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Abstract
This paper deals with the exponential convergence of the solutions of nonlinear perturbed dierential inequal-
ities to a small ball centred at the origin. The behaviour of the Lorenz system is also investigated, and several
sucient conditions are provided for exponential stability toward a small neighbourhood of the origin.
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1 Introduction

It is well known that dierential inequalities play important roles in the study of stability, boundedness, oscilla-
tion and stability properties to the solutions in particular for integro-dierential equations. Lyapunov’s direct
method, (see [20]-[25]), states that if a positive-denite function (now called a Lyapunov function) of the state
coordinates of a dynamical system can be constructed for which its time rate of change following small per-
turbations from the system equilibrium is always negative or zero, then the system equilibrium state is stable.
In other words, Lyapunov’s method is based on the construction of a Lyapunov function that serves as a gen-
eralized norm of the solution of a dynamical system ([1]-[10], ([13]-[18])). Many applications are treated in
literature in particular for the exponential convergence of the solutions for Lorenz system ([12], [19]). The goal
of this paper is to present some new conditions for practical stability of dierential inequalities in presence of
perturbation. Moreover, we provide an application to Lorenz equations to prove the validity of this approach.

2 Denitions and tools

Unless otherwise stated, we assume throughout the paper that the functions encountered are suciently
smooth. We often omit arguments of functions to simplify notation, ‖.‖ stands for the Euclidean norm
vectors. A positive denite function ℝ+ → ℝ+ is one that is zero at the origin and positive otherwise. We

dene the closed ball Br :=
{
x ∈ ℝn : ‖x‖ ≤ r

}
.

Received: 2024-06-28 1

www.scienceasia.asia


Asian J. Math. Appl. (2024) 2024:6

Consider the time varying system described by the following:

¤x = f (t , x) + g (t , x) (1)

where f : ℝ+ ×ℝn −→ ℝn and g : ℝ+ ×ℝn −→ ℝn are piecewise continuous in t and locally Lipschitz in x on
ℝ+ ×ℝn. We consider also the associated nominal system

¤x = f (t , x) (2)

For all x0 ∈ ℝn and t0 ∈ ℝ, we will denote by x(t; t0 , x0), or simply by x(t), the unique solution of (1) at time
t0 starting from the point x0.
We recall now some standard concepts from stability theory; any book on Lyapunov stability can be consulted
for these; particularly good references are [20, 24]. Let introduce some basic denitions that we shall need in
the sequel for the system (2) (see [3], [4], [6]).

Denition 1. (uniform stability of Br )

i Br is uniformly stable if for all 𝜖 > r , there exists 𝛿 = 𝛿 (𝜖 ) > 0 such that for all t0 ≥ 0,

‖x0‖ < 𝛿 ⇒ ‖x(t)‖ < 𝜖 ∀ t ≥ t0; (3)

ii Br is globally uniformly stable if it is uniformly stable and the solutions of system (2) are globally uniformly bounded.

Denition 2. (uniform attractivity of Br ) Br is globally uniformly attractive if for all 𝜖 > r and c > 0, there exists
T (𝜖 , c) > 0 such that for all t0 ≥ 0,

displaystyle‖x(t)‖ < 𝜖 ∀ t ≥ t0 +T (𝜖 , c) , ‖x0‖ < c. (4)

The next denition concerns the practical global uniform exponential stability.

Denition 3. Br is globally uniformly exponentially stable if there exist 𝛾 , k , positive constants, such that for all t ≥
t0 ≥ 0 and x0 ∈ ℝn ,

‖x(t)‖ ≤ k‖x0‖ exp(−𝛾 (t − t0)) + r . (5)

System (2) is globally practically uniformly exponentially stable if there exists r > 0 such that Br is globally uniformly
exponentially stable.

In the sequel, we will consider the practical stability of a class of perturbed system of the form (1) , in the
case of dierential inequality. We will show that, under some sucient conditions, the solutions of a dierential
inequality in presence of perturbation converge to a small ball centred at the origin.

Let consider the following dierential inequality:

¤y(t) ≤ s(t)y(t) +K (t) (6)

where the functions s(.) and K (.) are continuous.

Theorem 1. Suppose that,

• there exists 𝛿 > 0, such that

lim sup
l→+∞

lim sup
k→+∞

1
l

∫ k+l

k
s(t)dt < −𝛿 , (7)
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• for any xedT < ∞,

sup
t≥0;0≤u≤T

∫ t+u

t
s(_ )d_ < ∞, (8)

• there exists 1 < p < ∞ such that, K ∈ Lp ( [0, +∞[).
Then,

y(t) ≤ ke− 𝛿
2 t |y(0) | + r , (9)

where k and r are positive constants.

Proof. It is easy to see that

y(t) ≤ exp(
∫ t

0
s(_ )d_ )y(0) +

∫ t

0
K (u) exp(

∫ t

u
s(_ )d_ )du. (10)

By (7) , we can nd a suciently large numberT < ∞ such that for all u ≥ T and t − u ≥ T ,∫ t

u
s(_ )d_ ≤ − 𝛿

2
(t − u) (11)

For any t ≥ 2T ,

y(t) ≤ exp(
∫ t

0
s(_ )d_ ) exp(− 𝛿

2
(t −T )) |y(0) | +

∫ T

0
|K (u) | exp(

∫ T

u
s(_ )d_ )du e− 𝛿

2 (t−T )

+
∫ t−T

T
|K (u) | exp(

∫ t

u
s(_ )d_ )du +

∫ t

t−T
|K (u) | exp(

∫ t

u
s(_ )d_ )du

≤ eM1 exp(− 𝛿

2
(t −T )) |y(0) | + eM2

∫ T

0
|K (u) |du exp(− 𝛿

2
(t −T ))

+
∫ t−T

T
|K (u) | exp(− 𝛿

2
(t − u))du +

∫ t

t−T
|K (u) | exp(

∫ t

u
s(_ )d_ )du

≤ eM1 exp(− 𝛿

2
(t −T )) |y(0) | + eM2

∫ T

0
|K (u) |du exp(− 𝛿

2
(t −T ))

+ (
∫ t−T

T
|K (u) |pdu)

1
p

∫ t−T

T
exp(− 𝛿

2q
(t − u))du + eM3

∫ t

t−T
|K (u) |du

≤ eM1 exp(− 𝛿

2
(t −T )) |y(0) | + eM2T

1
q ‖K‖p exp(−

𝛿

2
(t −T ))

+
2‖K‖pq

𝛿
[exp(− 𝛿

2q
T ) − exp(− 𝛿

2q
(t −T ))] + eM3T

1
q ‖K‖p

≤ eM1 exp( 𝛿
2
T ) exp(− 𝛿

2
t) |y(0) | + (eM2T

1
q + 2 q

𝛿
+ eM3T

1
q )‖K‖p .

Then,
y(t) ≤ ke− 𝛿

2 t |y(0) | + r , (12)

where, k = eM1 exp( 𝛿2T ) and r = (eM2T
1
q + 2 q

𝛿
+ eM3T

1
q )‖K‖p with respect inequality (9) .

�

Consider the dierential inequality (6) .

Theorem 2. Suppose that,

• there exists 𝛿 > 0, l > 0 andT ≥ 0 such that

1
l

∫ k+l

k
s(t)dt ≤ −𝛿 , ∀k ≥ T . (13)
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• for any xedT < ∞

sup
t≥0;0≤u≤T

∫ t+u

t
s(_ )d_ < ∞, (14)

• there exists 1 < p < ∞ such that K ∈ Lp ( [0, +∞[).
Then,

y(t) ≤ ke−𝛿 (t−t0) |y(t0) | + r , (15)

where k and r are positive constants.

Proof. We have,

y(t) ≤ exp(
∫ t

t0
s(_ )d_ )y(t0) +

∫ t

t0
K (u) exp(

∫ t

u
s(_ )d_ )du. (16)

Case 1: whenT ≥ t0 ,
∫ t
t0
s(_ )d_ =

∫ T
t0
s(_ )d_ +

∫ t
T s(_ )d_ .

Let N be the integer for which

(N − 1)l ≤ t −T ≤ Nl

∫ t

t0
s(_ )d_ =

∫ T

t0
s(_ )d_ +

∫ t

T
s(_ )d_

=

∫ T

t0
s(_ )d_ +

N−2∑︁
i=0

∫ T+(i+1)l

T+il
s(_ )d_ +

∫ t

T+(N−1)l
s(_ )d_

≤
∫ T

t0
s(_ )d_ − (N − 1)𝛿l +

∫ t

T+(N−1)l
s(_ )d_

≤ M1 − (N − 1)𝛿l +M2

≤ −𝛿 (t − t0) +M .

Case 2: whenT ≤ t0 ,
Let N be the integer for which

(N − 1)l ≤ t − t0 ≤ Nl

∫ t

t0
s(_ )d_ =

N−2∑︁
i=0

∫ t0+(i+1)l

t0+il
s(_ )d_ +

∫ t

t0+(N−1)l
s(_ )d_

≤ −(N − 1)𝛿l +M ‘
1

≤ −𝛿 (t − t0) +M ‘.

Then, there exists a constant 𝛼 such that,∫ t

t0
s(_ )d_ ≤ −𝛿 (t − t0) + 𝛼 , ∀ t0 ≥ 0, ∀t ≥ t0. (17)

Then, there exists a constant k such that

e
∫ t
t0
s (_ )d_ ≤ ke−𝛿 (t−t0) , ∀t ≥ t0. (18)
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Hence,

y(t) ≤ ke−𝛿 (t−t0) |y(t0) | + k
∫ t

t0
|K (u) |e−𝛿 (t−u)du

≤ ke−𝛿 (t−t0) |y(t0) | + k(
∫ t

t0
e−𝛿q (t−u)du)

1
q ‖K‖p

≤ ke−𝛿 (t−t0) |y(t0) | +
‖K‖p
(𝛿q)

1
q

.

Then,
y(t) ≤ ke−𝛿 (t−t0) |y(t0) | + r , (19)

where r =
‖K‖p
(𝛿q)

1
q

with respect inequality (15) . �

3 Stability of Lorenz equations

The Lorenz equations is one of the most famous models of nonlinear dynamics, which is a nonlinear system
that evolves in ℝ3 whose equations are given by:

¤x = a(y − x)
¤y = cx − xz − y
¤z = xy − bz

(20)

where the parameters a, b and c are assumed positive real numbers. For considered assumption on parameters,
if c < 1 then the system (20) has a unique equilibrium point S0 (0, 0, 0) and if c > 1 then the system (20) has
a three equilibrium point S0 (0, 0, 0) and q± = (±

√︁
b(c − 1) , ±

√︁
b(c − 1) , c − 1).

The Lorenz system has played a fundamental role in the area of nonlinear science and chaotic dynamics.
Therefore, the study of the stability and attractivity of the origin as an equilibrium point of the Lorenz system
is theoretically signicant, and also practically important. When a = 10, b = 8/3, c = 28, the system is
chaotic, with the attractor as shown in Fig 1. Consequently, the authors in [11] proposed the following Lorenz
family: 

¤x = a𝛼 (y − x)
¤y = c𝛼x − xz − d𝛼y
¤z = xy − b𝛼z

(21)

where

a𝛼 = 25𝛼 + 10, b𝛼 =
1
3
(𝛼 + 8) , c𝛼 = 28 − 35𝛼 , d𝛼 = 1 − 29𝛼 ,

with
𝛼 ∈ [0, 1/29[.

Consider the following Lyapunov function:

V_ =
1
2
[_ x2 + y2 + (z − _ a𝛼 − c𝛼)2] (22)

this function satises the following relation on the derivative with respect to system (21) :

dV_
dt

= _ x ¤x + y ¤y + ¤z(z − _ a𝛼 − c𝛼)

= _ x(a𝛼 (y − x)) + y(c𝛼x − xz − d𝛼y) + (xy − b𝛼z) (z − _ a𝛼 − c𝛼)
= _ a𝛼xy − _ a𝛼x2 + c𝛼xy − xzy − d𝛼y2 − b𝛼z2 + _ a𝛼b𝛼z + c𝛼b𝛼z + xyz − _ a𝛼xy − c𝛼xy
= −_ a𝛼x2 − d𝛼y2 − b𝛼z2 + b𝛼 (_ a𝛼 + c𝛼)z.
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Figure 1: Phase portrait of Lorenz attractor

Then, using the facts that a𝛼 > 1 and 0 < d𝛼 ≤ 1, we obtain

dV_
dt

≤ −_ x2 − d𝛼y2 − d𝛼z2 − (b𝛼 − d𝛼)z2 − d𝛼 (_ a𝛼 + c𝛼)2

+ 2d𝛼 (_ a𝛼 + c𝛼)z + (b𝛼 − 2d𝛼) (_ a𝛼 + c𝛼)z + d𝛼 (_ a𝛼 + c𝛼)2

= −_ x2 − d𝛼y2 − d𝛼 (z − _ a𝛼 − c𝛼)2 + (b𝛼 − 2d𝛼) (_ a𝛼 + c𝛼)z + d𝛼 (_ a𝛼 + c𝛼)2 − (b𝛼 − d𝛼)z2

= −_ x2 − d𝛼y2 − d𝛼 (z − _ a𝛼 − c𝛼)2 + d𝛼 (_ a𝛼 + c𝛼)2 + g (z) (23)

with

g (z) = −(b𝛼 − d𝛼)z2 + (b𝛼 − 2d𝛼) (_ a𝛼 + c𝛼)z.

Then, setting

g
′ (z) = −2(b𝛼 − d𝛼)z + (b𝛼 − 2d𝛼) (_ a𝛼 + c𝛼)

zero, yields

z0 =
(b𝛼 − 2d𝛼) (_ a𝛼 + c𝛼)

2(b𝛼 − d𝛼)
. (24)

Since b𝛼 > 2 > d𝛼 , 0 < d𝛼 ≤ 1, it follows that z0 > 0 and g
′′ (z0) = −2(b𝛼 − d𝛼) < 0. Thus,

sup
z∈ℝ

g (z) = g (z0) =
[(b𝛼 − 2d𝛼) (_ a𝛼 + c𝛼)]2

4(b𝛼 − d𝛼)
. (25)

We obtain

6
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dV_
dt

= −_ a𝛼x2 − d𝛼y2 − b𝛼z2 + b𝛼 (_ a𝛼 + c𝛼)z

≤ −_ x2 − d𝛼y2 − d𝛼 (z − _ a𝛼 − c𝛼)2 + d𝛼 (_ a𝛼 + c𝛼)2 + sup
z∈ℝ

g (z)

≤ −_ x2 − d𝛼y2 − d𝛼 (z − _ a𝛼 − c𝛼)2 + d𝛼 (_ a𝛼 + c𝛼)2 +
[(b𝛼 − 2d𝛼) (_ a𝛼 + c𝛼)]2

4(b𝛼 − d𝛼)

≤ −_ x2 − d𝛼y2 − d𝛼 (z − _ a𝛼 − c𝛼)2 +
b2𝛼 (_ a𝛼 + c𝛼)2
4(b𝛼 − d𝛼)

≤ −_ x2 − d𝛼y2 − d𝛼 (z − _ a𝛼 − c𝛼)2 + 2d𝛼R𝛼

≤ −2d𝛼V_ + 2d𝛼R𝛼 . (26)

with

R𝛼 =
b2𝛼 (_ a𝛼 + c𝛼)2
8(b𝛼 − d𝛼)d𝛼

Thus,
dV_
dt

≤ 0 whenV_ ≥ R_ .

By theorem 1 we get

V_ (X (t) ≤ V_ (X0)e−2d𝛼 (t−t0) +
∫ t

t0
e−2d𝛼 (t−𝜏 )2d𝛼R_d𝜏

= V_ (X0)e−2d𝛼 (t−t0) + R_ (1 − e−2d𝛼 (t−t0 ). (27)

So, ifV_ (X (t)) > R_ , t ≥ t0, we have

V_ (X (t)) ≤ (V_ (X0) − R_ )e−2d_ (t−t0) + R_ . (28)

Example 
¤x = a𝛼 (y − x)
¤y = c𝛼x − xz + d𝛼y
¤z = xy − b𝛼z

(29)

where a(𝛼) = 25𝛼 + 10, b(𝛼) = 1
3 (𝛼 + 8) , c(𝛼) = 28 − 35𝛼 , d(𝛼) = 1 − 29𝛼.

For 𝛼 = 1
33 .
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Figure 2: Phase portraits of the Lorenz family for 𝛼 = 1
33

For 𝛼 = 1
300 .

Figure 3: Phase portraits of the Lorenz family for 𝛼 = 1
300
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4 Conclusion

Exponential practical stability of a class of nonlinear time-varying perturbed systems by the Lyapunov method
has been studied. New sucient conditions for the practical exponential stability of nonlinear perturbed system
were given.

References

[1] A. Ben Abdallah, M. Dlala and M.A. Hammami, A new Lyapunov function for stability of perturbed
nonlinear systems. Syst. Control Lett. 56 (2007), 179-187.

[2] A. Ben Abdallah, M. Dlala and M.A. Hammami, Exponential stability of perturbed nonlinear systems.
Nonlinear Dyn. Syst. Theory, 5 (2005), 357-367.

[3] A. Ben Abdallah, I. Ellouze, M. A. Hammami, Practical Exponential Stability of perturbed Triangular
systems and a separation principle, Asian J. Control, 13 (2011), 445-448.

[4] A. Ben Abdallah, I. Ellouze, M. A. Hammami, Practical stability of nonlinear time-varying cascade sys-
tems, J. Dyn. Syst. 15 (2009), 45-62.

[5] A.Ben Abdallah and M.A.Hammami, On the output stability for nonlinear uncertain control systems. Int.
J. Control, 74 (2001), 547-551.

[6] B. BenHamed, I. Ellouze, M.A. Hammami Practical uniform stability of nonlinear dierential delay equa-
tions, Mediterranean J. Math. 8 (2011), 603-616.

[7] S.R. Bernfeld, V. LakshmiKantham, Practical Stability and Lyapunov functions, Tohoku Math. J. (2), 32
(1980), 607-613.

[8] A.Ben Makhlouf, Stability with respect to part of the variables of nonlinear Caputo fractional dierential
equations, Math. Commun. 23 (2018) 119-126.

[9] A. Ben Makhlouf, M. A. Hammami, K. Sioud, Stability of fractional-order nonlinear systems depending
on a parameter, Bull. Korean Math. Soc. 54 (2017), 1309-1321.

[10] A. Ben Makhlouf, M. A. Hammami, A nonlinear inequality and application to global asymptotic stability
of perturbed systems. Math. Methods Appl. Sci. 38 (2015), 2496–2505.

[11] G.R. Chen, J.H. Lü, Dynamical Analysis, Control and Synchronization of Lorenz Families. Chinese
Science Press. Beijing. (2003).

[12] C. F. Chuang, Y. J. Sun, W. J. Wang, A novel synchronization scheme with a simple linear control and
guaranteed convergence time for generalized Lorenz chaotic systems, Chaos, 22 (2012), 043108.

[13] M. Dlala, M. A. Hammami, Uniform Exponential Practical Stability of Implusive Perturbed Systems, J.
Dyn. Control Syst. 13 (2007), 373-386.

[14] I. Ellouze, M.A. Hammami, A separation principle of time varying dynamical systems: A practical sta-
bility approach, Math. Model. Anal., 12 (2007), 297-308.

[15] B. Ghanmi, N. Hadj Taieb, M.A. Hammami, Growth conditions for exponential stability of time-varying
perturbed systems, Int. J. Control, 86 (2013), 1086-1097.

[16] Z. HajSalem, M. Ali Hammami and M. Mabrouk, On the global uniform asymptotic stability of time-
varying dynamical systems. Stud. Univ. Babel -Bolyai Math. 59 (2014), 57–67.

9



Asian J. Math. Appl. (2024) 2024:6

[17] M. Hammi, M. Ali Hammami, Non-linear integral inequalities and applications to asymptotic stability.
IMA J. Math. Control Inform. 32 (2015), 717–735.

[18] M. A. Hammami, On the stability of nonlinear control systems with uncertainty, J. Dyn. Control Syst. 7
(2001), 171-179.

[19] M. A. Hammami, N. H. Rettab, On the region of attraction of dynamical systems: application to Lorenz
equations, Arch. Control Sci. 30 (2020), 389-409.

[20] H. K. Khalil, Nonlinear systems, Prentice-Hall, New York (2002).

[21] A. M. Lyapunov, The general problem of the stability of motion, Int. J. Control, 55(1992), 521-790.

[22] X. Song, S. Li, A. Li, Practical Stability of nonlinear dierential equation with initial time dierence,
Appl. Math. Comput. 203 (2008), 157-162.

[23] D. Stutson, A. S. Vatsala, Generatized Practical Stability results by perturbed Lyapunov functions, J. Appl.
Math. Stochastic Anal. 9 (1996), 69-75.

[24] T. Yoshizawa, Stability Theory by Lyapunov’s Second Method, The Mathematical Society of Japan,
1996.

[25] Z. S. Athanassov, Perturbation theorems for nonlinear systems of ordinary dierential equations. J. Math.
Anal. Appl. 86 (1982), 194–207.

10


	Introduction
	Definitions and tools
	Stability of Lorenz equations 
	Conclusion

