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Abstract
In probability theory and statistics, the analysis of continuous univariate distributions can be done by studying
their probability density functions and cumulative distribution functions. This article introduces a measure
that quanties the global divergence between these two probabilistic functions, focusing on distributions with
nite support. The aim of this measure is to highlight signicant dierences between distributions with smooth
probability density functions and those with abruptly varying probability density functions. It therefore helps to
classify distributions based on these aspects. Numerous examples, exact calculations and visualizations illustrate
the use of this measure, with a focus on unit distributions. It is also involved in several mathematical inequalities
that can be considered of independent interest.
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1 Introduction

In probability theory and statistics, the analysis of continuous univariate distributions is crucial to understanding
the behavior of random variables that model numerical measures. These distributions are characterized by
their probability density functions (PDFs) and cumulative distribution functions (CDFs). The PDF gives "the
likelihood" that a random variable will take a particular value, while the CDF gives the probability that the
random variable will be less than or equal to a particular value. Together, these functions provide a complete
description of the properties of the distribution. The general and technical details can be found in [1, 2].

In this article, we focus on a continuous univariate distribution with nite support, denoted as (a, b), where
a ∈ ℝ, b ∈ ℝ, and a < b. The corresponding CDF is denoted as F (x), and the corresponding PDF is denoted
as f (x). At this point, we recall that f (x) is an integrable function satisfying f (x) ≥ 0 for any x ∈ (a, b), and
f (x) = 0 for any x ∉ (a, b) and

∫ b
a f (t)dt = 1, and F (x) =

∫ x
a f (t)dt for any x ∈ (a, b), F (x) = 0 for any x ≤ a,

and F (x) = 1 for any x ≥ b. Furthermore, we assume that f (x) is continuous for x ∈ (a, b). In this classical
probability setting, we introduce the following real number:

D =

∫ b

a
|F (x) − f (x) |dx. (1)

So D is the distance between F (x) and f (x) in the 𝕃1 sense. It is well dened and can be computed using
standard tools from calculus and functional analysis. Its main purpose is to measure the global divergence
between the CDF and PDFof a distribution. In other words, it quanties howmuch the two functions related to
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the same distribution dier from each other. In this sense, D is a global intra-divergence distribution measure.
This dierence provides valuable information about the distribution in several ways:

• For the distributions where the PDF is smooth and monotonic (increasing or decreasing) at a slow rate,
onemight expect the dierence between F (x) and f (x) to be small, resulting in a smaller value ofD. Con-
versely, for distributions with sharp variations in the PDF, D may be larger, indicating a more signicant
deviation between the CDF and the PDF. This is particularly true for abrupt right-skewed distributions
with values concentrated in the interval (a, a + 𝜖 ) with relatively small 𝜖 . In this case, the peak associated
with f (x) is maximal, while F (x) is close to 0, which means that D can be maximal (equal to an identi-
able bound, as shown later). Also, distributions with thin tails or multimodal behavior may have larger
divergences between the CDF and the PDF, leading to higher values of D. Examples are given in Figure
1, where two dierent unit distributions, i.e., distributions with support (0, 1), are considered. In it, D
is represented by the coloured area between the CDF F (x) and the PDF f (x).
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Figure 1: Plots of the coloured area measures by D for (a) a smooth distribution with D ≈ 0.5700264 and (b)
a right-skewed thin-tailed distribution with D ≈ 1.843216

In this example, it is visually clear that the value ofD reects the abrupt change around 0 and the resulting
thin tail of the second distribution.

• When comparing several distributions,D can help to classify the similar and the dierent. More precisely,
by calculatingD for each candidate distribution and comparing their values, we can consider two families
of distributions: those that have abrupt variations in the PDF in the broad sense, characterized by high
values of D, and those that do not.

In addition, some mathematical facts about D are attractive. In particular, we can nd sharp lower and upper
bounds of D under mild assumptions on f (x) and F (x), which can help to establish an understable criterion.
We can also compute it for a wide range of distributions. Several concrete examples are given in this study.
We concentrate mainly on the unit distributions because they are particularly numerous and useful in modern
applications. See [3–18]. More specically, we consider mainly the following ones: the (0, 1)-truncated nor-
mal distribution, the power distribution, the transmuted uniform distribution over (0, 1), the (0, 1)-truncated
exponential distribution, the special exponential distribution, the (0, 1)-truncated sine distribution, the simple
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(0, 1)-truncated Lomax distribution, the (0, 1)-truncated tangent distribution, and the special inverse expo-
nential distribution. In addition to the main use of D, some technical inequalities involving the CDF, PDF and
D are established, which may be of independent interest.

The following sections structure the rest of the article: Section 2 focuses on some bounds and inequalities
satised by D. A possible distribution criterion is also discussed. Exact computations of D are given in Section
3. A conclusion is given in Section 4.

2 Properties

Here and after, the measure D is dened by Equation (1) . In this section, some properties of D are examined.
These are mainly inequalities involving D, which aim to determine its natural bounds, and to show how D
appears in dierent inequality settings.

2.1 Bounds and inequalities

The proposition below gives simple bounds on D, depending only on a and b.

Proposition 2.1. The following lower and upper bounds of D independent of the PDF and CDF are true:

ea−b ≤ D ≤ 1 + b − a.

Proof. For the upper bound, by applying the triangle inequality, and using F (x) ≤ 1 for any x ∈ (a, b) and∫ b
a f (x)dx = 1, we have

D =

∫ b

a
|F (x) − f (x) |dx ≤

∫ b

a
[|F (x) | + | f (x) |] dx =

∫ b

a
F (x)dx +

∫ b

a
f (x)dx

=

∫ b

a
F (x)dx + 1 ≤

∫ b

a
dx + 1 = 1 + b − a.

For the lower bound, by introducing the exponential function ex , and using standard dierentiation rules,
the Jensen inequality for the integral (applied with the basic convex function: the absolute value function),
F (a) = 0 and F (b) = 1, we obtain

D =

∫ b

a
|F (x) − f (x) |dx =

∫ b

a
ex |F (x)e−x − f (x)e−x |dx =

∫ b

a
ex

��(e−xF (x)) ′�� dx
≥ ea

∫ b

a

��(e−xF (x)) ′�� dx ≥ ea
�����∫ b

a
(e−xF (x)) ′ dx

����� = ea ���e−bF (b) − e−aF (a)���
=

���ea−b × 1 − 0��� = ea−b .
The stated bounds are established. �

In particular, in the case of unit distributions, we have a = 0 and b = 1, implying that

0.3678794 ≈ e−1 ≤ D ≤ 2.

The result below gives alternative bounds of D, but they depend on the CDF.

Proposition 2.2. Let us set

E =

∫ b

a
F (x)dx. (2)

The following lower and upper bounds of D dependent of E are true:

|E − 1| ≤ D ≤ E + 1.
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Proof. For the upper bound, applying the triangle inequality and
∫ b
a f (x)dx = 1, we immediately obtain

D =

∫ b

a
|F (x) − f (x) |dx ≤

∫ b

a
[|F (x) | + | f (x) |] dx =

∫ b

a
F (x)dx +

∫ b

a
f (x)dx = E + 1.

For the lower bound, by using the Jensen inequality for the integral and
∫ b
a f (x)dx = 1, we get

D =

∫ b

a
|F (x) − f (x) |dx ≥

�����∫ b

a
[F (x) − f (x)]dx

����� =
�����∫ b

a
F (x)dx −

∫ b

a
f (x)dx

����� = |E − 1|.

The desired bounds are obtained. �

This result shows how nding E can help to understand the range of values for D. Note that the following
inequality holds: D ≤ E + 1 ≤ 1 + b − a, which means that the upper bound in Proposition 2.2 is sharper than
that in Proposition 2.1.

Under certain assumptions on f (x), a and b, the term E is the main component of the expression of D.
This is formalized in the result below.

Proposition 2.3. Let E be dened as in Equation (2) . If f (x) is increasing on (a, b) and b ≤ a + 1, we have

D = 1 − E.

Proof. If f (x) is increasing on (a, b), for any x ∈ (a, b), we have

F (x) =
∫ x

a
f (t)dt ≤ f (x)

∫ x

a
dt = f (x) (x − a).

Hence, since b ≤ a + 1 and f (x) ≥ 0, we have

F (x) − f (x) ≤ f (x) (x − a − 1) ≤ f (x) (b − a − 1) ≤ 0.

As a result, by using
∫ b
a f (x)dx = 1, we have

D =

∫ b

a
|F (x) − f (x) |dx =

∫ b

a
[ f (x) − F (x)]dx

=

∫ b

a
f (x)dx −

∫ b

a
F (x)dx = 1 − E.

The stated formula is established. �

So if f (x) is increasing on (a, b) and b ≤ a + 1, we always have f (x) ≥ F (x) for any x ∈ (a, b), and the
expression forD is simplied. On the other hand, since F (x) ∈ (0, 1) for any x ∈ (a, b), we have the following
upper bound of D: D ≤ 1, so that

ea−b ≤ D ≤ 1. (3)

The result below is about a technical inequality where D appears as a component of a lower bound of a sum
of integrated squares of the CDF and PDF.

Proposition 2.4. Under the assumption that
∫ b
a [ f (x)]

2dx exists, we have∫ b

a
[F (x)]2dx +

∫ b

a
[ f (x)]2dx ≥ 1 + D2

b − a .
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Proof.We have ∫ b

a
[ f (x) − F (x)]2dx =

∫ b

a
{[ f (x)]2 + [F (x)]2 − 2 f (x)F (x)}dx

=

∫ b

a
[ f (x)]2dx +

∫ b

a
[F (x)]2dx − 2

∫ b

a
f (x)F (x)dx

=

∫ b

a
[ f (x)]2dx +

∫ b

a
[F (x)]2dx − {[F (x)]2}ba

=

∫ b

a
[ f (x)]2dx +

∫ b

a
[F (x)]2dx − [F (b)]2 + [F (a)]2

=

∫ b

a
[ f (x)]2dx +

∫ b

a
[F (x)]2dx − 1.

Hence, we have ∫ b

a
[ f (x)]2dx +

∫ b

a
[F (x)]2dx = 1 +

∫ b

a
[ f (x) − F (x)]2dx. (4)

On the other hand, by applying the Cauchy-Schwarz inequality, we get

D =

∫ b

a
|F (x) − f (x) |dx ≤

√︄∫ b

a
[ f (x) − F (x)]2dx

√
b − a,

from which we derive ∫ b

a
[ f (x) − F (x)]2dx ≥ D2

b − a . (5)

It follows from Equations (4) and (5) the desired inequality, i.e.,∫ b

a
[F (x)]2dx +

∫ b

a
[ f (x)]2dx ≥ 1 + D2

b − a .

We get the desired inequality. �

Combining Propositions 2.1 and 2.4, we obtain the following inequalities:∫ b

a
[F (x)]2dx +

∫ b

a
[ f (x)]2dx ≥ 1 + D2

b − a ≥ 1 + e
2(a−b)

b − a .

In particular, in the case of unit distributions, we have∫ 1

0
[F (x)]2dx +

∫ 1

0
[ f (x)]2dx ≥ 1 +D2 ≥ 1 + e−2 ≈ 1.135335.

We also get the following lower bounds of
∫ 1
0 [F (x)]2dx:∫ 1

0
[F (x)]2dx ≥ max

[
0, 1 −

∫ 1

0
[ f (x)]2dx +D2

]
.

Similarly, we have ∫ 1

0
[ f (x)]2dx ≥ 1 −

∫ 1

0
[F (x)]2dx +D2 ≥ 0.

Here, the positivity is because F (x) ≤ 1 for any x ∈ (a, b). These bounds may be of interest for purposes
beyond this article. For example, the main component of dierential extropy is the term

∫ b
a [ f (x)]

2dx. See
[19]. This term also appears as a special case of certain dierential entropy measures. See [20]. Therefore,
based on the above inequalities, we can determine some bounds of them. We will leave this aspect for another
more specic work.
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2.2 On a possible distribution criterion

In this part, we discuss how D can be used to establish a discrimination rule between distributions.

Description

A suitable criterion can be derived fromEquation (3) . Indeed, we have shown that if the PDF f (x) is increasing,
we have ea−b ≤ D ≤ 1, which means that 1 is the maximum value. In this particular monotonic case, the abrupt
variation is characterized by a gradual increase around the axis x = 1. With this in mind, we can consider the
following real number using a weighted mean rule that favours the limit 1:

\ =
1
3
(2 + ea−b).

Then, beyond the increasing case, a simple and direct criterion can be established by the following two states:

State I: If D < \ , then the corresponding distribution has a PDF with smooth or moderate variations,

State II: If D ≥ \ , then the corresponding distribution has a PDF with signicant or abrupt or extreme varia-
tions.

Of course, there is still a place for subjectivity in interpretation, especially when values are close to \ . But
empirical tests tend to make these states acceptable. We also insist on the global nature of the interpretation:
some shapes of the PDF can be abrupt in many ways, D does not capture the exact nature of this.

On the other hand, the following is noted: If D > 1, then we know directly that the PDF is not increasing.
Based on Proposition 2.3, if D is close to 1 − b − a, then we know that there are abrupt changes for the PDF.

Note that, in the case of the unit distributions, we have

\ =
1
3
(2 + e−1) ≈ 0.7892931 ≈ 0.8.

In this setting, let us illustrate this criterion with an example.

Example

We consider the (0, 1)-truncated normal distribution with parameters ` ∈ ℝ and 𝜎 > 0, dened by the
following CDF:

F (x) = Φ(x) −Φ(0)
Φ(1) −Φ(0) , x ∈ (0, 1) ,

F (x) = 0 for x ≤ 0 and F (x) = 1 for x ≥ 1, where Φ(x) =
∫ x
−∞ 𝜙(t)dt, and 𝜙(t) is the PDF of the normal

distribution with parameters ` and 𝜎 dened by

𝜙(t) = 1

𝜎
√
2𝜋
e−(t−`)2/(2𝜎2) , t ∈ ℝ.

Note that, in the standardized case, i.e., ` = 0 and 𝜎 = 1, we have Φ(0) = 1/2 and Φ(1) ≈ 0.8413447. The
PDF corresponding to F (x) is given as

f (x) = 𝜙(x)
Φ(1) −Φ(0) , x ∈ (0, 1) ,

and f (x) = 0 for x ∉ (0, 1). For this distribution, D can not be expressed in a closed form, but it can be studied
numerically and graphically without any problem. To support this claim, in Figure 2, we present some cases
corresponding to the two states, i.e., State I characterized by D < 0.8 and State II characterized by D ≥ 0.8,
of the proposed criterion (with two examples for each state).
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Figure 2: Plots of the coloured area measures by D for (a) ` = 3 and 𝜎 = 3 for which we get D ≈ 0.5230331
corresponding to State I, (b) ` = −1 and 𝜎 = 1, which gives D ≈ 0.6296511, also corresponding to State I,
(c) ` = 0 and 𝜎 = 0.3 for which we get D ≈ 1.038787 corresponding to State II, and (d) ` = 0 and 𝜎 = 0.1
for which we get D ≈ 1.586105, also corresponding to State II

Note that the y axis is truncated to [0, 3] for comparison; the curve for the PDF and the corresponding
coloured area of D in case (d) are also truncated. We can thus see how D discriminates the associated distri-
butions based, in a sense, on the degree of abruptness of the change in the shapes of the PDF. It is a relevant
global measure in this respect.

2.3 Estimation

In a statistical context, the underlying distribution is unknown, and so isD. In this case, it may be interesting to
estimate D based on data. One possible strategy is to estimate f (x) and F (x), and use a substitution approach.
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Denoting f̂ (x) as the estimate of f (x) and F̂ (x) as the estimate of F (x), we thus introduce

D̂ =

∫ b

a
|F̂ (x) − f̂ (x) |dx.

For f̂ (x), we can consider a semi-parametric approach: We select a possible family of distributions governed
by PDFs of the form f (x) = f (x; b ), where b denotes a vector of unknown parameter(s), estimate b from the
data by the maximum likelihood method, among other methods, yielding b̂ , and then consider f̂ (x) = f (x; b̂ ).
Alternatively, we can consider non-parametric estimation approaches, such as the kernel density method or
the projection method, among others. See [21]. For F̂ (x), we can consider the integrated version of f̂ (x), i.e.,

F̂ (x) =
∫ x

a
f̂ (t)dt , x ∈ (a, b).

Amore classical estimate is the empirical CDF. A simple result on the convergence of D̂ is proposed below.

Proposition 2.5. Let n represent the number of data used to construct f̂ (x) and F̂ (x), and, by considering the expectation
operator 𝔼, suppose that

lim
n→+∞

𝔼

[∫ b

a
|F̂ (x) − F (x) |dx

]
= 0, lim

n→+∞
𝔼

[∫ b

a
| f̂ (x) − f (x) |dx

]
= 0.

Then D̂ is asymptotically unbiased, i.e.,
lim
n→+∞

𝔼
(
D̂

)
= D.

Proof. By the Jensen inequality, we get���𝔼 (
D̂

)
−D

��� = ���𝔼 (
D̂ −D

)��� ≤ 𝔼
(��D̂ −D

��) . (6)

On the other hand, by the Jensen and triangle inequalities, we have��D̂ −D
�� = �����∫ b

a
|F̂ (x) − f̂ (x) |dx −

∫ b

a
|F (x) − f (x) |dx

�����
=

�����∫ b

a

[
|F̂ (x) − f̂ (x) | − |F (x) − f (x) |

]
dx

�����
≤

∫ b

a

���|F̂ (x) − f̂ (x) | − |F (x) − f (x) |
��� dx

≤
∫ b

a

���F̂ (x) − f̂ (x) − (F (x) − f (x))
��� dx

≤
∫ b

a

[
|F̂ (x) − F (x) | + | f̂ (x) − f (x) |

]
dx

≤
∫ b

a
|F̂ (x) − F (x) |dx +

∫ b

a
| f̂ (x) − f (x) |dx. (7)

It follows from Equations (6) and (7) and the linearity of the expectation operator that���𝔼 (
D̂

)
−D

��� ≤ 𝔼

[∫ b

a
|F̂ (x) − F (x) |dx

]
+ 𝔼

[∫ b

a
| f̂ (x) − f (x) |dx

]
.

Therefore, under the considered convergence assumptions, we have

0 ≤ lim
n→+∞

���𝔼 (
D̂

)
−D

���
≤ lim
n→+∞

𝔼

[∫ b

a
|F̂ (x) − F (x) |dx

]
+ lim
n→+∞

𝔼

[∫ b

a
| f̂ (x) − f (x) |dx

]
= 0,

8



Asian J. Math. Appl. (2024) 2024:5

implying that limn→+∞

���𝔼 (
D̂

)
−D

��� = 0, so limn→+∞ 𝔼
(
D̂

)
= D. This demonstrates the asymptotically unbi-

ased nature of D̂. �

Note that the convergence assumptions made about f̂ (x) and F̂ (x) are quite standard for most existing
estimation methods. We refer again to [21]. Therefore, if n is large enough, D̂ can be an ecient estimate of
D. We can think of using the criterion discussed in Subsection 2.2 to discriminate the underlying distributions
based on multiple data sets.

In this article, we will not develop this estimation aspect any further, but will concentrate on the full expla-
nation of D.

3 Examples

In this section, we determine the exact expression of D for selected unit distributions, namely the power dis-
tribution, the transmuted uniform distribution over (0, 1), the (0, 1)-truncated exponential distribution, the
special exponential distribution, the (0, 1)-truncated sine distribution, the simple (0, 1)-truncated Lomax dis-
tribution, the (0, 1)-truncated tangent distribution, and the special inverse exponential distribution. We also
comment on the results obtained and apply some previously established propositions.

3.1 Power distribution

One of the simplest unit distributions is the power distribution. It provides a manageable model for measures
with values in (0, 1), where smaller events are more likely to occur. See [1] and, for more modern develop-
ments, [6].

Given this distribution, the result below exhibits the exact expression of D.

Proposition 3.1. We consider the power distribution with parameter 𝛼 > 0, dened by the CDF F (x) = x𝛼 for
x ∈ (0, 1), F (x) = 0 for x ≤ 0 and F (x) = 1 for x ≥ 1, and the PDF f (x) = 𝛼x𝛼−1 for x ∈ (0, 1), and f (x) = 0
for x ∉ (0, 1). Then the following expressions hold for D:

• For any 𝛼 ≥ 1, we have
D =

𝛼

𝛼 + 1 .

• For any 𝛼 ∈ (0, 1), we have

D =
2𝛼𝛼 − 𝛼

𝛼 + 1 .

Proof. First, we have

D =

∫ 1

0
|F (x) − f (x) |dx =

∫ 1

0
|x𝛼 − 𝛼x𝛼−1 |dx =

∫ 1

0
x𝛼−1 |x − 𝛼 |dx.

Based on this formula, let us prove each item in turn.

• For any 𝛼 ≥ 1 and any x ∈ (0, 1), we have 𝛼 − x ≥ 1 − x ≥ 0, implying that

D =

∫ 1

0
x𝛼−1 (𝛼 − x)dx = 𝛼

∫ 1

0
x𝛼−1dx −

∫ 1

0
x𝛼dx = 1 − 1

𝛼 + 1 =
𝛼

𝛼 + 1 .

An equivalent argument is possible: since f (x) is increasing on (0, 1), Proposition 2.3 also directly gives
D = 1 − E, with E =

∫ 1
0 F (x)dx = 1/(𝛼 + 1).
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• For any 𝛼 ∈ (0, 1), we have

D =

∫ 𝛼

0
x𝛼−1 (𝛼 − x)dx +

∫ 1

𝛼

x𝛼−1 (x − 𝛼)dx

= 𝛼𝛼 − 𝛼𝛼+1

𝛼 + 1 + 1
𝛼 + 1 − 𝛼𝛼+1

𝛼 + 1 − 1 + 𝛼𝛼

= 2𝛼𝛼
(
1 − 𝛼

𝛼 + 1

)
− 𝛼

𝛼 + 1 =
2𝛼𝛼 − 𝛼

𝛼 + 1 .

This ends the proof. �

Choosing 𝛼 = 1, the power distribution corresponds to the uniform distribution over (0, 1), and we get

D =
1
2
.

SinceD < 0.8, the uniform distribution over (0, 1) obviously corresponds to State I of the established criterion.
To complete Proposition 3.1, Figure 3 shows a graphical representation of D by a coloured area between

the CDF F (x) and the PDF f (x) for some selected values of 𝛼.
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Figure 3: Plots of the area calculated by D for the power distribution with parameter 𝛼 for (a) 𝛼 = 2.3 and (b)
𝛼 = 0.1

Note that the y-axis is truncated at y = 2.5 for comparison purposes; in the case of 𝛼 = 0.1, a coloured area
around the neighborhood of x = 0 is not visible.

In fact, for 𝛼 = 2.3, we have D ≈ 0.6969697, corresponding to State I (because D < 0.8), and for 𝛼 = 0.1,
we have D ≈ 1.353324, corresponding to State II (because D ≥ 0.8).

For a more global view of the possible values for D, Figure 4 shows its curve with respect to 𝛼.
As can be seen from this gure, the power distribution reaches all the states of the considered criterion;

smooth or moderate, and signicant or abrupt variations are possible, depending on 𝛼.
Some inequalities based on the established propositions are described below. Based on Proposition 2.1, for

any 𝛼 ∈ (0, 1), we have
D =

2𝛼𝛼 − 𝛼

𝛼 + 1 ≥ e−1.
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Figure 4: Curves of D for the power distribution with parameter 𝛼 for (a) 𝛼 ∈ (1, 15) and (b) 𝛼 ∈ (0, 1)

(For any 𝛼 ≥ 1, we obviously have 𝛼/(1 + 𝛼) ≥ 1/2 ≥ e−1). Because of Proposition 2.4, for any 𝛼 ∈ (1/2, 1),
we have

1
2𝛼 + 1 + 𝛼2

2(𝛼 − 1) + 1 =

∫ 1

0
[F (x)]2dx +

∫ 1

0
[ f (x)]2dx ≥ 1 +D2

= 1 +
(
2𝛼𝛼 − 𝛼

𝛼 + 1

)2
.

These inequalities are only of mathematical interest and have potential for use in a variety of analysis situations.

3.2 Transmuted uniform distribution over (0, 1)

A simple compromise distribution between the uniform distribution and the square-root uniform distribution
is the transmuted uniform distribution. See [22].

In the proposition below, we determine the exact expression of D for this distribution over (0, 1).

Proposition 3.2. We consider the transmuted uniform distribution over (0, 1) with parameter 𝛽 ∈ [−1, 1], dened
by the CDF F (x) = (1 + 𝛽 )x − 𝛽 x2 for x ∈ (0, 1), F (x) = 0 for x ≤ 0 and F (x) = 1 for x ≥ 1, and the PDF
f (x) = 1 + 𝛽 − 2𝛽 x for x ∈ (0, 1), and f (x) = 0 for x ∉ (0, 1). Then the following expressions hold for D:

• For any 𝛽 ∈ [−1, 0], we have

D =
1
6
(3 − 𝛽 ).

• For any 𝛽 ∈ (0, 1], we have

D =
2
3
𝛽

[
1 + 3𝛽 −

√︁
1 + 2𝛽 + 5𝛽 2
2𝛽

]3
− (1 + 3𝛽 )

[
1 + 3𝛽 −

√︁
1 + 2𝛽 + 5𝛽 2
2𝛽

]2
+ 2(1 + 𝛽 )

[
1 + 3𝛽 −

√︁
1 + 2𝛽 + 5𝛽 2
2𝛽

]
+ 1
6
( 𝛽 − 3).

11
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Proof. First, we note that

D =

∫ 1

0
|F (x) − f (x) |dx =

∫ 1

0
| (1 + 𝛽 )x − 𝛽 x2 − (1 + 𝛽 − 2𝛽 x) |dx

=

∫ 1

0
| 𝛽 x2 − (1 + 3𝛽 )x + 1 + 𝛽 |dx.

Let us prove each item in turn.

• For any 𝛽 ∈ [−1, 0] and any x ∈ (0, 1), we have f ′(x) = −2𝛽 ≥ 0, meaning that f (x) is increasing. It
follows from Proposition 2.3 that D = 1 − E, with

E =

∫ 1

0
F (x)dx =

∫ 1

0
[(1 + 𝛽 )x − 𝛽 x2]dx = (1 + 𝛽 )

∫ 1

0
xdx − 𝛽

∫ 1

0
x2dx

= (1 + 𝛽 ) 1
2
− 𝛽

1
3
=
1
6
( 𝛽 + 3).

We thus obtain

D =
1
6
(3 − 𝛽 ).

• For any 𝛽 ∈ (0, 1] and any x ∈ (0, 1), we have 𝛽 x2 − (1 + 3𝛽 )x + 1 + 𝛽 = 0 if and only if x∗ =

[1 + 3𝛽 −
√︁
1 + 2𝛽 + 5𝛽 2]/(2𝛽 ) or x = x∗∗ = [1 + 3𝛽 +

√︁
1 + 2𝛽 + 5𝛽 2]/(2𝛽 ). Since 1 + 2𝛽 + 5𝛽 2 >

1 + 2𝛽 + 𝛽 2 = (1 + 𝛽 )2, we have
x∗ <

1 + 3𝛽 − (1 + 𝛽 )
2𝛽

= 1,

and since 1 + 2𝛽 + 5𝛽 2 < 1 + 6𝛽 + 9𝛽 2 = (1 + 3𝛽 )2, we have

x∗ >
1 + 3𝛽 − (1 + 3𝛽 )

2𝛽
= 0.

Therefore, we have x∗ ∈ (0, 1). On the other hand, we have

x∗∗ =
1 + 3𝛽 +

√︁
1 + 2𝛽 + 5𝛽 2
2𝛽

≥ 3𝛽
2𝛽

= 1.5 > 1,

implying that x∗∗ ∉ (0, 1). Therefore, we have

D =

∫ x∗

0
[𝛽 x2 − (1 + 3𝛽 )x + 1 + 𝛽 ]dx +

∫ 1

x∗
[−𝛽 x2 + (1 + 3𝛽 )x − (1 + 𝛽 )]dx

=

[
𝛽
x3

3
− (1 + 3𝛽 ) x

2

2
+ (1 + 𝛽 )x

] x∗
0
+

[
−𝛽

x3

3
+ (1 + 3𝛽 ) x

2

2
− (1 + 𝛽 )x

]1
x∗

= 2
[
𝛽
x3∗
3

− (1 + 3𝛽 ) x
2
∗
2

+ (1 + 𝛽 )x∗
]
+ 1
6
( 𝛽 − 3)

=
2
3
𝛽

[
1 + 3𝛽 −

√︁
1 + 2𝛽 + 5𝛽 2
2𝛽

]3
− (1 + 3𝛽 )

[
1 + 3𝛽 −

√︁
1 + 2𝛽 + 5𝛽 2
2𝛽

]2
+ 2(1 + 𝛽 )

[
1 + 3𝛽 −

√︁
1 + 2𝛽 + 5𝛽 2
2𝛽

]
+ 1
6
( 𝛽 − 3).

The desired formula is obtained. �
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Choosing 𝛽 = 0, the transmuted uniform distribution over (0, 1) corresponds to the uniform distribution
over (0, 1), and we nd again D = 3/6 = 1/2. Furthermore, by choosing 𝛽 = −1, it corresponds to the
square-root uniform distribution over (0, 1), and we get D = 4/6 = 2/3.

Figure 5 shows a graphical representation of D by a coloured area between the CDF F (x) and the PDF
f (x) for selected values of 𝛽 .
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Figure 5: Plots of the area calculated by D for the transmuted uniform distribution over (0, 1) with parameter
𝛽 for (a) 𝛽 = −0.5 and (b) 𝛽 = 1

For 𝛽 = −0.5, we have D ≈ 0.5833333, and for 𝛽 = 1, we have D ≈ 0.771237. These values are close,
but as we can see, the monotonicity of the PDFs is completely dierent. The constant however is that only
smooth or moderate variations are observed.

Figure 6 presents the curve of D with respect to 𝛽 .

Clearly, we have D approximately in (0.5, 0.8), so the power distribution is mainly under State I "smooth
or moderate variations".

3.3 (0, 1)-truncated exponential distribution

The (0, 1)-truncated exponential distribution can be described as an adaptation of the standard exponential
distribution to the unit interval. It is useful for modeling measures with values in (0, 1) that have an exponen-
tially decaying probability. See [23] for more details.

The result below determines the exact expression of D in the setting of this distribution.

Proposition 3.3. We consider the (0, 1)-truncated exponential distribution with parameter _ > 0, dened by the
CDF F (x) = (1 − e−_ x)/(1 − e−_ ) for x ∈ (0, 1), F (x) = 0 for x ≤ 0 and F (x) = 1 for x ≥ 1, and the PDF
f (x) = _ e−_ x/(1 − e−_ ) for x ∈ (0, 1), and f (x) = 0 for x ∉ (0, 1). Then we have

D = − 2
_ (1 − e−_ ) log(1 + _ ) − 1

_
+ 2 + e

−_

1 − e−_ .
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Figure 6: Curves ofD for the transmuted uniform distribution over (0, 1) with parameter 𝛽 for (a) 𝛽 ∈ [−1, 0]
and (b) 𝛽 ∈ (0, 1]

Proof.We can decompose D as

D =

∫ 1

0
|F (x) − f (x) |dx =

∫ 1

0

���� 1
1 − e−_ (1 − e

−_ x) − 1
1 − e−_ _ e

−_ x
���� dx

=
1

1 − e−_

∫ 1

0
|1 − (1 + _ )e−_ x |dx.

We have 1 − (1 + _ )e−_ x = 0 if and only if x = x∗ = log(1 + _ )/_ , and we have x∗ ∈ (0, 1) because of the
following standard logarithmic inequality: log(1 + _ ) < _ . Hence, we have

D =
1

1 − e−_

{∫ x∗

0
[(1 + _ )e−_ x − 1]dx +

∫ 1

x∗
[1 − (1 + _ )e−_ x]dx

}
=

1
1 − e−_

{
(1 + _ )

[
−1
_
e−_ x

] x∗
0
− x∗ + 1 − x∗ − (1 + _ )

[
−1
_
e−_ x

]1
x∗

}
=

1
1 − e−_

[
(1 + _ ) 1

_
(1 − e−_ x∗ ) + 1 − 2x∗ − (1 + _ ) 1

_
(e−_ x∗ − e−_ )

]
=

1
1 − e−_

[
(1 + _ ) 1

_

(
1 − 1

1 + _

)
+ 1 − 2

_
log(1 + _ ) − (1 + _ ) 1

_

(
1

1 + _
− e−_

)]
=

1
1 − e−_

{
2

[
1 − 1

_
log(1 + _ )

]
− 1
_
(1 − e−_ ) + e−_

}
= − 2

_ (1 − e−_ ) log(1 + _ ) − 1
_
+ 2 + e

−_

1 − e−_ .

This ends the proof. �

The appearance of the logarithmic term in D is surprising at rst sight, but is due to the management of
the absolute values in its denition.

Figure 7 shows a graphical representation of D by a coloured area between the CDF F (x) and the PDF
f (x) for selected values of _ .
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Figure 7: Plots of the area calculated by D for the (0, 1)-truncated exponential distribution with parameter _
for (a) _ = 1.2 and (b) _ = 10

In fact, for _ = 1.2, we have D ≈ 0.5792174, corresponding to State I, and for _ = 10, we have D ≈
1.420537, corresponding to State II.

Figure 8 presents the curve of D with respect to _ .
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Figure 8: Curve of D for the (0, 1)-truncated exponential distribution with parameter _ for _ ∈ (0, 30)

We notice that D has its values in (0.5, 1.7), so the (0, 1)-truncated exponential distribution has all the
possible states.

To complete this part, we note that the PDF of the (0, 1)-truncated exponential distribution is also valid
for _ < 0. This "modied" (0, 1)-truncated exponential distribution is considered in the next result.
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Proposition 3.4. We consider the (0, 1)-truncated exponential distribution as presented in Proposition 3.3, but with
parameter _ < 0. Then we have

D = 1 + 1
_
− 1
1 − e−_ .

Proof. Let us remark that, for any x ∈ (0, 1) and any _ < 0, we have

f ′(x) = 1
e−_ − 1_

2e−_ x ≥ 0,

meaning that f (x) is increasing. Proposition 2.3 gives D = 1 − E, with

E =

∫ 1

0
F (x)dx = 1

1 − e−_

∫ 1

0
(1 − e−_ x)dx = 1

1 − e−_

[
x + 1

_
e−_ x

]1
0

=
1

1 − e−_

[
1 − 1

_
(1 − e−_ )

]
=

1
1 − e−_ − 1

_
.

Therefore, we obtain

D = 1 + 1
_
− 1
1 − e−_ .

The proof ends. �

Figure 9 presents the curve of D with respect to _ .
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Figure 9: Curve of D for the "modied" (0, 1)-truncated exponential distribution with parameter _ for _ ∈
(−30, 0)

We observe thatD has its values in (0.5, 1), so the "modied" (0, 1)-truncated exponential distribution has
all the possible states.

3.4 Special exponential distribution

The special exponential distribution can be thought of as an exponentially weighted version of the uniform
distribution over (0, 1). The weighting function that aects the CDF of the uniform distribution over (0, 1) is
dened by w(x) = e_ (1−x) , where _ ≤ 1, with possible negative values.

Given this distribution, the result below determines the exact expression of D.
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Proposition 3.5. We consider the special exponential distribution with parameter _ ≤ 1, dened by the CDF F (x) =
xe_ (1−x) for x ∈ (0, 1), F (x) = 0 for x ≤ 0 and F (x) = 1 for x ≥ 1, and the PDF f (x) = (1 − _ x)e_ (1−x) for
x ∈ (0, 1), and f (x) = 0 for x ∉ (0, 1). Then the following expressions hold for D:

• For any _ < 0, we have

D = 1 + 1
_
− 1
_ 2

(e_ − 1).

• For any _ ∈ (0, 1], we have

D =
1
_
(e_ − _ ) + 1

_ 2
(_ + 1)

[
2e_

2/(_+1) − e_ − 1
]
.

Proof.We have

D =

∫ 1

0
|F (x) − f (x) |dx =

∫ 1

0
|xe_ (1−x) − (1 − _ x)e_ (1−x) |dx

=

∫ 1

0
e_ (1−x) |1 − (_ + 1)x |dx.

Let us prove each item in turn.

• For any _ < 0 and any x ∈ (0, 1), we have

f ′(x) = −_ (2 − _ x)e_ (1−x) ≥ 0,

meaning that f (x) is increasing. It follows from Proposition 2.3 that D = 1 − E, with

E =

∫ 1

0
F (x)dx =

∫ 1

0
xe_ (1−x)dx = e_

{[
−x 1

_
e−_ x

]1
0
+

∫ 1

0

1
_
e−_ xdx

}
= e_

{
−1
_
e−_ + 1

_ 2
(1 − e−_ )

}
= −1

_
+ 1
_ 2

(e_ − 1).

This gives us

D = 1 + 1
_
− 1
_ 2

(e_ − 1).

• For any _ ∈ (0, 1] and any x ∈ (0, 1), we have 1 − (_ + 1)x = 0 if and only if x∗ = 1/(_ + 1) and we
have x∗ ∈ (0, 1). Based on this, we get

D =

∫ x∗

0
e_ (1−x) [1 − (_ + 1)x]dx +

∫ 1

x∗
e_ (1−x) [(_ + 1)x − 1]dx

=

[
−1
_
e_ (1−x) [1 − (_ + 1)x]

] x∗
0
− 1
_
(_ + 1)

∫ x∗

0
e_ (1−x)dx

+
[
−1
_
e_ (1−x) [(_ + 1)x − 1]

]1
x∗

+ 1
_
(_ + 1)

∫ 1

x∗
e_ (1−x)dx

= −1
_
e_ (1−x∗) [1 − (_ + 1)x∗] +

1
_
e_ − 1

_ 2
(_ + 1)e_ (1 − e−_ x∗ )

− 1 + 1
_
e_ (1−x∗) [(_ + 1)x∗ − 1] +

1
_ 2

(_ + 1)e_ (e−_ x∗ − e−_ )

=
1
_
e_ + 1

_ 2
(_ + 1)

[
e_

2/(_+1) − e_
]
− 1 + 1

_ 2
(_ + 1)

[
e_

2/(_+1) − 1
]

=
1
_
(e_ − _ ) + 1

_ 2
(_ + 1)

[
2e_

2/(_+1) − e_ − 1
]
.
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The desired formula is established. �

Figure 10 shows a graphical representation of D by a coloured area between the CDF F (x) and the PDF
f (x).
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Figure 10: Plots of the area calculated by D for the special exponential distribution with parameter _ for (a)
_ = −1 and (b) _ = 1

For _ = −1, we have D ≈ 0.6321206, corresponding to State I, and for _ = 1, we have D ≈ 0.8766033,
corresponding to State II.

Figure 11 presents the curve of D with respect to _ .
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Figure 11: Curves of D for the special exponential distribution with parameter _ for (a) _ ∈ (−40, 0) and (b)
_ ∈ (0, 1)
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For any _ ≤ 1, we observe that the values of D are approximately in (0.45, 1), meaning that the special
exponential distribution has all the possible states.

3.5 (0, 1)-truncated sine distribution

Trigonometric distributions have undergone considerable development in recent decades. Their exibility has
made them valuable models for various data analysis purposes. The most popular are those dened around
the sine function, such as the (0, 1)-truncated sine distribution. See [24] and [25].

The proposition below gives the exact expression of D for this distribution.

Proposition 3.6. We consider the (0, 1)-truncated sine distribution with parameter _ ∈ (0, 𝜋/2], dened by the CDF
F (x) = sin(_ x)/sin(_ ) for x ∈ (0, 1), F (x) = 0 for x ≤ 0 and F (x) = 1 for x ≥ 1, and the PDF f (x) =

_ cos(_ x)/sin(_ ) for x ∈ (0, 1), and f (x) = 0 for x ∉ (0, 1). Then we have

D =
1

sin(_ )

{
2

√
_ 2 + 1
_

− 1
_
[1 + cos(_ )] − sin(_ )

}
.

Proof.We can write

D =

∫ 1

0
|F (x) − f (x) |dx =

∫ 1

0

���� 1
sin(_ ) sin(_ x) −

1
sin(_ ) _ cos(_ x)

���� dx
=

1
sin(_ )

∫ 1

0
| sin(_ x) − _ cos(_ x) |dx.

We have sin(_ x) − _ cos(_ x) = 0 if and only if x = x∗ = arctan(_ )/_ , and we have x∗ ∈ (0, 1) because of the
following standard arctangent inequality: arctan(_ ) < _ . Therefore, we get

D =
1

sin(_ )

{∫ x∗

0
[_ cos(_ x) − sin(_ x)]dx +

∫ 1

x∗
[sin(_ x) − _ cos(_ x)]dx

}
=

1
sin(_ )

{[
sin(_ x) + 1

_
cos(_ x)

] x∗
0
+

[
−1
_
cos(_ x) − sin(_ x)

]1
x∗

}
=

1
sin(_ )

{
2

[
sin(_ x∗) +

1
_
cos(_ x∗)

]
− 1
_
[1 + cos(_ )] − sin(_ )

}
.

Using sin[arctan(x)] = x/
√
x2 + 1 and cos[arctan(x)] = 1/

√
x2 + 1, we obtain

D =
1

sin(_ )

{
2

[
_

√
_ 2 + 1

+ 1

_
√
_ 2 + 1

]
− 1
_
[1 + cos(_ )] − sin(_ )

}
=

1
sin(_ )

{
2

√
_ 2 + 1
_

− 1
_
[1 + cos(_ )] − sin(_ )

}
.

This ends the proof. �

Figure 12 shows a graphical representation of D by a coloured area between the CDF F (x) and the PDF
f (x).
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Figure 12: Plots of the area calculated by D for the (0, 1)-truncated sine distribution with parameter _ for (a)
_ = 0.6 and (b) _ = 1.57

For _ = 0.6, we have D ≈ 0.4966557, and for _ = 1.57, we have D ≈ 0.7337918.
Figure 13 presents the curve of D with respect to _ .
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Figure 13: Curve of D for the (0, 1)-truncated sine distribution with parameter _ for _ ∈ (0, 1.57)

The values of D are approximately in (0.48, 0.8), meaning that the (0, 1)-truncated sine distribution is
mainly under State I.

3.6 Simple (0, 1)-truncated Lomax distribution
The simple (0, 1)-truncated Lomax distribution can be considered as a one-parameter alternative to the (0, 1)-
truncated exponential distribution. It is designed to model measures with values in (0, 1) that have a polyno-
mial rather than an exponential probability of decay. See [26].
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The exact expression of D for this distribution is given in the proposition below.

Proposition 3.7. We consider the simple (0, 1)-truncated Lomax distribution with parameter _ > 0, dened by the
CDF F (x) = (1 + _ )x/(x + _ ) for x ∈ (0, 1), F (x) = 0 for x ≤ 0 and F (x) = 1 for x ≥ 1, and the PDF
f (x) = _ (1 + _ )/(x + _ )2 for x ∈ (0, 1), and f (x) = 0 for x ∉ (0, 1). Then we have

D = (1 + _ )
[
− 4_

_ +
√
_ 2 + 4_

+ _ −
√︁
_ 2 + 4_ + 2_ log

(
_ +

√
_ 2 + 4_
2

)
− _ log(_ )

+ _

1 + _
− _ log(1 + _ ) + 2

]
.

Proof. First, we can decompose D as

D =

∫ 1

0
|F (x) − f (x) |dx =

∫ 1

0

����(1 + _ ) x
x + _

− _ (1 + _ ) 1
(x + _ )2

���� dx
= (1 + _ )

∫ 1

0

|x2 + _ x − _ |
(x + _ )2

dx.

We have x2 + _ x − _ = 0 if and only if x = x∗ = [−_ +
√
_ 2 + 4_ ]/2 or x = x∗∗ = [−_ −

√
_ 2 + 4_ ]/2. Since

_ =
√
_ 2 <

√
_ 2 + 4_ and

√
_ 2 + 4_ <

√
_ 2 + 4_ + 4 =

√︁
(_ + 2)2 = _ + 2, we have x∗ ∈ (0, 1). Moreover, x∗∗

is clearly negative. Hence, we establish that

D = (1 + _ )
{∫ x∗

0

_ − x2 − _ x
(x + _ )2

dx +
∫ 1

x∗

x2 + _ x − _

(x + _ )2
dx

}
= (1 + _ )

{∫ x∗

0

[
_

(x + _ )2
+ _

x + _
− 1

]
dx +

∫ 1

x∗

[
1 − _

(x + _ )2
− _

x + _

]
dx

}
= (1 + _ )

{[
− _

x + _
+ _ log(x + _ ) − x

] x∗
0
+

[
_

x + _
− _ log(x + _ ) + x

]1
x∗

}
= (1 + _ )

{
2

[
− _

x∗ + _
+ _ log(x∗ + _ ) − x∗

]
− _ log(_ ) + _

1 + _
− _ log(1 + _ ) + 2

}
= (1 + _ )

[
− 4_

_ +
√
_ 2 + 4_

+ _ −
√︁
_ 2 + 4_ + 2_ log

(
_ +

√
_ 2 + 4_
2

)
− _ log(_ )

+ _

1 + _
− _ log(1 + _ ) + 2

]
.

This concludes the proof. �

Figure 14 shows a graphical representation of D by a coloured area between the CDF F (x) and the PDF
f (x).
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Figure 14: Plots of the area calculated byD for the simple (0, 1)-truncated Lomax distribution with parameter
_ for (a) _ = 0.01 and (b) _ = 2

For _ = 0.01, we have D ≈ 1.646605, corresponding to State II, and for _ = 2, we have D ≈ 0.5254624,
corresponding to State I.

Figure 15 presents the curve of D with respect to _ .
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Figure 15: Curve of D for the simple (0, 1)-truncated Lomax distribution with parameter _ for _ ∈ (0, 17)

The values of D are approximately in (0.48, 2), which means that the (0, 1)-truncated Lomax distribution
reaches all the states of the considered criterion.

3.7 (0, 1)-truncated tangent distribution
Trigonometric distributions include those constructed from the tangent function. The pioneering work on this
topic is [27]. From this, we can derive the (0, 1)-truncated tangent distribution.
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The proposition below examines the exact expression of D for this distribution.

Proposition 3.8. We consider the (0, 1)-truncated tangent distribution with parameter _ ∈ (0, 𝜋/4], dened by
the CDF F (x) = tan(_ x)/tan(_ ) for x ∈ (0, 1), F (x) = 0 for x ≤ 0 and F (x) = 1 for x ≥ 1, and the PDF
f (x) = _ {1 + [tan(_ x)]2}/tan(_ ) for x ∈ (0, 1), and f (x) = 0 for x ∉ (0, 1). Then we have

D = 1 + 1
_ tan(_ ) log[cos(_ )].

Proof. For any _ ∈ (0, 𝜋/4] and any x ∈ (0, 1), we have

f ′(x) = 2_ 2

tan(_ ) tan(_ x)
{
1 + [tan(_ x)]2

}
≥ 0.

Therefore, f (x) is increasing. Proposition 2.3 gives D = 1 − E, with

E =

∫ 1

0
F (x)dx = 1

tan(_ )

∫ 1

0
tan(_ x)dx = 1

tan(_ )

[
−1
_
log[cos(_ x)]

]1
0
= − 1

_ tan(_ ) log[cos(_ )].

Therefore, we obtain

D = 1 + 1
_ tan(_ ) log[cos(_ )].

The proof ends. �

Figure 16 shows a graphical representation of D by a coloured area between the CDF F (x) and the PDF
f (x).
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Figure 16: Plots of the area calculated by D for the (0, 1)-truncated tangent distribution with parameter _ for
(a) _ = 0.1 and (b) _ = 0.79

For _ = 0.1, we have D ≈ 0.500835, and for _ = 0.79, we have D ≈ 0.5595201.
Figure 17 presents the curve of D with respect to _ .
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Figure 17: Curve of D for the (0, 1)-truncated tangent distribution with parameter _ for _ ∈ (0, 0.79)

The values of D are approximately in (0.5, 0.6), meaning that the (0, 1)-truncated tangent distribution
only reaches State I. The PDF possesses only smooth variations.

3.8 Special inverse exponential distribution

The special inverse exponential distribution can be represented as a special one-parameter case of the unit
Gompertz distribution, as dened in [28].

In the result below, we show that, under certain conditions on the parameter, D can be expressed simply as
a function of the upper incomplete gamma function.

Proposition 3.9. We consider the special inverse exponential distribution with parameter _ ≥ 2, dened by the CDF
F (x) = e_ (1−1/x) for x ∈ (0, 1), F (x) = 0 for x ≤ 0 and F (x) = 1 for x ≥ 1, and the PDF f (x) = (_/x2)e_ (1−1/x)
for x ∈ (0, 1), and f (x) = 0 for x ∉ (0, 1). Then we have

D = _ e_Γ(0, _ ) ,

where Γ(a, b) denotes the upper incomplete gamma function: Γ(a, b) =
∫ +∞
b ta−1e−tdt with a ≥ 0 and b ≥ 0 such that

a + b > 0.

Proof. For any _ ≥ 2 and any x ∈ (0, 1), we have

f ′(x) = _

x4
e_ (1−1/x) (_ − 2x) ≥ _

x4
e_ (1−1/x) (_ − 2) ≥ 0.

Therefore, f (x) is increasing. Proposition 2.3 gives D = 1 − E, with

E =

∫ 1

0
F (x)dx =

∫ 1

0
e_ (1−1/x)dx = e_

∫ 1

0
e−_/xdx.

Applying the change of variable y = _/x and doing an integration by parts, we get∫ 1

0
e−_/xdx = _

∫ +∞

_

1
y2
e−ydy = _

{[
−1
y
e−y

]+∞
_

−
∫ +∞

_

1
y
e−ydy

}
= _

[
1
_
e−_ −

∫ +∞

_

1
y
e−ydy

]
= e−_ − _Γ(0, _ ).
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Therefore, we obtain
D = 1 − e_

[
e−_ − _Γ(0, _ )

]
= _ e_Γ(0, _ ).

The desired formula is proved. �

The special inverse exponential distribution is also well dened for _ ∈ (0, 2), but expressing D requires
more mathematical eort. A manageable expression for it in this case therefore remains a challenge.

Figure 18 shows a graphical representation of D by a coloured area between the CDF F (x) and the PDF
f (x).
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Figure 18: Plots of the area calculated by D for the special inverse exponential distribution with parameter _
for (a) _ = 2 and (b) _ = 10

For _ = 2, we have D ≈ 0.7226572, corresponding to State I, and for _ = 10, we have D ≈ 0.9156333,
corresponding to State II.

Figure 19 presents the curve of D with respect to _ .
The values ofD are approximately in (0.7, 0.96), meaning that the special inverse exponential distribution

reaches all the possible states.
Some inequalities based on the established propositions are described below. Based on Proposition 2.1, for

any _ ≥ 2, we have
D = _ e_Γ(0, _ ) ≥ e−1.

Applying Proposition 2.4, for any _ ≥ 2, we have

1 − 2_ e2_Γ(0, 2_ ) + 1
2
+ 1
4_

+ 1
2
_ =

∫ 1

0
[F (x)]2dx +

∫ 1

0
[ f (x)]2dx ≥ 1 +D2

= 1 +
[
_ e_Γ(0, _ )

]2
,

so, by isolating the terms involving the upper incomplete gamma function,

1
2
+ 1
4_

+ 1
2
_ ≥ _ e2_

{
_ [Γ(0, _ )]2 + 2Γ(0, 2_ )

}
.

These inequalities are of mathematical interest only. We do not claim that they are sharp.
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Figure 19: Curve of D for the special inverse exponential distribution with parameter _ for _ ∈ (2, 20)

4 Conclusion

In this article, we have proposed a global intra-divergence distribution measure that focuses on distributions
with nite support. It provides a numerical indicator that discriminates between distributions with smooth
probability density functions and those with abruptly varying probability density functions. We have estab-
lished several inequalities involving it, discussed a possible discrimination criterion based on some of the bounds
obtained in these inequalities, and calculated the exact expressions of it for well-known unit distributions.
Namely, the following unit distributions were considered: the power distribution, the transmuted uniform dis-
tribution over (0, 1), the (0, 1)-truncated exponential distribution, the special exponential distribution, the
(0, 1)-truncated sine distribution, the simple (0, 1)-truncated Lomax distribution, the (0, 1)-truncated tan-
gent distribution, and the special inverse exponential distribution. Of course, many other distributions with
nite support can be studied in the same way.

A possible renement of the measure might be to consider

D∗ = max

[∫ b

a
|F (x) − f (x) |dx ,

∫ b

a
|S (x) − f (x) |dx

]
,

where S (x) = 1 − F (x) is the survival function associated with the distribution. In this case we conjecture that
D∗ ∈ [ea−b , 2] and that we can have more nuance about the abruptness of all types of distributions, including
those with increasing PDFs for which D remains somewhat coarse. We can then construct a new criterion
with more nuanced states. In addition, we can also think of developing a global intra-divergence measure for
distributions with innite support. These lines of research remain to be explored. We postpone this work to a
future study.
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