dx ≤
∫
Ω

fTk (wn − 𝜐) dx −
N∑︁
i=1

∫
Ω

Φi (x , wn)𝜕iTk (wn − 𝜐) dx

�

• Passing to the limit:We shall prove that for 𝜐 ∈W 1
0 LGi (Ω) ∩ L

∞ (Ω), i = 0, ..., N , we have

N∑︁
i=1

∫
Ω

ai (x , 𝜕i𝜐)𝜕iTk (w − 𝜐) dx ≤
∫
Ω

fTk (w − 𝜐) dx

−
N∑︁
i=1

∫
Ω

Φi (x , w)𝜕iTk (w − 𝜐) dx.

LetM = k + ||𝜐 | |∞. From (4.14), we haveTM (wn) ⇀TG (w) weakly inW 1
0 LGi (Ω). Then we have

N∑︁
i=1

∫
Ω

ai (x , 𝜕i𝜐)𝜕iTk (wn − 𝜐) dx →
N∑︁
i=1

∫
Ω

ai (x , 𝜕i𝜐)𝜕iTk (w − 𝜐) dx. (4.43)

Again using the fact thatTk (wn − 𝜐) ⇀Tk (w − 𝜐) weakly inW 1
0 LGi (Ω) and that ((Φi (x ,Tk (wn)))n converges

to Φi (x ,Tk (w)) with respect to the modular convergence, then we obtain

N∑︁
i=1

∫
Ω

Φi (x ,Tk (wn)) 𝜕iTk (wn − 𝜐) dx →
N∑︁
i=1

∫
Ω

Φi (x ,Tk (w)) 𝜕iTk (w − 𝜐) dx. (4.44)

Since fn → f and Tk (wn − 𝜐) → Tk (w − 𝜐) almost everywhere in Ω then fnTk (wn − 𝜐) → fTk (w − 𝜐) almost
everywhere in Ω. On the other hand we have | fnTk (wn − 𝜐) | ≤ k f , so by using Vitali’s theorem, we obtain∫

Ω

fnTk (wn − 𝜐) dx →
∫
Ω

fTk (w − 𝜐) dx. (4.45)

From (4.43), (4.44), (4.45) and by passing to the limit in (4.42), we deduce

N∑︁
i=1

∫
Ω

ai (x , 𝜕i𝜐) 𝜕iTk (w − 𝜐) dx ≤
∫
Ω

fTk (w − 𝜐) dx

−
N∑︁
i=1

∫
Ω

Φi (x , w) 𝜕iTk (w − 𝜐) dx.

In view of Lemma 3.12, we conclude that w is an entropy solution of the problem (3.13). This achieves the
proof of Theorem 3.13.
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