ISSN: 23807-77438
www.scienceasia.asia

©2024 Science Asia

Asian J. Math. Appl. (2024) 2024:3

Nonlinear Elliptic Equations Under Weak Monotonicity

Conditions in Anisotropic Orlicz Space

Mohamed Mabdaoui!, Badr El Haji2 , Lakbir Essafi®

TFaculty Polydisciplinary Sidi benour, University Chouaib Doukkali, Morocco
2Department of Mathematics, Faculty of Sciences Tetouan, Abdelmalek Essaadi University, BP 2121,

Tetouan, Morocco
3Cadi Ayyad University, Polydisciplinary faculty, Modeling and Combinatorics Laboratory, Department of

Mathematics and Computer Science B.P. 4162, Safi, Morocco

Correspondence should be addressed to Badr El Haji: b.elhaji@uae.ac.ma

Email(s): mohamed.mabdaoui@gmail.com (Mabdaoui), b.elhaji@uae.ac.ma (Haji), lakbir.essafi@uca.ac.ma
(Essafi)

Abstract

In the present paper, we discuss the solvability of nonlinear elliptic problems in the setting anisotropic Orlicz
space, with the presence of a lower order term and a non polynomial growth which is described by an N—vplet
of N-functions not satisfying the Ag-condition.
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Introduction

In this work, we discuss the existence of an entropy solution for a strongly nonlinear elliptic problem with

Dirichlet boundary value conditions:

A(w) - 3 (@i, w) = f  inQ,
i=1

(1.1)
w=0 on 0Q
where:
e Qis a bounded subset of RY;
e The operator A(w) = - %1 i (a;(x, d;w)) is a Leray-Lions operator defined on a subset of Wole (Q)

where ¢ is an N—vyplet ofli\f-functions Orlicz;
e @ is a Carathéodory function which satisfies the growth condition;
¢ The second term [ € L1 (Q).
It is well known that anisotropic Orlicz spaces include many spaces as special cases, such as Lebesgue spaces,

weighted Lebesgue spaces, variable Lebesgue spaces, and Orlicz spaces; see [26]. Especially, in recent decades,
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variable exponent function spaces, such as Lebesgue, Sobolev spaces with a variable exponent, were introduced
in [11]. These spaces have several applications in various fields such as image restoration, electrorheological
fluids; (see, [12, 14, 21]).

The main contribution of this article is to deal with a class of problems for which the classical methods of
monotone operators and Lions [22] in the case Wol’P (2)) do not apply. The reason for this is that a(x, w, Vw)
does not need to satisfy the strict monotonicity condition, but only a condition of large monotonicity:

a(x,s,n) —alx,s,n)|(n —n') 20, forall 7,7 € RY, (n £7").

Our objective is to demonstrate the existence of entropy solutions for (1.1) under the weakest assumption
of large monotony, without relying on the convergence almost everywhere of the gradients of the approximate
equations, since this is impossible to prove in our framework. Our proof is based on a version of Minty’s lemma
(G. J. Minty [23]).

Other results for the existence of finite energy solutions can be found in [3-10]. These works contribute
to the understanding of finite energy solutions for various classes of nonlinear elliptic problems with different
assumptions and conditions.

The paper is organized as follows: In section , we introduce some basic definitions and properties in Orlicz-
Sobolev spaces and anisotropic Orlicz space as well as an abstract theorem and prepare some auxiliary results.
In Section , we give basic assumptions, and the definition of entropy solution is given as well as our main
theorem. Section is devoted to the proof of our main result.

Definitions and preliminary tools

Let’s initiate by revisiting a few definitions and properties associated with Orlicz spaces [1, 18]. Following this,
we proceed to introduce the concept of anisotropic Orlicz-Sobolev spaces.

N -functions:

In an Orlicz normed space, the fundamental concept revolves around the N function.

Definition 2.1. An N-function is defined as a mapping G : R — R that satisfies the following conditions:
i) G isconvexin R : G (As; + (1 = A)s9) < AG (s1) + (1 = )G (s9), forall 51,59 € R and forall 2 € [0, 1].
ii) G is an even function: G(s) = G(-s) forall s € R.

iii) G(0) =0 and G(s) > 0 forall s € R.
iv) ¢ Ge)

— 0ass — 0and — 400 as § — +00.

An N-function G is called to satisfy the Ag-condition for all s € R if, for some £k > 0,
G(2s) <kG(s) orallseR.

G is said to fulfill the Ag-condition for s large if there exist sy > 0 and £ > 0 such that
G(2s) < kG (s) forall s > sg.

Another way to define an N -function [18], is as a function M that can be represented as

G(s) = /()ISI m(o)do,

where m : R* — R*is a non-decreasing and right-continuous function, m(s) > 0 for all s > 0 and m(s) — +o0
as s — +oo.

For an N-function G, the conjugate is defined by
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G = )" m(o)de,
where m : Rt — R*is given by
m(t) = sup{s : m(s) < t}.
We have the Young’s inequality
lts| < G(t) +G(s) forallt, s € R.

Suppose Q represents an open set in R%, where d belongs to the set of natural numbers N. The Orlicz
class L (Q) (resp. the Orlicz space L (L) ) is characterized as the set of (equivalence classes of) real-valued

Lebesgue measurable functionswn Q such that
w(z)
G(w(x))dr < +c0  (resp. G — dx < +oo forsome 2 > 0).
Q Q

Remark that L (Q) is established as a Banach space endowed with the Luxemburg norm.

||w||G=inf{/l>0:/§2G(U$)dxﬁl}.

Morevoer, L () is a convex subset of Lg (), where L (Q) is defined as the linear hull of L ().

The closure in L; (Q) of the set bounded measurable functions with compact support in Q is symbolized
as E; (Q). The equality E¢ () = L (Q) holds if and only if M satisfies the Ag-condition, for all s or for s large
according to whether Q has infinite measure or not. The dual of Eg (€) can be identified with L () by means
of the duality pairing fg w(x)v(x)dx, and the dual norm on L (L) is equivalent to || - ||g.

In L (Q), we introduce the Orlicz norm as follows:

lwllc) = sup/gw(x)v(x)dx (2.2)

where the supremum is taken over all v € E¢(q) such that [|v||z < 1. Interestingly, the norms | - |G and | - |(G)
are found to be equivalent. Indeed, it can be demonstrated that

lwlle < llwll) < 2llwllc forallw € Lg(Q). (2.3)

Moreover, the Holder inequality holds true.
/ lw(z)o(x)|dx < |lwllgllvlle) forallw e Lg(Q)and v € L (Q),
Q

and by (2.3)
/ |w(x)v(x)|dx < 2||w|gllvllc  forallw € Lg(Q) and v € L;(Q).
Q
In particular, when Q possesses finite measure, Holder’s inequality yields the continuous inclusion L (Q) C

LY(Q).
A crucial inequality in Lg (Q) is as follows::

/G(w(x))dx <l|lwll@) forallw e L;(Q) such that ||w|) < 1, (2.4)
Q

Hence, we readily conclude

/G( w(2) )dx <1 forallw e Le(Q)\{0}. (2.5)
Q

llwll ()
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Definition 2.2. The sequence (w,) C Lg(Q) converges to w € Lg(Q) under the modular convergence in
L (Q) if for some A > 0, one has

/G(M)dﬂc—)() asn — oo.
Q

Modular convergence is weaker than convergence in the norm of L; (Q). Nonetheless, it suffices for our
purposes. The following theorem indicates that modular convergence in Lg implies the convergence in the

weak- * topology o (Lg, L¢).

Lemma 2.1. [15]
Let (w,) € Lg(Q),w € Lg(Q) andv € L;(Q) such that w, — u with respect to the modular convergence. Then

1. w,v — uv strongly in L' (Q). In particular, /w”v — /wv.
Q Q

2. Furthermore, if (v,) C L () is such that v, — v with respect to the modular convergence, then w,v, — wv
strongly in L' (Q).

Anisotropic Orlicz-Sobolev spaces.

Let Qbe an open subset of R?, and G; be an N-function foreachi = 1, ..., d. We write G = (G1, ..., Gy), 6 =
(Gr, s G,
The anisotropic Orlicz space L () (respectively, Ei () ) is defined by

d
LG(Q) = l—l Lg,(Q)  (respectively, EG(Q) = l_[EGf (Q)|,

d
i=1 i=1

endowed with the norm

d
kel = > loil, » 2.6)
i=1
In order to introduce the anisotropic Orlicz-Sobolev spaces, it would be pertinent to define the function
Go(s) = min G;(s). (2.7)
I<i<d
Remark 2.1. We can easily verify that:
1. The function Gy is an N -function.
2. The embedding L, () — Lg, () is continuous for eachi € {1, ..., d}.
We define the anisotropic Orlicz-Sobolev spaces as follows:
W'LG(Q) = {w e Ly (Q) : dw € Lg,(Q),i=1,...,d},
W'EG(Q) = {w € Eg,(Q) : w € E (Q),i=1,...,d},
These spaces are Banach spaces under the norm

d
lkelly, G = lelig, + ) Idvllg, 2.8)
i=1
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Both spaces, WlL() () and WIE(,(Q) can be identified as subspaces of the product space IT = Lg, (Q) X
LG(Q) Then, the predual space of T1, T1, is I = Ejp, () X EG(Q) We will use the weak-* topology o (11, TI).
Let D() be the space of functions in C* () with compact support in Q. The space WIEG(Q) is defined as
the (norm) closure of the space D(Q) in WlEG(Q), and the space WOILG(Q) as the o (I1, ) -closure of D(Q)
in WlLG(Q)

Lemma 2.2. [25] Let Q be a bounded and open set in RY. Assume that m;(t) > ¢ forallt > O andalli = 1, ..., d.
Then the following continuous embeddings hold fori =1, ...,d :

Ly, (Q) = L*(Q) — Ly (Q).
In particular, WolLG(Q) — H(} (Q) and H1(Q) — W_lLG(Q).

Remark 1. Assume that, foreachi =1, ..., d, one has m;(¢) >t forall t > 0. Then
/02 de <2 / M;(v)dzx, forallv e Lg, (Q).
Q Q

Theorem 2.8. [27] Let Q@ c R® be an open and bounded set with locally Lipschitz boundary. Then the embedding
WL (Q) — Eg(Q) is compact. Furthermore, the compact imbedding I/VO1 L (Q) — Eg(Q) holds without the locally
Lipschitz boundary assumption.

Corollary 2.4. Let Q be an open and bounded set in R and Gy the N -function defined in (2.7). Then, the embedding
/4 OILG(_Q) — Eg,(Q) is compact. Poincaré’s inequality in W, OILG(Q) also holds.

Lemma 2.5. [15] Let @ c R be an open and bounded set. Then, there exist constants ko and k1 = k1 () such that
d
/G()(de < K()Z/Gi (k10v;)dx  forallv € WOILG(Q).
Q = Ja ’

Corollary 2.6. The seminorm v € WILG(Q) — Z;l:l 16:v |G, is @ norm in WOILG(Q) and it is equivalent to the
norm || - ||, i given in (2.8). ’ ’

Since the elements of the space WolLG(Q) have been defined as the weak-* limit of convergent sequences

in D(Q), the following result states that, for certain domains Q, D(Q) is ’dense’ in WOILG(Q) with respect to
the modular convergence as well. '

Definition 2.8. A bounded domain Q c R is said to satisfy the segment property, if there exist a locally finite
open covering {U;} of dQ and corresponding vectors {y;} ¢ R% such that forall z € QN U; and any u € (0, 1)
one has x + py; € Q.

Lemma 2.7. Let Q ¢ R? be an open and bounded set satisfying the segment property and v € W, OILG(Q). Then there

exists a sequence (v,) C D(Q) such that v, — u with respect to the modular convergence in W ILG(Q); that is, there
exists A > 0 such that

d
‘/QGO((Vn_V)//l)"';‘/gMi((@iVn—@'V)//l)—>O asn — co.

The proof of the above lemma is a straightforward adaptation of [[16], Theorem 4] for isotropic Orlicz-
Sobolev spaces. Finally, we introduce the following dual spaces

Theorem 2.8. [27] Let @ c R be an open and bounded set with locally Lipschitz boundary. Then the embedding
WLG(Q) — Eg(Q) is compact. Furthermore, the compact imbedding I/Vol L (Q) — Eg(Q) holds without the locally
Lipschitz boundary assumption.
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Corollary 2.9. Let Q be an open and bounded set in R and Gy the N -function defined in (2.7). Then, the embedding
/4 OILG(Q) — Eg,(Q) is compact. Poincaré’s inequality in W, OILG(Q) also holds.

[15] Let Q c R? be an open and bounded set. Then, there exist constants kg and k1 = «1(€) such that

d
/ Go(u)dz < o Z / M; (k10v;)dz  forall v € WL (Q).
Q = Ja ’

Corollary 2.10.

Corollary 2.10. The seminorm v € W 1LG(Q) — Z;’lzl 10; vl is @ norm in WOILG(Q) and it is equivalent to the
norm || - ||,  given in (2.8). ’ ’

Since the elements of the space I/VOILG(Q) have been defined as the weak-* limit of convergent sequences

in D(Q), the following result states that, for certain domains Q, D(Q) is ’dense’ in WOILG(Q) with respect to

the modular convergence as well.

Definition 2.4. A bounded domain Q ¢ R is said to satisfy the segment property, if there exist a locally finite
open covering {U;} of Q and corresponding vectors {y;} ¢ R such that for all z € Q N U; and any u € (0, 1)
one has x + uy; € Q.

Lemma 2.11. Let Q@ ¢ R? be an open and bounded set satisfying the segment property and v € W, OILG(Q). Then

there exists a sequence (v,) C D(Q) such that v, — u with respect to the modular convergence in W 1LG(Q); that is,
there exists 1 > 0 such that )

d
LGO((Vn_V)//l)"';'/g;Gi((aiVn_aiV)//l)—)0 asn — oo,

The proof of the above lemma is a straightforward adaptation of [[16], Theorem 4] for isotropic Orlicz-
Sobolev spaces. Finally, we introduce the following dual spaces

d
W_ILG(Q) = {f eD'(Q): [ = Zaifi with f; € Lg;(Q), foralli, 1 <i < d}

i=1
d
W_IEC(Q) = {f eD'(Q):f= Zﬁiﬁ with f; € Ey; (Q), foralli, 1 <i < d}
’ i=1
These spaces are equipped by their usual quotient norms.

Assumptions and main results

Hypotheses

ol
We now state the assumptions on the differential operator in divergence form given by 4 g (Q) —
W‘IL?,»(Q)

N
A(w) = - Z i (ai(x, dw))
i1

(H1) Foreachi =1,..., N the function ¢; : Q X R — R, a; = a;(x, 2) satisfies the Caratheodory conditions,
that it is measurable in x for each fixed z € R and continuous in z for all  in Q.
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(H2) There exist N-functions G;,7 =1, ..., N, afunction «(.) € EGi* and positive constants k£ and y such that
a.e.xinQ, forallz; e Randfori=1,...,N
jai e, 2)| < (k@) + G (Gi(Klz1))) 8.9)

(H38) Forae.z € Q, forallz,z’ e RY withz £z, 2= (21,...,2x), 2" = (2], ...,2)) we have

N

D laila, z) = ai(x, )] (zi — 2]) 2 0 (3.10)

i=1
(H4) There exists wy > 0 such that a.e. xin , forall (z1, ..., zy) € RY we have

iai(x, %)% = aiGi(;—;) (3.11)
i=1

i=1

(H5) For eachi = 1,..., N the function ®; : Q Xx R — R, is a Carathéodory function which satisfies the
following growth condition for a.e. x € Q and forall s € R,

|D;(x, 5)| < )/(x)B*_l(B(,B|s|)); foreachi=1,...,N 3.12)
where B << Gy and y € L®(Q).

Consider the following problem:

A(w) = 3 (@i, 0) = f in©Q
] (3.13)

w=0 on 0Q

Definition of an entropy solution

Definition 3.5. A measurable function w : Q — R is called entropy solution of (3.13) if the following condi-
tions holds:

ol
(C1) Ti(w) e (Q) and ¢;(x, dw) € Lg: (€), fori=1,...,N;
N N
(C2) Z/ a;(z, Ow))0; T} (w —v) dx + Z / D, (x, w)dT) (w—-v)dx < ‘/ka (w-v)dx
=1 70 PR Q

ol
for every v ez (Q) N L*(Q), and for every k > 0.

ol
Lemma 8.12. Let u be a measurable function such that T, (w) belongs to W (Q) for every k > 0. Then

& N
; /Q ai(x, v)o;T, (w—v)dx < /QfT/e (w-v)dr - ; /g; ®;(x, w)d;T) (w — v) dx (3.14)

is equivalent to

o N
; /Q a;(x, 0;w)0; Ty (w —v) dx = /QfT/e (w—v)dx - ; /Q ®; (2, w)3; T} (w —v)dx (8.15)

ol
Jor every v in 2 NL®(Q), and for every k > 0.
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ol
Proof. Proof of (3.15) = (3.14) : Let k > 0 and u be a measurable function such that 7} (w) belongs to ¢
° 1 A\“v
(Q), wherev in g (Q)NL* (L) and assume (3.15). By adding and subtracting the term Z / a; (x, ;v) 8T}, (w —v)dx,
=1 78

we obtain
N
[ (@it 00 - i, ) T, (w0 = vy di = [ T3 - w)
i=1 /¢ Q

A‘\“v )\v
- Z / D, (x, w)o T (w—v)dx - Z / a;(z, O;v)0; T, (w — v) dx.
i=1 /¢ i=1 /¢

From (3.10), we get:

N .
; /Q ai(x, 6;v)9Ti(w - v)dx < /Qka(w —v)dx - ; /Q @, (z, w) 0Ty (w — v)dx.

ol
Proof of (3.14) = (3.15) : Let & and & be positive real numbers, and let 19 € [-1,1]. For v in g

(Q) N L= (Q), we take ¢ = T, (u — 1oTy(w — v)) as a test function in (3.14), yielding

10k, ) + I (b B) < Iy(h, ) (3.16)
with
N
1) = Y [ ol 0T = AT =v)] 0T} (0 = Ty 0 = 0Tk =) e
i=1
N
) = Y [ @, 00T (0 =Ty - 0Th(w =) das
i=1
and
Bt ) = [ fTit0 =T = ATio = )
Put
Ei(h k) = (€ 9 hw - Tjw - ATi(w - v))] < B},
and

Eg(h, k) ={x € Q; [(w - 2T (w —v))| < h}.

Then we obtain

N
1) =), [ ol 0730 = ATieo = 0)] AT, (0 = Ty (w = (= ) da
i=1 Y4
N
+ 3 [ a0 - AaThtw = o)1 AT 0 = Ty = AuTh oo = ) d
i=1 YEy
Since 0,7} (w — Tj,(w — 2T} (w —v)) =0 in Ef, we have

N
> [ e e 0 = ATy = 0] 4T 0 = Ty = ATy = 0D e =0,
o1 YEY
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'/mu@nm—mnm—mu@m—nw—mnm—w»m
N
=3[ ke 0w = TG = )] = Ty = AT = ) d

+ / a; [z, 0T, (w = 20Ty (w — v))] 6; (w = Tj(w = AT} (w - v))) dx
E\NES

Since 6;T;(w — 19T (w — v)) = 0 on EQC and 9; (w — T (w — 1Ty (w —v))) = 190; (T} (w — v)) on Eg, we

obtain

N
Y[ e T - T = )] 6 0 - Tylw = TG - ) de =0,
i=1 JEINE]

and

N
Nk =0, [ aile, 0T = A0Ti(w = )] 8 (Th(w = v)) de.
i=1 Y E1NEe

Letting A — 400 and |6| < 1, we have E; N Eg — Q.
By using the Lebesgue theorem, we get

N

lim 7308 =20 Y, [ ai 2, 8w = A0Th w0 = 0))] 0 (T 0 = v)) d (3.17)

h—+c0 o1 Q

Using the same techniques, we show that

N
lim Io(h, k) = A Z / ®; (2, w) 0; (Ty(w — v)) dx (3.18)
h—+00 i1 Q
and
hlim Ig(h, k) = A9 / (@) Ty (w —v)dzx. 3.19)
—+400 Q

From (3.16)-(3.19), and passing to the limit, we get
N
10 [ e, aio = AT = )] 6 (TG - v) de
i=1 Y&

< Ao

N
Z/ @; (2, w) & (Ty(w - U))dx+/f(x)Tk(w - v)dxl
i=1 /@ Q

For 1¢ > 0 and letting 1o — 0, we obtain

A‘\“v
[ a0 6 (Tt - ) e
i=1 7€

v (3.20)
< Z/ ®; (x,w) 0; (Ty(w —v))dx + / (@) Ty (w — v)dx
=179 Q
Choosing 1 < 0 and letting A tend to zero, we obtain
N
> [ a0 6, (Tt - ) e
= Ja
= 3.21)

N
> i (x, w) 0 (T, (w — dx )T, (w — v)dx
>;L¢< )8, (Ty( w)+Lﬂ)u v)
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Combining (3.20) and (3.21), we conclude

N
Z/a,- (x, dw) ; (Ty(w — v)) dz
= (8.22)

N
) ; ‘/Q ®; (x,w0) 9; (Ti(w —v)) de + /Qf(x)Tk(w —v)dx

Existence results

Theorem 8.18. Let the hypotheses (H1)-(HS) hold, and let [ be in L' (Q), then there exists an entropy solution w of
the problem (8.13).

Proof of Theorem 3.13

e Approximate problem and a priori estimate:

Let (f)nen such that £, — f in L1(Q) and || < |f|. We consider the problem

N N

-2 0 (ai(x, azwn)) -2 ai(q)i,n(x, wn)) :ﬁz in Q
i=1 i=1

w, =0 on 0Q

(4.23)

ol
with @; , (x, s) = ®;(x, T,,(s)). We define the operator B, /¢ () — W_IL(—f(Q) by

N N
B, (w,) = Z 0; (a;(x, Oywy)) + Z 0; ((Di,n (x, wn)) .
i=1 i=1

We prove that b; ,, (x, w,, Vw,) = a;(x, diw,) + ®; ,(x, w,) satisfies the assumptions (A}), (Ag), (A3), and
(A4) mentioned in [17]. From the assumptions (3.9), (3.10), (3.11), and (3.12), it’s quite easy to see that
by = (bin(x, wy, Vwy,)); satisfies (A1), (Az2), and (Ag). It remains to show (Ay4).

1

Letw, e (), using (3.12) and Young’s inequality, we get

Z D; , (x, wy) 0wy,

i=1

< 560 (3 [ror BT, o |

(4.24)
a
52%@%0
which implies
jon (@, W) 30| < Cul@) + 3 Z Go ([6wa)) (4.25)
where 0
a . *—
Cuta) = 563 | 2y x5 B |.
a
Thus, we obtain
N 0 &
Zl ;0 (@, w)dhie, 2 =Cy(2) — 5 21] Go (1dren) (4.26)

10
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From (3.11) and (4.26), we deduce

1

N N
D laite, Gw) + @ (2, 0| G, > =Gy (@) + 5 Y Go (1) (4.27)
i=1 i=1

then the hypothesis (A4) in [17] is verified. Consequently, the approximate problem (4.23) admits a weak
1

solution wy, EI/IO/?;) (Q).

Lemma 4.14. Assume that the hypotheses (3.9)-(3.12) hold true, and let w, be a solution of the approximate problem
(4.23). Then we have

a) Fork > 0,
N
Z/Gz (@Tk(wn)) Sck,
o1 Y Mo

where Cy, is a positive constant independent of n.
b) limy_, o mes {x € Q; |w,| >k} = 0.

Proof. Show a): We take T}, (w,) as a test function in (4.23), we get
N N
Z / a;(z, 6iwn)aiTk(wn)dx + Z / q)i,n(xy wn)asz(wn)d-r = /fnrrk(wn)dx
i=1 79 i=1 79 Q
which implies that,

N N

Z / a;(x, 0;T; (wn))asz(wn)dI + Z / D, (I’ Tk(wn))asz(wn)dx = ‘/ﬁsz(wn)dI (4.28)

i=1 Y8 i=1 Y8 Q

While B << Gy, we have, for all € > 0, there exists a constant ¢, such that
B(t) < Gy(et) +cs, Vi=0. 4.29)

sing the Poincaré inequality, there exist and ¢,, two strictly positive constants such that
Using the P quality, tk t 85, and ¢, two strictly posit tant h that

ol
/GU (8plv]) dx < /CPUGO (|gv])dx  Yv e (Q). (4.30)
Q Q

From (4.30) and (4.29), we get

N N
> / ©; (2, Ty (w) i T (w)de < / |y (@)IB* B(BITi(w,) D10 Ty (w,) d
i=1 V¢ =179

A‘\/v
< Z;/QW(’CNB*1G0((8'B|Tk(wn)|)+Ca)|aiTk(w,,)|dx

IA

A‘\/‘v
> /Q [y @)1 [GoeBITi(wn)]) +.) + B8 Ti(w,)])| da
i=1

N
Wi |y<x)|[cp(]Go<§—ﬁ|aiTk<wn>|>+Go (el0/Tx(w,)]) + 2 | d,
i=1 Po

4.31)

11



Asian J. Math. Appl. (2024) 2024:3

adyoy ¢
) (T+00) (T+0) (1+8) (I 1) > V€ 8¢

According to (3.11), (4.28), and (4.31), for & = T(Ta) (1%,
0

()28, oG (Phel) de < dllylle (2eemes(Q)) + 411/, (4.32)
hence
N ;T (wy 9c
=Y oG () dr - <, (4.33)

where Cj = (2"”\7||m(26sm68<9)>+2k||f||1 )

a

Show b): Using the Poincaré inequality (4.30), we get

6‘”_”/( ae _ 6170|Tk (wn)l
G()( m )meds {|wn| > k}) = /{w,,|>k}GO (—/10 dx

< /CPUGO(laiTk(wn)l)dx

= o o (4.34)
< Z/Gi (M)dx < G
0 /e Ho
This implies that
meas ({kwa| > £}) < —7lor 4.35)
pE |
By passing to the limit we get
, N o G _ .
k1—1>r+I—loo meas ({|w,| > k}) = kl_lﬂo W%) =0. (4.36)
O
For every fixed y > 0 and every real positive £, we have
meas({ [w, —wy| > p}) < meas({|wy| > k}) + meas({|w,| > k}) 4.37)

+meas({ |Ti (wp) = Ty (wy)| > p}).
o1 ol
Given that (7} (w,)),, is bounded in 'z (Q) for every k > 0, there exists a certain & e/ () such that

o1
T (w,) — & weakly in g (Q). (4.38)

Hence, we can conclude that (7} (w,)), forms a Cauchy sequence in measure in Q.
Then for all € > 0, Using (4.37) and Lemma 4.14, there exists No(u, €) > 0 such that

meas({ lw, —w,| > u}) <€, forall p,q > No((, €)), (4.39)

consequently (w;), is a Cauchy sequence in measure in Q. It follows that there exists a subsequence denoted
by (w,), which converges almost everywhere to some u. Then

ol
Ty (w,) = T (w) weakly in 2 (Q), (4.40)

which implies that
& =T (w). (4.41)

e Modular convergence of (®;(x, T, (w,))),:

12
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Lemma 4.15. Let w, be a solution of the approximate problem (4.23). Then for almost every x in &, the sequence
(D; (x, Ty, (wy)))y converges to @; (x, Ty (w)) with respect to the modular convergence in Lpg~(€2).

Proof. Let us show that there exists u > 0 such that
/B* (|‘1>i(x, T (wn)) = @i(x, Th(w))]
Q H
First of all, the sequence (T} (w,)) converges nearly everywhere to T} (w), and B*(0) = 0. Since B* is a convex

)dx—>0 as nm — oo,

continuous function, and v is a Carathéodory function, then

B (Id)i(x, T (wn)) — @i(x, Ty (w))|
u

)—>0a.e.as n — oo.

On the other hand, we have
|©; (x, Ti(wn)) — @i (x, Th(w))| < |D;(x, Ty (wn))| + |P; (x, Ti(w))]
< 2|ly(@)llwB* " (B(Bk))

M < 1 and using the convexity of B*, we get

s0, choosing u such that

B* (ICDf(x,Tk(wn))*@(x,T}e(w))|) < B* (2I|7(1)|IMB*’1(B(51€)))

H H
2 o
< (Aol ) B(pk) = gi(a).
Then, by Lebesgue’s dominated convergence theorem, we obtain

/B* (Ifbi(x, Ti (w)) — iz, Ty (w))]
Q H

)dx—>0 as n — oo,

e Minty’s inequality:

ol
Lemma 4.16. Let w, be a solution of the approximate problem (4.23). Then for v el () NL®(Q), and for every
k > 0 we have:

N

>, [ it 000071 (o, - v do < [ 1T G0, - v de

— Q Q

= (4.42)

N
-3 [ @it 0)a o, - v)da
=1 7L
ol
Proof. Letv e (Q) N L®(Q), by taking T}, (w, — v) as a test function in (4.23), we get
N N
>, [ it 01000 Tk (o, =) de+ Y, [ @4 T, )AL (o, - v)da
i=1 Y i=1 Y
= /fnTk (wn - U))dl‘,
Q
N
by subtracting the term Z / a;(x, O;v)0; T} (w, — v) dx, we obtain
i=1 /¢
N
> [ laite,d10,) = e, 6] AT 0, — ) da
i=1 Y&
N
= /fnﬂ (wn - U) dx - Z / (I)i(x, wn)aiTk (wn - U) dx
Q — Ja
N
- Z/ ai(x: 6iv)aiTk (wn - U) de.
=1 7L

13
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According to (3.10) and using the definition of truncation function, we may get

N
> [ Laste, ) = e, )] 073 G, = v) >0,
i=1 /€

we deduce from the above that

N N
Z / ai(x: 3iv)0iTk (wn - U) dr < /ka (wn - U) dx — Z / qu(x, w,)0; Ty (wn - U) dx
-1 Y9 Q i1 YQ

i
e Passing to the limit: We shall prove that for v € I/I/olL(;l. (Q)NL*(Q),7=0,..., N, we have
N
Z/ a;(x, O;v)o; Ty (w—v)dx < /ka (w—-v)dx
i=1 7€ Q
N
- Z / @O, (z, w)d;T), (w—v)dzx.
i=1 /€9
Let M =k + ||v||eo. From (4.14), we have Ty (w,) — T (w) weakly in WOILQ. (). Then we have
N N
Z / a;i(x, 3:0)0: Ty (wy — v) dx — Z / ai(z, 3:v)8,Ty (w —v) dx. (4.43)
i=1 7€ i=1 /€

Again using the fact that T} (w, — v) = T} (w — v) weakly in WolLGi (Q) and that ((®; (x, T3 (w,))), converges
to @; (x, Ty (w)) with respect to the modular convergence, then we obtain

N N
Z / D, (z, Ty (wy)) 6T} (w, —v)dx — Z/ ®; (x, Ty (w)) T} (w — v) dz. (4.44)
i=1 Y i=1 Y

Since f, — f and T} (w, — v) — Tj(w — v) almost everywhere in Q then f, T} (w, — v) — fT}(w — v) almost
everywhere in Q. On the other hand we have |/, T} (w, — v)| < kf, so by using Vitali’s theorem, we obtain

/ﬁlTk (w, —v)dx — /ka (w —v)dx. (4.45)
Q Q

From (4.48), (4.44), (4.45) and by passing to the limit in (4.42), we deduce
)Nv
Z/ a; (x, 0v) 6Ty (w — v)dx < /ka (w—v)dzx
= Ja Q

_ N D; (x,w) 6;T) (w—v)dx.
Q
i-1

In view of Lemma 3.12, we conclude that w is an entropy solution of the problem (3.183). This achieves the
proof of Theorem 3.13.

References

[1] R. A. Adams, J. J. F. Fournier, Sobolev spaces, Elsevier, 2003.

[2] M. Ait Khellou, A. Benkirane, S.M. Douiri, An inequality of type Poincaré in Musielak spaces and appli-
cation to some non-linear elliptic problems with data, Complex Var. Ell. Equ. 60 (2015), 1217-1242.

14



Asian J. Math. Appl. (2024) 2024:3

[8] O. Azraibi, A. Bouzelmate, M. Bourahma, B. EL haji, M. Mekkour, On the some equations inequalities
in Musielak-Orlicz spaces with measure data, Rev. Colomb. Mat. 57 (2023), 128-154.

[4] O. Azraibi, B. EL Haji and M. Mekkour, Strongly nonlinear unilateral anisotropic elliptic problem with
L!'-data, Asia Math. 7 (2023), 1-20.

[6] O. Azraibi, B. El Haji, M. Mekkour, Entropy solution for nonlinear elliptic boundary value problem
having large monotonocity in Musielak-Orlicz-Sobolev spaces, Asia Pac. J. Math. 10 (2023), 7.

[6] O. Azraibi, B. EL haji, M. Mekkour, Nonlinear parabolic problem with lower order terms in Musielak-
Sobolev spaces without sign condition and with Measure data, Palestine J. Math. 11 (2022), 474-503.

[7]1 O. Azraibi, B. EL haji, M. Mekkour, On some nonlinear elliptic problems with large monotonocity in
Musielak—=Orlicz—Sobolev spaces, J. Math. Phys. Anal. Geom. 18 (2022), 1-18.

[8] O. Azraibi, B.EL haji, M. Mekkour, On some anisotropic unilateral elliptic problems with measure data,
Ann. Math. Comp. Sci. 23 (2024), 74-94.

[9] A. Benkirane, M. Bourahma, J. Bennouna, B. El Haji, Solvability of strongly nonlinear obstacle
parabolic problems in inhomogeneous Orlicz-Sobolev spaces, J. Math. Phys. Anal. Geom. 18 (2022),
463-487.

[10] L. Boccardo, Positive solutions for some quasilinear elliptic equations with natural growths, Atti Accad.

Naz. Lincei 11 (2000), 31-39.

[11] C. Cheng and J. Xu, Geometric properties of Banach space valued Bochner-Lebesgue spaces with vari-
able exponent, J. Math. Ineq. 7 (2013), 461-475.

[12] Y. Chen, S. Levine and R. Rao, Variable exponent, linear growth functionals in image restoration, SIAM
J- Appl. Math. 66 (2006), 1383-1406.

[13] A. Cianchi, A fully anisotropic Sobolev inequality, Pac. J. Math. 196 (2000), 283-94.

[14] L. Diening, P. Harjulehto, P. Hasto, M. Ruzuka, Lebesgue and Sobolev spaces with variable exponents,
Springer, Berlin, (2011).

[15] ].-P. Gossez, Nonlinear elliptic boundary value problems for equations with rapidly or slowly increasing
coeflicients, Trans. Amer. Math. Soc. 190 (1974), 163-205.

[16] J.-P. Gossez, Some approximation properties in Orlicz-Sobolev spaces, Stud. Math. 74 (1982), 17-24.

[17] J.-P. Gossez, V. Mustonen, Variational inequalities in Orlics-spaces, Nonlinear Anal. 11 (1987),
379-492.

[18] M.A. Krasnosel’skii, J.B. Rutickii, Convex functions and Orlicz spaces, Fizmatgiz, Moscow, 1958.

[19] A.G. Korolev, Embedding theorems for anisotropic Sobolev—Orlicz spaces, Vestn. Mosk. Univ. Seriya
1 Mat. Mekhanika. (1983), 32-37.

[20] J. Leray, J. L. Lions, Quelques résultats de visik sur les problemes elliptiques semilineaires par les meth-

odes de Minty et Browder, Bull. Soc. Math. France, 93 (1965), 97-107.

[21] F. Li, Z. Li and L. Pi, Variable exponent functionals in image restoration, Appl. Math. Comput. 216
(2010), 870-882.

[22] ]J.L. Lions, Quelques methodes de résolution des problemes aux limites non lineaire, Dunod et Gauthier
Villars, Paris, 1969.

15



Asian J. Math. Appl. (2024) 2024:3

[23] G.J. Minty, On a monotonicity method for the solution of non-linear equations in Banach spaces, Proc.

Nat. Acad. Sci. U.S.A. 50 (1963), 1038-1041.
[24] G.]J. Minty, Monotone (nonlinear) operators in Hilbert space, Duke Math. J. 29 (1962), 341-346.

[25] H. Moussa, F. Ortegon Gallego, M. Rhoudaf, Capacity solution to a nonlinear elliptic coupled system
in Orlicz-Sobolev spaces, Mediterranean J. Math. 17 (2020), 1-28.

[26] ]. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Mathematics, 1034, Springer, Berlin,
1983.

[27] M. Tienari, A degree theory for a class of mappings of monotone type in Orlicz-Sobolev spaces, Annales
Academiae scientiarum Fennicae: Mathematica Fennica, (1994), 1-68.

16



	Introduction
	Definitions and preliminary tools
	 N-functions:
	 Anisotropic Orlicz-Sobolev spaces.

	Assumptions and main results
	Hypotheses
	Definition of an entropy solution
	Existence results

	Proof of Theorem 3.13

