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Abstract
In this paper, we present some new variants of the Ste�ensen integral inequality. Original assumptions are
made, including a monotonicity condition of a transformation of the functions involved. Some of our variants
have the property of depending on three adaptable functions. The theory is illustrated by several examples.

Keywords: Ste�ensen inequality, integral inequalities, monotonicity.

1 Introduction

Integral inequalities have always played a central role in mathematics. They aim to give tractable bounds on
integrals that are di�cult to determine. They form the basis of key results in functional analysis, probability
theory, statistical theory, di�erential equations, optimization and numerical analysis. Classical examples in-
clude the Cauchy-Schwarz integral inequality, the Jensen integral inequality, the Hölder integral inequality,
the Hilbert integral inequality, the Hardy integral inequality and the Ste�ensen integral inequality, each of
which contributes to di�erent goals. For more details on this classic topic, see [1], [2], [3], [4] and [5]. Let us
focus here on the Ste�ensen integral inequality introduced by Johan Frederik Ste�ensen in [6]. It is presented
in the proposition below.

Proposition 1.1 (Ste�ensen integral inequality, [6]). Let (a, b) ∈ ℝ2 ∪ {±∞}2 with a < b, and f , g :
(a, b) ↦→ (0, +∞) be two integrable functions, such that

• f is non-increasing,

• for any t ∈ (a, b), we have
0 ≤ g (t) ≤ 1.

Let us set

𝜆 =

∫ b

a
g (t)dt.

Then we have ∫ a+𝜆

a
f (t)dt ≥

∫ b

a
f (t)g (t)dt.

This inequality has the ability to autocomplete itself with the following lower bound:∫ b

b−𝜆
f (t)dt ≤

∫ b

a
f (t)g (t)dt.
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In recent decades, the Ste�ensen integral inequality has been extended, generalized and modi�ed in several
ways. Signi�cant progress on this topic can be found in [7], [8], [9], [10], [11] and [12]. See also the detailed
monograph in [13].

This paper proposes a new approach to this inequality. It consists mainly in modifying the monotonicity
assumption; instead of imposing it only on f , we make a monotonicity assumption on a special transformation
of f and g. This, together with a di�erent choice of 𝜆 , i.e.,

𝜆 =

∫ b

a

√︁
g (t)dt ,

leads to a new integral inequality which can be seen as a variant of the Ste�ensen integral inequality. Examples
and auxiliary results are given. Then, under di�erent assumptions, a more general variant is established. It
is characterized by the addition of a new adaptable function. Further results for integral inequalities are also
derived. The theory is illustrated by numerous examples with speci�c functional con�gurations and numerical
studies.

The rest of the paper consists of the following sections: Section 2 discusses our main integral inequality.
Section 3 is devoted to its generalization. A conclusion is given in Section 4.

2 A variant of the Ste�ensen integral inequality

2.1 Main result

Our main variant of the Ste�ensen integral inequality is described in the proposition below.

Proposition 2.1 Let (a, b) ∈ ℝ2 ∪ {±∞}2 with a < b, and f , g : (a, b) ↦→ (0, +∞) be two functions such that

•
√
g is integrable,

• for any t ∈ (a, b), we have 0 ≤ g (t) ≤ 1,

• [1 + √
g] f is non-increasing.

Let us set

𝜆 =

∫ b

a

√︁
g (t)dt.

Then we have ∫ a+𝜆

a
f (t)dt ≥

∫ b

a
f (t)g (t)dt +

∫ b

a+𝜆
f (t)

√︁
g (t)dt.

Proof of Proposition 2.1. Note that, since 0 ≤ g (t) ≤ 1 for any t ∈ (a, b), we have 0 ≤ 𝜆 =
∫ b
a

√︁
g (t)dt ≤∫ b

a dt = b − a. Using this and the Chasles integral relation, we can write∫ a+𝜆

a
f (t)dt −

∫ b

a
f (t)g (t)dt

=

∫ a+𝜆

a
f (t)dt −

∫ a+𝜆

a
f (t)g (t)dt −

∫ b

a+𝜆
f (t)g (t)dt

=

∫ a+𝜆

a
[1 − g (t)] f (t)dt −

∫ b

a+𝜆
f (t)g (t)dt

=

∫ a+𝜆

a

[
1 −

√︁
g (t)

] [
1 +

√︁
g (t)

]
f (t)dt −

∫ b

a+𝜆
f (t)g (t)dt. (1)
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This last decomposition, and in particular the factorization carried out, is the key point of our approach. Using
0 ≤ g (t) ≤ 1 for any t ∈ (a, b), the fact that [1 + √

g] f is non-increasing, the de�nition of 𝜆 and the Chasles
integral relation, we have∫ a+𝜆

a

[
1 −

√︁
g (t)

] [
1 +

√︁
g (t)

]
f (t)dt

≥
[
1 +

√︁
g (a + 𝜆 )

]
f (a + 𝜆 )

∫ a+𝜆

a

[
1 −

√︁
g (t)

]
dt

=

[
1 +

√︁
g (a + 𝜆 )

]
f (a + 𝜆 )

[
𝜆 −

∫ a+𝜆

a

√︁
g (t)dt

]
=

[
1 +

√︁
g (a + 𝜆 )

]
f (a + 𝜆 )

[∫ b

a

√︁
g (t)dt −

∫ a+𝜆

a

√︁
g (t)dt

]
=

[
1 +

√︁
g (a + 𝜆 )

]
f (a + 𝜆 )

∫ b

a+𝜆

√︁
g (t)dt. (2)

It follows from Equations (1) and (2) , the Chasles integral relation and the fact that [1+√g] f is non-increasing
that ∫ a+𝜆

a
f (t)dt −

∫ b

a
f (t)g (t)dt

≥
[
1 +

√︁
g (a + 𝜆 )

]
f (a + 𝜆 )

∫ b

a+𝜆

√︁
g (t)dt −

∫ b

a+𝜆
f (t)g (t)dt

=

∫ b

a+𝜆

{[
1 +

√︁
g (a + 𝜆 )

]
f (a + 𝜆 ) − f (t)

√︁
g (t)

} √︁
g (t)dt

=

∫ b

a+𝜆

{[
1 +

√︁
g (a + 𝜆 )

]
f (a + 𝜆 ) −

[
1 +

√︁
g (t)

]
f (t)

} √︁
g (t)dt +

∫ b

a+𝜆
f (t)

√︁
g (t)dt

≥
∫ b

a+𝜆
f (t)

√︁
g (t)dt.

We thus concludes that ∫ a+𝜆

a
f (t)dt ≥

∫ b

a
f (t)g (t)dt +

∫ b

a+𝜆
f (t)

√︁
g (t)dt ,

which is the desired inequality. �

Remark 2.2 In Proposition 2.1, if we assume that [1 + √
g] f is non-decreasing instead of non-increasing, we can

show that the �nal inequality is reversed, i.e.,∫ a+𝜆

a
f (t)dt ≤

∫ b

a
f (t)g (t)dt +

∫ b

a+𝜆
f (t)

√︁
g (t)dt.

The main di�erence between the Proposition 2.1 and the classical Ste�ensen integral inequality is the non-
increasing assumption, which applies to [1 +√g] f , not just to f . Also, the parameter 𝜆 is rede�ned, and a sum
of two integral terms is the lower bound. This makes the result in Proposition 2.1 a novel integral inequality
to the best of our knowledge.

As an immediate remark, in the exact framework of Proposition 2.1, we have∫ a+𝜆

a
f (t)dt ≥

∫ b

a
f (t)g (t)dt +

∫ b

a+𝜆
f (t)

√︁
g (t)dt ≥

∫ b

a
f (t)g (t)dt ,

which is the form of the Ste�ensen integral inequality, but with a di�erent de�nition of 𝜆 and, more impor-
tantly, di�erent assumptions on f and g. More re�ned results related to Proposition 2.1 are developed in
Subsection 2.3.

3
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2.2 Some examples

Let us now illustrate Proposition 2.1 with two examples which consider speci�c functions and lead to calculating
various integrals.

• Let us consider a = 0, b = 1, g (t) = 1 − t, and

f (t) = 1
√
t
[
1 +

√
1 − t

] .
It is clear that 0 ≤ g (t) = 1 − t ≤ 1 for any t ∈ (0, 1), and so g is integrable on (0, 1). Furthermore, f is
non-monotonic because we have

lim
t→0

f (t) = +∞, f
(
1
2

)
= 2[

√
2 − 1] ≈ 0.828427, f (1) = 1,

so that +∞ > 0.828427 < 1. Therefore, the standard Ste�ensen integral inequality can not be applied.
However, keeping in mind the framework of Proposition 2.1, for any t ∈ (0, 1), we have

[1 +
√︁
g (t)] f (t) =

[
1 +

√
1 − t

] 1
√
t
[
1 +

√
1 − t

] =
1
√
t
,

which is obviously non-increasing. The monotonicity assumption of Proposition 2.1 is thus satis�ed. In
order to apply this proposition, we calculate

𝜆 =

∫ b

a

√︁
g (t)dt =

∫ 1

0

√
1 − tdt = 2

3
,

∫ a+𝜆

a
f (t)dt =

∫ 2/3

0

1
√
t
[
1 +

√
1 − t

] dt = √
2 −

√
6 + 2 arcsin

[√︂
2
3

]
≈ 0.8754,

∫ b

a
f (t)g (t)dt =

∫ 1

0

1
√
t
[
1 +

√
1 − t

] (1 − t)dt = 3𝜋
2

− 4 ≈ 0.7124

and ∫ b

a+𝜆
f (t)

√︁
g (t)dt =

∫ 1

2/3

1
√
t
[
1 +

√
1 − t

]√1 − tdt
= 4 − 5

√︂
2
3
+
√
2 − 2 arctan

[
1
√
2

]
≈ 0.1008.

We clearly have
0.8754 ≥ 0.7124 + 0.1008 = 0.8132,

which illustrates the inequality in Proposition 2.1.

• As another example, let us consider a = 0, b = 1, g (t) = sin(𝜋t), and

f (t) = 1

(1 + t)
[
1 +

√︁
sin(𝜋t)

] .
4
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It is clear that 0 ≤ g (t) = sin(𝜋t) ≤ 1 for any t ∈ (0, 1), and so g is integrable on (0, 1). Furthermore, f
is non-monotonic because we have

lim
t→0

f (t) = 1, f
(
1
2

)
=
1
3
, f (1) = 1

2
,

so that 1 > 1/3 < 1/2. Therefore, the standard Ste�ensen inequality is not directly applicable. However,
for any t ∈ (0, 1), we have

[1 +
√︁
g (t)] f (t) =

[
1 +

√︁
sin(𝜋t)

] 1

(1 + t)
[
1 +

√︁
sin(𝜋t)

] =
1
1 + t ,

which is obviously non-increasing. This is an assumption of Proposition 2.1. In order to apply this
proposition, we calculate

𝜆 =

∫ b

a

√︁
g (t)dt =

∫ 1

0

√︁
sin(𝜋t)dt = 2

√
2

𝜋3/2

[
Γ

(
3
4

)]2
≈ 0.76276,

where Γ(x) is the standard gamma function de�ned by Γ(x) =
∫ +∞
0 tx−1e−tdt,∫ a+𝜆

a
f (t)dt ≈

∫ 0.76276

0

1

(1 + t)
[
1 +

√︁
sin(𝜋t)

] dt ≈ 0.322034,
∫ b

a
f (t)g (t)dt =

∫ 1

0

1

(1 + t)
[
1 +

√︁
sin(𝜋t)

] sin(𝜋t)dt ≈ 0.233646
and ∫ b

a+𝜆
f (t)

√︁
g (t)dt ≈

∫ 1

0.76276

1

(1 + t)
[
1 +

√︁
sin(𝜋t)

] √︁sin(𝜋t)dt
≈ 0.0445287.

We clearly have
0.322034 ≥ 0.233646 + 0.0445287 = 0.2781747,

which illustrates the inequality in Proposition 2.1.

Other examples of various kinds can be presented similarly.

2.3 Complementary results

We now establish some additional results which, in a sense, complete Proposition 2.1.
The proposition below is about an inequality involving the integrals of f and f g over (a, b).

Proposition 2.3 In the exact framework of Proposition 2.1, we have∫ b

a
f (t)dt ≥

∫ b

a
f (t)g (t)dt +

∫ b

a+𝜆
[1 +

√︁
g (t)] f (t)dt.

If a and b are �nite, we can possibly lower bound the last term as follows:∫ b

a+𝜆
[1 + f (t)]

√︁
g (t)dt ≥ (b − a − 𝜆 ) [1 +

√︁
g (b)] f (b).

5
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Proof of Proposition 2.3. Thanks to Proposition 2.1, we have∫ a+𝜆

a
f (t)dt ≥

∫ b

a
f (t)g (t)dt +

∫ b

a+𝜆
f (t)

√︁
g (t)dt.

If we add the integral term
∫ b
a+𝜆 f (t)dt on both sides, by the Chasles integral relation, we obtain∫ b

a
f (t)dt =

∫ a+𝜆

a
f (t)dt +

∫ b

a+𝜆
f (t)dt

≥
∫ b

a
f (t)g (t)dt +

∫ b

a+𝜆
f (t)

√︁
g (t)dt +

∫ b

a+𝜆
f (t)dt

=

∫ b

a
f (t)g (t)dt +

∫ b

a+𝜆
[1 +

√︁
g (t)] f (t)dt.

The �rst result is proved. For the last term, since [1 + √
g] f is non-increasing, it is immediate that∫ b

a+𝜆
[1 +

√︁
g (t)] f (t)dt ≥ [1 +

√︁
g (b)] f (b)

∫ b

a+𝜆
dt = (b − a − 𝜆 ) [1 +

√︁
g (b)] f (b).

The second result is established, ending the proof. �

Remark 2.4 In Proposition 2.3, if we assume that [1 + √
g] f is non-decreasing instead of non-increasing, we can

show that the main inequalities are reversed, i.e.,∫ b

a
f (t)dt ≤

∫ b

a
f (t)g (t)dt +

∫ b

a+𝜆
[1 +

√︁
g (t)] f (t)dt

and, if a and b are �nite, ∫ b

a+𝜆
[1 + f (t)]

√︁
g (t)dt ≤ (b − a − 𝜆 ) [1 +

√︁
g (b)] f (b).

In the result below, with a new de�nition of 𝜆 and under di�erent assumptions, a variant of Proposition 2.1
is proposed.

Proposition 2.5 Let (a, b) ∈ ℝ2 ∪ {±∞}2 with a < b, and f , g : (a, b) ↦→ (0, +∞) be two functions such that

•
√︁
1 − g is integrable,

• for any t ∈ (a, b), we have 0 ≤ g (t) ≤ 1,

• [1 +
√︁
1 − g] f is non-increasing.

Let us set

𝜆 =

∫ b

a

√︁
1 − g (t)dt.

Then we have ∫ b

a
f (t)g (t)dt ≥

∫ b

a+𝜆
f (t)dt +

∫ b

a+𝜆
f (t)

√︁
1 − g (t)dt.

Proof of Proposition 2.5. The proof is based on Proposition 2.1 under a particular con�guration. Let us
de�ne g★ : (a, b) ↦→ (0, +∞) by g★ = 1 − g. Then the assumptions of Proposition 2.1 are satis�ed for f and g★
instead of g. Noticing that

𝜆 =

∫ b

a

√︁
1 − g (t)dt =

∫ b

a

√︁
g★(t)dt ,

6
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the main integral inequality can be rewritten as∫ a+𝜆

a
f (t)dt ≥

∫ b

a
f (t)g★(t)dt +

∫ b

a+𝜆
f (t)

√︁
g★(t)dt

=

∫ b

a
f (t) [1 − g (t)]dt +

∫ b

a+𝜆
f (t)

√︁
1 − g (t)dt

=

∫ b

a
f (t)dt −

∫ b

a
f (t)g (t)dt +

∫ b

a+𝜆
f (t)

√︁
1 − g (t)dt.

Therefore, according to the Chasles integral relation, we obtain∫ b

a
f (t)g (t)dt ≥

∫ b

a
f (t)dt −

∫ a+𝜆

a
f (t)dt +

∫ b

a+𝜆
f (t)

√︁
1 − g (t)dt

=

∫ b

a+𝜆
f (t)dt +

∫ b

a+𝜆
f (t)

√︁
1 − g (t)dt.

This concludes the proof. �

Remark 2.6 In Proposition 2.5, if we assume that [1 +
√︁
1 − g] f is non-decreasing instead of non-increasing, we

can show that the �nal inequality is reversed, i.e.,∫ b

a
f (t)g (t)dt ≤

∫ b

a+𝜆
f (t)dt +

∫ b

a+𝜆
f (t)

√︁
1 − g (t)dt.

In the exact framework of Proposition 2.5, we also have∫ b

a
f (t)g (t)dt ≥

∫ b

a+𝜆
f (t)dt +

∫ b

a+𝜆
f (t)

√︁
1 − g (t)dt ≥

∫ b

a+𝜆
f (t)dt ,

which can be seen as a reversed variant of the Ste�ensen integral inequality.
The proposition below considers the de�nition of the parameter 𝜆 in the standard Ste�ensen integral in-

equality and o�ers an alternative inequality. The proof actually adapts the result in Proposition 2.1.

Proposition 2.7 Let (a, b) ∈ ℝ2 ∪ {±∞}2 with a < b, and f , g : (a, b) ↦→ (0, +∞) be two functions such that

• g is integrable,

• for any t ∈ (a, b), we have 0 ≤ g (t) ≤ 1,

• (1 + g) f is non-increasing.

Let us set

𝜆 =

∫ b

a
g (t)dt.

Then we have ∫ a+𝜆

a
f (t)dt ≥

∫ b

a
f (t)g2 (t)dt +

∫ b

a+𝜆
f (t)g (t)dt.

Proof of Proposition 2.7. The proof is based on Proposition 2.1 under a particular con�guration. Let us
de�ne g† : (a, b) ↦→ (0, +∞) by g† = g2. Then the assumptions of Proposition 2.1 are satis�ed for f and g†
instead of g. Noticing that

𝜆 =

∫ b

a
g (t)dt =

∫ b

a

√︁
g† (t)dt ,

7
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the main integral inequality can be rewritten as∫ a+𝜆

a
f (t)dt ≥

∫ b

a
f (t)g† (t)dt +

∫ b

a+𝜆
f (t)

√︁
g† (t)dt ,

so that ∫ a+𝜆

a
f (t)dt ≥

∫ b

a
f (t)g2 (t)dt +

∫ b

a+𝜆
f (t)g (t)dt.

This completes the proof. �

Remark 2.8 In Proposition 2.7, if we assume that [1+ g] f is non-decreasing instead of non-increasing, we can show
that the �nal inequality is reversed, i.e.,∫ a+𝜆

a
f (t)dt ≤

∫ b

a
f (t)g2 (t)dt +

∫ b

a+𝜆
f (t)g (t)dt.

Proposition 2.7 thus shows that, under integrability and monotonicity assumptions involving some interaction
between f and g , by considering 𝜆 =

∫ b
a g (t)dt, we can obtain a new lower bound for

∫ a+𝜆
a f (t)dt. This provides

an alternative inequality to the Ste�ensen integral inequality.

3 Generalization

The generalization of some of the above results is discussed in this section.

3.1 A general result

The proposition below can be seen as a general version of Proposition 2.1, with the addition of an intermediate
function h.

Proposition 3.1 Let (a, b) ∈ ℝ2 ∪ {±∞}2 with a < b, and f , g , h : (a, b) ↦→ (0, +∞) be three functions such
that

•
√
g is integrable,

• by setting

𝜆 =

∫ b

a

√︁
g (t)dt ,

for any t ∈ (a, b), we have
0 ≤ 𝜆 2g (t) ≤ h(t) ,

• [
√
h + 𝜆

√
g] f is non-increasing.

Let us consider the real number 𝜃 ∈ (0, b − a) such that∫ a+𝜃

a

√︁
h(t)dt = 𝜆 2.

Then we have ∫ a+𝜃

a
f (t)h(t)dt ≥ 𝜆

[
𝜆

∫ b

a
f (t)g (t)dt +

∫ b

a+𝜃

√︁
h(t)

√︁
g (t) f (t)dt

]
.

8
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Proof of Proposition 3.1. Since 𝜃 ∈ (0, b − a), the Chasles integral relation gives∫ a+𝜃

a
f (t)h(t)dt − 𝜆 2

∫ b

a
f (t)g (t)dt

=

∫ a+𝜃

a
f (t)h(t)dt − 𝜆 2

∫ a+𝜃

a
f (t)g (t)dt − 𝜆 2

∫ b

a+𝜃
f (t)g (t)dt

=

∫ a+𝜃

a
[h(t) − 𝜆 2g (t)] f (t)dt − 𝜆 2

∫ b

a+𝜃
f (t)g (t)dt

=

∫ a+𝜃

a

[√︁
h(t) − 𝜆

√︁
g (t)

] [√︁
h(t) + 𝜆

√︁
g (t)

]
f (t)dt − 𝜆 2

∫ b

a+𝜃
f (t)g (t)dt. (3)

Using 0 ≤ 𝜆 2g (t) ≤ h(t) for any t ∈ (a, b), which implies that
√︁
h(t) − 𝜆

√︁
g (t) ≥ 0, the fact that [

√
h + 𝜆

√
g] f

is non-increasing, the Chasles integral relation and the de�nitions of 𝜆 and 𝜃 , we have∫ a+𝜃

a

[√︁
h(t) − 𝜆

√︁
g (t)

] [√︁
h(t) + 𝜆

√︁
g (t)

]
f (t)dt

≥
[√︁
h(a + 𝜃) + 𝜆

√︁
g (a + 𝜃)

]
f (a + 𝜃)

∫ a+𝜃

a

[√︁
h(t) − 𝜆

√︁
g (t)

]
dt

=

[√︁
h(a + 𝜃) + 𝜆

√︁
g (a + 𝜃)

]
f (a + 𝜃)

[∫ a+𝜃

a

√︁
h(t)dt − 𝜆

∫ a+𝜃

a

√︁
g (t)dt

]
=

[√︁
h(a + 𝜃) + 𝜆

√︁
g (a + 𝜃)

]
f (a + 𝜃)×[∫ a+𝜃

a

√︁
h(t)dt − 𝜆

∫ b

a

√︁
g (t)dt + 𝜆

∫ b

a+𝜃

√︁
g (t)dt

]
=

[√︁
h(a + 𝜃) + 𝜆

√︁
g (a + 𝜃)

]
f (a + 𝜃)

{[∫ a+𝜃

a

√︁
h(t)dt − 𝜆 2

]
+ 𝜆

∫ b

a+𝜃

√︁
g (t)dt

}
= 𝜆

[√︁
h(a + 𝜃) + 𝜆

√︁
g (a + 𝜃)

]
f (a + 𝜃)

∫ b

a+𝜃

√︁
g (t)dt. (4)

It follows from Equations (3) and (4) , the Chasles integral relation and the fact that [
√
h + 𝜆

√
g] f is non-

increasing that ∫ a+𝜃

a
f (t)h(t)dt − 𝜆 2

∫ b

a
f (t)g (t)dt

≥ 𝜆

[√︁
h(a + 𝜃) + 𝜆

√︁
g (a + 𝜃)

]
f (a + 𝜃)

∫ b

a+𝜃

√︁
g (t)dt − 𝜆 2

∫ b

a+𝜃
f (t)g (t)dt

= 𝜆

∫ b

a+𝜃

{[√︁
h(a + 𝜃) + 𝜆

√︁
g (a + 𝜃)

]
f (a + 𝜃) − 𝜆 f (t)

√︁
g (t)

} √︁
g (t)dt

= 𝜆

∫ b

a+𝜃

{[√︁
h(a + 𝜃) + 𝜆

√︁
g (a + 𝜃)

]
f (a + 𝜃) −

[√︁
h(t) + 𝜆

√︁
g (t)

]
f (t)

} √︁
g (t)dt

+ 𝜆

∫ b

a+𝜃

√︁
h(t)

√︁
g (t) f (t)dt

≥ 𝜆

∫ b

a+𝜃

√︁
h(t)

√︁
g (t) f (t)dt.

We thus obtain ∫ a+𝜃

a
f (t)h(t)dt ≥ 𝜆

[
𝜆

∫ b

a
f (t)g (t)dt +

∫ b

a+𝜃

√︁
h(t)

√︁
g (t) f (t)dt

]
,
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which is the desired result. �

Remark 3.2 In Proposition 3.1, if we assume that [
√
h+𝜆√g] f is non-decreasing instead of non-increasing, we can

show that the �nal inequality is reversed, i.e.,∫ a+𝜃

a
f (t)h(t)dt ≤ 𝜆

[
𝜆

∫ b

a
f (t)g (t)dt +

∫ b

a+𝜃

√︁
h(t)

√︁
g (t) f (t)dt

]
.

If we take h(t) = 𝜆 2 in Proposition 3.1, we get 𝜃 = 𝜆 , and the assumptions and result are the same as in
Proposition 2.1. Proposition 3.1 is thus a generalization of Proposition 2.1 in this sense.

3.2 Complementary general results

The proposition below presents an inequality involving the integrals of f h and f g over (a, b).

Proposition 3.3 In the exact framework of Proposition 3.1, we have∫ b

a
f (t)h(t)dt ≥ 𝜆 2

∫ b

a
f (t)g (t)dt +

∫ b

a+𝜃
[
√︁
h(t) + 𝜆

√︁
g (t)] f (t)

√︁
h(t)dt.

If
∫ b
a+𝜃

√︁
h(t)dt is �nite, we can possibly lower bound the last term as follows:∫ b

a+𝜃
[
√︁
h(t) + 𝜆

√︁
g (t)] f (t)

√︁
h(t)dt ≥ [

√︁
h(b) + 𝜆

√︁
g (b)] f (b)

∫ b

a+𝜃

√︁
h(t)dt.

Proof of Proposition 3.3. Thanks to Proposition 3.1, we get∫ a+𝜃

a
f (t)h(t)dt ≥ 𝜆

[
𝜆

∫ b

a
f (t)g (t)dt +

∫ b

a+𝜃

√︁
h(t)

√︁
g (t) f (t)dt

]
.

If we add the integral term
∫ b
a+𝜃 f (t)h(t)dt on both sides, by the Chasles integral relation, we obtain∫ b

a
f (t)h(t)dt =

∫ a+𝜃

a
f (t)h(t)dt +

∫ b

a+𝜃
f (t)h(t)dt

≥ 𝜆

[
𝜆

∫ b

a
f (t)g (t)dt +

∫ b

a+𝜃

√︁
h(t)

√︁
g (t) f (t)dt

]
+
∫ b

a+𝜃
f (t)h(t)dt

= 𝜆 2
∫ b

a
f (t)g (t)dt +

∫ b

a+𝜃
[
√︁
h(t) + 𝜆

√︁
g (t)] f (t)

√︁
h(t)dt.

The �rst result is proved. For the last term, since [
√
h + √

g] f is non-increasing, we have∫ b

a+𝜃
[
√︁
h(t) + 𝜆

√︁
g (t)] f (t)

√︁
h(t)dt ≥ [

√︁
h(b) + 𝜆

√︁
g (b)] f (b)

∫ b

a+𝜃

√︁
h(t)dt.

The second result is obtained, ending the proof. �

Remark 3.4 In Proposition 3.3, if we assume that [
√
h+𝜆√g] f is non-decreasing instead of non-increasing, we can

show that the main inequalities are reversed, i.e.,∫ b

a
f (t)h(t)dt ≤ 𝜆 2

∫ b

a
f (t)g (t)dt +

∫ b

a+𝜃
[
√︁
h(t) + 𝜆

√︁
g (t)] f (t)

√︁
h(t)dt

and, if
∫ b
a+𝜃

√︁
h(t)dt is �nite,∫ b

a+𝜃
[
√︁
h(t) + 𝜆

√︁
g (t)] f (t)

√︁
h(t)dt ≤ [

√︁
h(b) + 𝜆

√︁
g (b)] f (b)

∫ b

a+𝜃

√︁
h(t)dt.

10
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If we take h(t) = 𝜆 2, Proposition 3.3 becomes Proposition 2.3.
In the result below, with a new de�nition of 𝜆 and under di�erent assumptions, a variant of Proposition 3.1

is proposed.

Proposition 3.5 Let (a, b) ∈ ℝ2 ∪ {±∞}2 with a < b, and f , g , h : (a, b) ↦→ (0, +∞) be three functions such
that

•
√︁
1 − g is integrable,

• by setting

𝜆 =

∫ b

a

√︁
1 − g (t)dt ,

for any t ∈ (a, b), we have
0 ≤ 𝜆 2 [1 − g (t)] ≤ h(t) ,

• [
√
h + 𝜆

√︁
1 − g] f is non-increasing.

Let us consider the real number 𝜃 ∈ (0, b − a) such that∫ a+𝜃

a

√︁
h(t)dt = 𝜆 2.

Then we have∫ a+𝜃

a
f (t)h(t)dt + 𝜆 2

∫ b

a
f (t)g (t)dt ≥ 𝜆

[
𝜆

∫ b

a
f (t)dt +

∫ b

a+𝜃

√︁
h(t)

√︁
1 − g (t) f (t)dt

]
.

Proof of Proposition 3.5. The proof is based on Proposition 3.1 under a particular con�guration. Let us
de�ne g★ : (a, b) ↦→ (0, +∞) by g★ = 1 − g. Then the assumptions of Proposition 3.1 are satis�ed for f and g★
instead of g. Noticing that

𝜆 =

∫ b

a

√︁
1 − g (t)dt =

∫ b

a

√︁
g★(t)dt ,

the main integral inequality can be rewritten as∫ a+𝜃

a
f (t)h(t)dt ≥ 𝜆

[
𝜆

∫ b

a
f (t)g★(t)dt +

∫ b

a+𝜃

√︁
h(t)

√︁
g★(t) f (t)dt

]
,

so that ∫ a+𝜃

a
f (t)h(t)dt ≥ 𝜆

[
𝜆

∫ b

a
f (t) [1 − g (t)]dt +

∫ b

a+𝜃

√︁
h(t)

√︁
1 − g (t) f (t)dt

]
and ∫ a+𝜃

a
f (t)h(t)dt ≥ 𝜆

[
𝜆

∫ b

a
f (t)dt − 𝜆

∫ b

a
f (t)g (t)dt +

∫ b

a+𝜃

√︁
h(t)

√︁
1 − g (t) f (t)dt

]
.

We can transform this inequality as∫ a+𝜃

a
f (t)h(t)dt + 𝜆 2

∫ b

a
f (t)g (t)dt ≥ 𝜆

[
𝜆

∫ b

a
f (t)dt +

∫ b

a+𝜃

√︁
h(t)

√︁
1 − g (t) f (t)dt

]
.

This ends the proof. �
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Remark 3.6 In Proposition 3.5, if we assume that [
√
h + 𝜆

√︁
1 − g] f is non-decreasing instead of non-increasing,

we can show that the �nal inequality is reversed, i.e.,∫ a+𝜃

a
f (t)h(t)dt + 𝜆 2

∫ b

a
f (t)g (t)dt ≤ 𝜆

[
𝜆

∫ b

a
f (t)dt +

∫ b

a+𝜃

√︁
h(t)

√︁
1 − g (t) f (t)dt

]
.

In a sense, Proposition 3.5 is an adaptation of Proposition 3.1. Other adaptations of this last proposition
are possible. For example, following the spirit of what Proposition 2.7 is to Proposition 2.1, we can think of
considering the functions g† = g2 and h† = h2 instead of g and h, respectively. We do not develop these ideas
further.

4 Conclusion

In this paper, we have established new integral inequalities, which can be seen as variants of the famous Stef-
fensen integral inequality. Di�erent assumptions are made on the functions involved, resulting in original
lower and upper bounds. Several examples are given. Generalizations involving additional functions are also
presented. Applications can be found in mathematical analysis and various branches of applied sciences. A
possible future work is the consideration of multivariate integrals and how the current assumptions can be
adapted to this scenario.
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