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Abstract

This paper deals with the exponential convergence of the solutions of nonlinear perturbed differential inequal-
ities to a small ball centred at the origin. The behaviour of the Lorenz system is also investigated, and several
sufficient conditions are provided for exponential stability toward a small neighbourhood of the origin.
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1 Introduction

It is well known that differential inequalities play important roles in the study of stability, boundedness, oscilla-
tion and stability properties to the solutions in particular for integro-differential equations. Lyapunov’s direct
method, (see [20]-[25]), states that if a positive-definite function (now called a Lyapunov function) of the state
coordinates of a dynamical system can be constructed for which its time rate of change following small per-
turbations from the system equilibrium is always negative or zero, then the system equilibrium state is stable.
In other words, Lyapunov’s method is based on the construction of a Lyapunov function that serves as a gen-
eralized norm of the solution of a dynamical system ([1]-[10], ([13]-[18])). Many applications are treated in
literature in particular for the exponential convergence of the solutions for Lorenz system ([12], [19]). The goal
of this paper is to present some new conditions for practical stability of differential inequalities in presence of
perturbation. Moreover, we provide an application to Lorenz equations to prove the validity of this approach.

2 Definitions and tools
Unless otherwise stated, we assume throughout the paper that the functions encountered are sufficiently
smooth. We often omit arguments of functions to simplify notation, ||.|| stands for the Euclidean norm

vectors. A positive definite function R* — R* is one that is zero at the origin and positive otherwise. We
define the closed ball B, := {9@ eR": x| < r}.
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Consider the time varying system described by the following:

& = f(t,x)+g(t,x) (1)

where f : R* X R"” — R" and g : R* x R" — R" are piecewise continuous in ¢t and locally Lipschitz in x on

R* x R". We consider also the associated nominal system

& o= f(,x) 2)

For all xyg € R" and ¢ € R, we will denote by x(¢; g, x¢), or simply by x(¢), the unique solution of (1) at time
ty starting from the point x.

We recall now some standard concepts from stability theory; any book on Lyapunov stability can be consulted
for these; particularly good references are [20, 24]. Let introduce some basic definitions that we shall need in
the sequel for the system (2) (see [3], [4], [6]).

Definition 1. (uniform stability of B,)

i B, is uniformly stable if for all € > r, there exists 5§ = §(€) > 0 such that for all ty > 0,

lxoll <6 = llx(@)ll <€ Vi = io; 3)

i1 B, is globally uniformly stable if it is uniformly stable and the solutions of system (2) are globally uniformly bounded.

Definition 2. (uniform attractivity of B,) B, is globally uniformly attractive if for all € > r and ¢ > 0, there exists
T(e, c) > 0 such that for all ty > 0,

displaystylel|lx(t)|| <€ VYi=tg+T(e,c), |xoll <ec. )
The next definition concerns the practical global uniform exponential stability.

Definition 3. B, is globally uniformly exponentially stable if there exist y, k, positive constants, such that for all t >
to > 0 and xo € R",
llx(@)] < kllxoll exp(=y (¢ = to)) +7. ()

System (2) 1s globally practically uniformly exponentially stable if there exists r > O such that B, is globally uniformly
exponentially stable.

In the sequel, we will consider the practical stability of a class of perturbed system of the form (1), in the
case of differential inequality. We will show that, under some suflicient conditions, the solutions of a differential
inequality in presence of perturbation converge to a small ball centred at the origin.

Let consider the following differential inequality:
¥(1) < s(@)y(t) + K(2) (6)
where the functions s(.) and K(.) are continuous.

Theorem 1. Suppose that,

o there exists § > 0, such that

1 k+l
lim sup lim sup 7 / s(t)dr < -6, (7)
k

[—>+00  k—+oo
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o forany fixred T < oo,
t+u
sup / s(A)dA < oo, 8)
t

t>0;0<u<T

o there exists 1 < p < oo such that, K € L?([0, +oo]).

Then, i
() < ke Hp(0)] 4, ©
where k and r are positive constants.
Proof. It is easy to see that
t t t
y(t) < exp(/ s()dA)y(0) + / K(u) exp(/ s(A)dA)du. (10)
0 0 u

By (7), we can find a sufliciently large number T' < oo such that forallu > T andt —u > T,

/ls(z)d/l < —g(t—u) (11)

Foranyt > 2T,
t T T 5
y0 < esp( [ s esp(-G =TI+ [ Kalesp( [ s()dydu et
=T t t t
+/T |K(u)|exp(l s(/l)dl)du+[_T |K(u)|exp(‘£ s(A)dA)du
<M ep(-S - T+ [ K@i Si-T
<e eXp(—g(l— NNy (0)| +e /0 |K (u)] ueXp(—§(t— )

t=T 5 t t
+L |K(u)|exp(—§(t—u))du+/T|K(u)|exp([ s(A)dA)du

T
< M exp(=g = TyO)]+e" [ IR @lduexp(=5(e~T)
=T 1 t-T S : t
+ (/T |K (u)|Pdu)? ‘/T exp(—Q—q(t —u))du + M3 /_T |K (u)|du
< M exp(=5 (= THIO)| + T Kl exp(=5 (¢ = T)

21IKllpq
0

_iT - _i -T M3T(l K
# S exp(—g 1) —exp(—g (= T)] + T H K]

< M exp(éT) Cxp(—ét)|y(0)| # (@271 424 4 MT K],
2 2 0 ’

Then, ‘
() < ke H(0)] 47, (12)
where, k = M CXP(%T) and r = (eM?T% +2% + eM"‘Té)llKHp with respect inequality (9).
O
Consider the differential inequality (6).
Theorem 2. Suppose that,
o thereexists S > 0,1 > 0and T > 0 such that
1 k+l
7/ s()dt < -6, Vk>T. (13)
k

3
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o forany fixred T < oo
t+u
sup / s(1)dA < oo, (14)
t

1>0;0<u<T

o there exists 1 < p < oo such that K € LP([0, +oo[).

Then,
y(8) < ke |y(10)| + 7, (15)
where k and r are positive constants.
Proof. We have,
v < expl [ st + [ Kwesp( [ sina. (16)
to t u

Case 1: when T > 19, [ s(A)da = /lOTs(/l)d/l + [ls(da.
Let N be the integer for which
(N-D)l<t-T < NI

/IU[S(A)UM :‘/zUTs(/l)d/l +/Tls(4)da

T N-2 L T4(@i+1)l t
:/ s(1)dA + Z/ s(1)dA +/ s(1)dA
t = JT T+(N-1)]

+il

T t
s/ s(/l)d/l—(N—l)61+/ s()dA

lo T+(N-1)!
<M;—(N-1)6l+Msy
< -6(t—ty)+M.

Case 2: when T < 1y,
Let N be the integer for which

(N-Dl<t-ty < NI

N-2

t to+(i+1)1 '
/ s()da = Z/ s(1)dA +/ s(1)da
‘o i=0 Jtotil to+(N=1)!

< —(N-1)sl+M,
<—6(t—1g)+ M.

Then, there exists a constant @ such that,

13
/ s(A)dAd < -6t —ty)+a, Yig >0, Vi>t. (17)

]

Then, there exists a constant k£ such that

t
B S DRV (18)
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Hence,
2
y(0) < ke )|+ [ IRl
)
L 1
< ke 0 y(ug) [+ k([ e 010 T|K ],
0]
K
< b0y (1)) + 1 ”ﬁ’ :
(6q)®
Then,
y(t) < ke U0 |y (1g) |+, (19)
I L. R
where r = T with respect inequa ity (15). O
(6q)7

3 Stability of Lorenz equations

The Lorenz equations is one of the most famous models of nonlinear dynamics, which is a nonlinear system
that evolves in R® whose equations are given by:

Z=aly—x)
y=cx—xz-Yy (20)
g =xy—bz

where the parameters a, b and ¢ are assumed positive real numbers. For considered assumption on parameters,
if ¢ < 1 then the system (20) has a unique equilibrium point Sy(0, 0, 0) and if ¢ > 1 then the system (20) has
a three equilibrium point Sy (0, 0, 0) and gx = (£+/b(c = 1), £y/b(c = 1), ¢ = 1).

The Lorenz system has played a fundamental role in the area of nonlinear science and chaotic dynamics.

Therefore, the study of the stability and attractivity of the origin as an equilibrium point of the Lorenz system
is theoretically significant, and also practically important. When ¢« = 10, b = 8/3, ¢ = 28, the system is

chaotic, with the attractor as shown in Fig 1. Consequently, the authors in [1 1] proposed the following Lorenz

family:
&= ao(y —x)
Y=o — Xz — dgy (21)
g =xy—byz
where
aq =25a +10, b, = é(a +8), ¢o =28-35a, dy =1-290,
with
a €[0,1/29].
Consider the following Lyapunov function:
Vy= %uxﬁ +y2+ (2 = g —¢0)?] (22)

this function satisfies the following relation on the derivative with respect to system (21):

v,
d—; = Axd+yy+2(z—Adag —cq)

= Ax(aq(y —x)) +y(cex — 22 —doy) + (xy — be2)(z — Aag — ca)

= Adagxy - Aagx’ + Cqy — X2y — day2 —be2® + Aaghaz + coboz +xyz — Aag Xy — Ca Xy

= -da,a® - day2 —bo2? + by (Aag +cy)z.
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Figure 1: Phase portrait of Lorenz attractor

Then, using the facts that ¢, > 1 and 0 < d, < 1, we obtain

dVy

I —Ax? - alay2 —dyz® = (by —dy)2® —dy(lag +ca)?

IN

+2dy (Aag +co)z+ (by — 2dy)(Aay + o)z +dy(Aag + c(,[)2
—Ax? - do,y2 —dy(z—Aay — ca)2 + (by — 2dy)(Aag + o)z +dy(Aay + ca)2 = (by - da)z2
—Ax? - day?‘ —dy(z—Aay — ca)g +dy(Aay +c(,)2 +g(2) (23)

with

g(2) = —(ba - da)ZQ + (bo — 2do) (Aag +co)z.

Then, setting

g (2) = =2(by — do)z + (by — 2do) (Aaq +ca)

zero, yields

_ (bo - Qda)(/laa +¢q)

S TR @
Since by > 2 > dy, 0 < d, < 1, it follows that zg > 0 and g” (z0) = =2(by — dy) < 0. Thus,
_ _ [(be = 2ds)(Aag +Coz)]2
ilelugg(Z) =g(z0) = 1y —d) : (25)

‘We obtain
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ddL; = —dayx®- day2 — b2 + b, (AQag +cq)z
< —Ax? —dyy? —dy(z — dag — o) +do(Aag +co)? +sup g(2)
zeR
_ 9
< -1z’ - day2 —dy(z—Aag —ca)? +dy(Aag +co)? + [ i?[iy)(_/l;;:; o]
C C C bg /l @ 2 2
< A2’ —dyy? —dy(z—Aag —co)? + %
< 2% - al(,y2 —dy(z—Aay — ca)2 +2d,R,
< =2 V) +2d, R, . (26)
with . }
R - b2(Aag +cq)?
‘o 8([711 _da)da
Thus,
dr

WSOwhenV,l >R,.

By theorem 1 we get

X)) < Va(Xp)e 20) 4 / )94, R, d,
z
= V3 (Xg)e 2 (0) +R:<1 — 2 limty, (27)
So, it V(X (¢)) > Ry, t > ty, we have
Va(X(1) < (Va(Xo) = Ry)e 2070 4 Ry (28)
Example

i =aq(y - )

Y =cox —xz+dyy (29)

g=ay—byz

where a(a) = 25a + 10, b(a) = %(a +8), c(a) =28 -35a,d(a) =1-29.
For a = %
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Figure 2: Phase portraits of the Lorenz family for a = %

Fora = 300"

Figure 8: Phase portraits of the Lorenz family for a = ﬁ
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4 Conclusion

Exponential practical stability of a class of nonlinear time-varying perturbed systems by the Lyapunov method
has been studied. New sufficient conditions for the practical exponential stability of nonlinear perturbed system

were given.
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