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Abstract
Studies on zero divisor graphs of completely primary �nite rings R have been extensively done from Galois
rings to other rings whose sets of zero divisors Z (R) coincides with the Jacobson radical J (R). The studies
have focused on graph geometric properties such as the girth, clique number, chromatic number and diameter
among others. Some �ndings are also evident on matrices of zero divisor graphs on certain classes of rings.
The classes of completely primary �nite rings considered in the various studies are square radical zero, cube
radical zero and power four radical zero. In this paper we have advanced the study on zero divisor graph Γ(R) of
completely primary �nite rings by investigating theWiener Index and its invariants such as the Average disorder
number and Distance index. Further, we analyse the binding number and some bounds on the Zagreb indices
of the rings satisfying the conditions (Z (R))3 = (0) and (Z (R))2 ≠ (0) , (Z (R))4 = (0) and (Z (R))3 ≠ (0).

Keywords: Completely primary �nite rings; Zero divisor graphs; Wiener index; Average disorder number;
Distance index.

1 Introduction

In the entire paper, R represents cube radical zero or power four radical zero completely primary �nite ring,
the zero divisor graph of R denoted by Γ(R) and R′ = GR(pkr , pk) to represent the Galois ring of order pkr
and characteristic pk for some positive integers k , r . Z (R) and J (R) to represent the subsets of zero divisors
and Jacobson radical respectively. Other notations are standard unless otherwise stated.

The concept on zero divisor graphs of commutative rings was introduced by Beck in [2] who centered
his study on the colouration of the graphs and obtaining the chromatic number. All zero divisors formed the
vertices of the graph. The graph was denoted byG (R). An extension of their research was done by Anderson
and Livingston in [1] which considered the vertices of the zero divisor graph Γ(R) using the nonzero-zero
divisors only. Their illustration of Γ(R) was considered to be better in terms of graph representation of zero
divisors. Their study investigated the graph geometric properties like the girth, diameter, chromatic number
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among others.

Further, Walwenda et al in [15] investigated the zero divisor graphs of �nite rings in which the product
of two zero divisors lies in the coe�cient subring where char (R) = pk , k ≥ 2 and (Z (R))2 ⊆ GR(pkr , pk)
satisfying Z (R) = pR′ ⊕U , (Z (R))k−1 = pk−1R′ and (Z (R))k = (0). The research focussed on the geometric
properties of Γ(R) such as the diameter, girth and the binding number index.

Some studies have also been performed on graph indices such as the Wiener index W (G) and its in-
variants such as the average disorder number A(G) and the average distance 𝜇(G). Some results are also
available on the Zagreb indices Z (G). The Wiener index is a graph invariant that belongs to the molecules
structure -descriptors called topological indices and are used for the design of molecules with desired property
[14]. In [10], a research was conducted on the Wiener index of the graph G and their line graph L(G). They
demonstrated that if G is of minimum degree at least 2, thenW (G) ≤ W (L(G)). It was further illustrated
that for any nonnegative integer g◦ , there exist g ≥ g◦ such that there are �nitely many graphs G of girth g
satisfyingW (G) =W (L(G)). All the graphs considered were simple and undirected.

In chemical graph theory, computations for Wiener indices for cyclic carbon-chained organic com-
pounds and its applications cannot be underestimated. This index has been quite handy in determination of
the boiling points and polarity number of alkanes and their branched isomers. Further, the most and common
natural �eld in the application of the Wiener index is the quantitative structure relationships especially in the
estimation of emission spectra of the ultra violet radiations of 𝛼 and 𝛽 -unsaturated Ketone.

Another index, the Zagreb index was introduced in [7] and given an elaboration in [8]. Fundamental
properties of the indices were given a summary in [11]. Other than the Wiener indexW (Γ(R)), average
disorder number A(Γ(R)), the average distance index 𝜇(Γ(R)) and the binding number b(Γ(R)) of the zero
divisor graph Γ(R) , we have also obtained the bounds on the �rst and second Zagreb indices Z1 (Γ(R)) and
Z2 (Γ(R)) respectively of the cube radical zero and power four radical zero completely primary �nite rings R.
For the bounds on the Zabreb indices, the invariants considered are the maximum degree Δ(Γ(R)) and the
minimum degree 𝛿 (Γ(R)).

The constructions for the cube radical zero and power four radical zero completely primary �nite rings
considered in this paper can be obtained from [4] and [13] respectively.

2 Preliminaries

In this section, we provide some results and standard de�nitions which are useful in the sequel.

De�nition 1. The binding number ofΓ(R) denoted by b(Γ(R)) = |N (S) |
|S | where S ⊆ V (Γ(R)) , N (S) ≠V (Γ(R)) , S ≠

𝜙 such that

(i) N (S) ∪ S =V (Γ(R)).

(ii) N (S) ∩ S = 𝜙.

(iii) deg (u) ≤ deg (v) ∀u ∈ S , v ∈ N (S).

(iv) No pair of vertices in S are adjacent.
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Lemma 1. [6] Let G be a graph of order n with m edges then

m∑︁
i=1

d2i ≤ m[ 2m
n − 1 + n − 1].

Lemma 2. [3] For positive real numbers a1 , a2 , · · · , ar , A
1
2 ≥ B 1

r−1 where

A =
2

r (r − 1) (a1a2 + a1a3 + · · · + a1an + a2a3 + · · · + ar−1ar )

B =
1
r
(a1a2 · · · ar−1 + a1a2 · · · ar−2ar · · · + a2a3 · · · ar−1ar ).

Lemma 3. [9] Let (a) = (a1 , a2 , · · · , ar ) , (b) = (b1 , b2 , · · · , br ) be two real r-tuples. Then
r∑︁
i=1

a2i

r∑︁
j=1

b2j − (
r∑︁
i=1

aib j)2 =
∑︁

1≤i< j≤r
(aib j − a jbi )2.

3 Constructions

3.1 Construction I

We provide the general construction of the classes of the cube radical zero completely primary �nite ring R.
This construction can be obtained in [4].

For any prime integer p and a positive integer r , let R′ = GR(pkr , pk) be a Galois ring of order pkr and
of characteristic pk and consider the annihilator of Z (R) be (Z (R))2 so that R = R′ ⊕ U ⊕ V is an additive
abelian group whereU andV are �nitely generated R′−modules. Let s, t be non negative numbers of elements
in the generating sets {u1 , u2 , · · · , us} and {v1 , v2 , · · · , vt} for U and V respectively. Consider t =

s (s+1)
2

for a �xed s and let u1 , u2 , · · · , us be commuting indeterminates over Galois ring R′ = GR(pkr , pk) where
1 ≤ k ≤ 3. Then
R = R′ ⊕ ∑s

i=1 R
′ui ⊕

∑s
i , j=1 R

′uiu j . The multiplication in R is given by the following relations:
uiu j = u jui = aki jv, u

2
i = akiiv, u

3
i = u2i u j = uiu

2
j = 0, 1 ≤ i , j ≤ s

where (aki j) de�ned in the multiplication of R is t−linearly independent matrices of dimension s × s with 1
′s in

the (i , j)th and ( j , i)th positions and 0−elsewhere.
If x◦ + ∑s

i=1 xiui + ∑s
i , j=1 x juiu j and y◦ + ∑s

i=1 yiui + ∑s
i , j=1 y juiu j are any two elements in R where

x◦ , y◦ ∈ R′, xi , yi , x j , y j ∈ R′/pR′ then from the multiplication de�ned on R ,

(x◦ +
s∑︁
i=1

xiui +
s∑︁

i , j=1

x juiu j) (y◦ +
s∑︁
i=1

yiui +
s∑︁

i , j=1

y juiu j) =

x◦y◦ +
s∑︁
i=1

((x◦ + pR′)yi + xi (y◦ + pR′)𝜎i )ui +
s∑︁

i , j=1

(x◦y j + x j (y◦)𝜎i +
s∑︁

i , j=1

aki jxi (y j)
𝜎i )uiu j

where 𝜎i is an identity automorphism in R′. From [4], the multiplication turns R into a commutative ring
with identity (1, 0, · · · , 0, 0̄, · · · , 0̄).

3.2 Construction II

The following construction describes the power four radical zero rings.
Let R′ = GR(pkr , pk) be a Galois ring of order pkr and characteristic pk where 1 ≤ k ≤ 4. Consider �nitely
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generated R′-modulesU , V , andW such that dimR′U = s, dimR′V = t and dimR′W = 𝜆 and s + t + 𝜆 = h. Let
the R′ modules be generated by {u1 , u2 · · · , us},
{v1 , v2 , · · · , vt} and {w1 , w2 , · · · , w𝜆 } respectively so that R = R′ ⊕U ⊕V ⊕W is an additive abelian group.
Suppose s = 1, t = 1 and 𝜆 = h − 2, then for char (R) = p,
R = R′ ⊕ R′u ⊕ R′v ⊕ ∑h−2

k=1 R
′wk where pu = 0, pv = 0, pwk = 0 such that 1 ≤ k ≤ h − 2 for any prime integer

p. We de�ne multiplication on R as follows;

(a◦ , a1 , a2 , · · · , ah) (b◦ , b1 , b2 , · · · , bh) =

(a◦b◦ , a◦b1 + a1b◦ , a◦b2 + a2b◦ + a1b1 , a◦b3 + a3b◦ + a1b2 + a2b1 , · · · , a◦bh + ahb◦ + a1b2 + a2b1).

For char (R) = p2 , assume s = h − 1, t = 1 and 𝜆 = 0 so that ,
R = R′ ⊕ ∑h−1

i=1 R
′ui ⊕ R′v where pui ≠ 0, p2ui = 0 and pv = 0 with 1 ≤ i ≤ s. The following de�nes

multiplication on R.
(a◦ , a1 , a2 , , · · · , ah−1 , āh) (b◦ , b1 , b2 , , · · · , bh−1 , b̄h) =

(a◦b◦ + p
h−1∑︁
i , j=1

aib j , a◦b1 + a1b◦ , · · · , a◦bh−1 + ah−1b◦ , a◦b̄h + āhb◦)

where āh , b̄h ∈ R′/pR′.

For char (R) = p3 , consider s = h − 1, t = 1 and 𝜆 = 0 so that R = R′ ⊕ ∑h−1
i=1 R

′ui ⊕ R′v where p2ui ≠
0, p3ui = 0 where 1 ≤ i ≤ s and pv = 0. The following multiplication is de�ned on R:

(a◦ , a1 , a2 , · · · , ah−1 , ãh) (b◦ , b1 , b2 , · · · , bh−1 , b̃h) =

(a◦b◦ , a◦b1 + a1b◦ , · · · , a◦bh−1 + ah−1b◦ , a◦b̃h + ãhb◦ +
h−1∑︁
i , j=1

aib j)

where ai , b j ∈ R′/p2R′ and ãh , b̃h ∈ R′/pR′.

For char (R) = p4 , Assume s = h, t = 0 and 𝜆 = 0 so that
R = R′ ⊕ ∑s

i=1 R
′ui with pui = 0, 0 ≤ i ≤ s. The multiplication on R is de�ned by;

(a◦ , a1 , · · · , ah) (b◦ , b1 , · · · , bh) =

(a◦b◦ , a◦b1 + a1b◦ , · · · , a◦bh + ahb◦)

where ai , b j ∈ R′/pR′ and 1 ≤ i , j ≤ s.
As established in [5, 12, 13], respectively for char (R) = p, p2 , p3 and p4 , R is turned by thesemultiplications

into a commutative ring with identity (1, 0, 0, · · · , 0).

4 The Wiener Index of Γ(R) and its Invariants for the Classes of Com-
pletely Primary Finite Rings

In this section, we present some �ndings on theWiener indexW (Γ(R)) , the average disorder number A(Γ(R))
and the average distance index 𝜇(Γ(R)) of the zero divisor graph Γ(R). The Wiener index denoted asW and
also known as path number or the Wiener number is a graph index de�ned on a graph with n nodes as

W =
1
2

n∑︁
i=1

n∑︁
j=1

[d]i j
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where [d]i j is the graph distance matrix. The Wiener indexW (Γ(R)) of the graph G with vertex count |
V (Γ(R)) | has a relationship with the average disorder number of the zero divisor graph A(Γ(R)) = 2W (Γ(R))

|V (Γ(R)) |
and the average distance 𝜇(Γ(R)) between the vertices of Γ(R) which is given by

𝜇(Γ(R)) = W (Γ(R))(
| V (Γ(R)) |

2

) .
In chemical graph theory, computations for Wiener indices for cyclic carbon-chained organic compounds
and its applications cannot be underestimated. This index has been quite handy in determination of the
boiling points and polarity number of alkanes and their branched isomers. Further, the most common
natural �eld in the application of the Wiener index is the quantitative structure relationships especially
in the estimation of emission spectra of the ultra violet radiations of 𝛼 and 𝛽 -unsaturated Ketone. We
therefore present the following results on the Wiener index of Γ(R) and other results describing average disor-
der number and the average distance indices of Γ(R) due to their close interdependence with theWiener index.

Proposition 1. Let Γ(R) be the zero divisor graph of the classes of rings given by Construction I. Then for any prime
integer p and r , s ∈ ℤ+ with s �xed, the Wiener index,W (Γ(R))

=



1
2 (2p

( 2(s
2+3s)
2 −1)r + p2(

(s2+3s)
2 −1)r − p (

(s2+3s)
2 )r − 5p (

(s2+3s)
2 −1)r + 2) , if char (R) = p;

1
2 (2p

( 2(s
2+3s)
2 +2)r + p2(

(s2+3s)
2 )r − p (

(s2+3s+2)
2 )r − 5p (

(s2+3s)
2 )r + 2) , if char (R) = p2 , pui = 0;

1
2 (2p

( (2s2+8s+4)
2 )r + p2(

(s2+3s+2)
2 )r − p (

(s2+5s+2)
2 )r − 5p (

(s2+3s+2)
2 )r + 2) , if char (R) = p2 , pui ≠ 0;

1
2 (2p

( (2s2+10s+6)
2 )r + p2(

(2s2+10s+4)
2 )r − p2(

(s2+5s+4)
2 )r − 5p (

(s2+5s+2)
2 )r + 2) , if char (R) = p3.

Proof. Case(i): Char (R) = p. The maximum degree of vi ∈ V (Γ(R)) =
p (

(s2+3s)
2 )r − 2 and there are p (

(s2+3s)
2 −1)r − 1 of such vertices. This is due to the fact that | ann(Z (R))∗ |=

p (
(s2+3s)
2 −1)r − 1. Therefore, the sum of minimum distances between vi of a maximum degree and any other

vertex v j ∈ V (Γ(R)) is (p (
(s2+3s)
2 )r − 2) (p (

(s2+3s)
2 −1)r − 1). For the vertices of minimum degrees, each is of degree

p (
(s2+3s)
2 −1)r − 1 and sum of the distances between a vertex of minimum degree and any other vertex in the set

of vertices of minimum degree is p (
(s2+3s)
2 )r − 2. If they are p (

(s2+3s)
2 −1)r in number, then from the argument we

obtain the sum as ((p (
(s2+3s)
2 −1)r − 1) + (p (

(s2+3s)
2 )r − 2))p (

(s2+3s)
2 −1)r . The multiple 1

2 handles the fact that each
path between vi and v j is also counted as the path between v j and vi hence

W (Γ(R)) = 1
2 (p

( (s2+3s)
2 )r − 2) (p (

(s2+3s)
2 −1)r − 1) + ((p (

(s2+3s)
2 −1)r − 1) + (p (

(s2+3s)
2 )r − 2))p (

(s2+3s)
2 −1)r =

1
2 (p

( 2(s
2+3s)
2 −1)r − p (

(s2+3s)
2 )r − 2p (

(s2+3s)
2 −1)r + 2 + p2(

(s2+3s)
2 −1)r + p (

2(s2+3s)
2 −1)r − 3p (

(s2+3s)
2 −1)r ) =

1
2
((2p (

2(s2+3s)
2 −1)r + p2(

(s2+3s)
2 −1)r − 5p (

(s2+3s)
2 −1)r − p (

(s2+3s)
2 )r + 2)).

Case(ii): Char (R) = p2 where pui = 0.
Using the same argument similar to char (R) = p, we obtain
W (Γ(R)) = 1

2 ((p
( (s2+3s+2)

2 )r − 2) (p (
(s2+3s)
2 )r − 1) + ((p (

(s2+3s)
2 )r − 1) + (p (

(s2+3s+2)
2 )r )p (

(s2+3s)
2 )r ) =

1
2 (p

( 2(s
2+3s)
2 +2)r − p (

(s2+3s+2)
2 )r − 2p (

(s2+3s)
2 )r + 2 + p (

2(s2+3s)
2 )r + p (

2(s2+3s)
2 +2)r − 3p (

(s2+3s)
2 )r ) =

1
2
(2p (

2(s2+3s)
2 +2)r + p2(

(s2+3s)
2 )r − p (

(s2+3s+2)
2 )r − 5p (

(s2+3s)
2 )r + 2).

Case(iii): Char (R) = p2 where pui ≠ 0,
W (Γ(R)) = 1

2 ((p
( (s2+5s+2)r

2 )r ) − 2) (p (
(s2+3s+2)

2 )r − 1) + ((p (
(s2+3s+2)

2 )r − 1) + (p (
(s2+5s+2)

2 )r − 2))p (
(s2+3s+2)

2 )r ) =
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1
2 (p

( (2s2+8s+4)
2 )r − p (

(s2+5s+2)
2 )r − 2p (

(s2+3s+2)
2 )r + 2 + (p2(

(s2+3s+2)
2 )r + p (

(2s2+8s+4)
2 )r − 3p (

(s2+3s+2)
2 )r ) =

1
2
(2p (

(s2+8s+4)
2 )r + p2(

(s2+3s+2)
2 )r − p (

(s2+5s+2)
2 )r − 5p (

(s2+3s+2)
2 )r + 2).

Case(iv): Char (R) = p3.
We have
W (Γ(R)) = 1

2 ((p
( (s2+5s+4)

2 )r − 2) (p (
(2s2+5s+2)

2 )r − 1) + ((p (
(s2+5s+2)

2 )r − 1) + (p (
(s2+5s+4)

2 )r ) − 2)p (
(s2+5s+2)

2 )r ) =

1
2 (2p

( (2s2+10s+6)
2 )r − p (

(s2+5s+4)
2 )r − 2p (

(s2+5s+2)
2 )r + 2 + (p (

(2s2+10s+4)
2 )r + p (

(2s2+10s+6)
2 )r − 3p (

(s2+5s+2)
2 )r ) =

1
2
(2p (

(2s2+10s+6)
2 )r + p (

(2s2+10s+4)
2 )r − p (

(s2+5s+4)
2 )r − 5p (

(s2+5s+2)
2 )r + 2).

�

Proposition 2. Let Γ(R) be the zero divisor graph of the classes of rings given by Construction I andW (Γ(R)) be its
Wiener index. Then for any prime integer p, positive integers r , s with s �xed, the average distance of Γ(R)

𝜇(Γ(R)) =



1
2 (2p

( (2(s
2+3s)
2 −1)r+p2(

(s2+3s)
2 −1)r−p (

(s2+3s)
2 )r−5p (

(s2+3s)
2 −1)r+2)

(p (
(s2+3s)
2 )r−1) (p (

(s2+3s)
2 )r−2)

, Char (R) = p;

1
2 (2p

( 2(s
2+3s)
2 +2)r+p (

2(s2+3s)
2 )r−p (

(s2+3s+2)
2 )r−5p (

(s2+3s)
2 )r+2)

(p (
(s2+3s+2)

2 )r−1) (p (
(s2+3s+2)

2 )r−2)
, Char (R) = p2 , pui = 0;

1
2 (2p

( (2s
2+8s+4)
2 )r+p2(

(s2+3s+2)
2 )r−p (

(s2+5s+2)
2 )r−5p (

(s2+3s+2)
2 )r+2)

(p (
(s2+5s+2)

2 )r−1) (p (
(s2+5s+2)

2 )r−2)
, Char (R) = p2 , pui ≠ 0;

1
2 (2p

( (2s
2+10s+6)
2 )r+p2(

(2s2+10s+4)
2 )r−p2(

(s2+5s+4)
2 )r−5p (

(s2+5s+2)
2 )r+2)

(p (
(s2+5s+4)

2 )r−1) (p (
(s2+5s+4)

2 )r−2)
, Char (R) = p3.

Proof. The Proof follows from the previous Proposition 1 and the fact that 𝜇(Γ(R)) = W (Γ(R))©­«
| V (Γ(R)) |

2
ª®¬
. �

Proposition 3. Let Γ(R) be the zero divisor graph of the classes of rings described by Construction I. Then for any prime
integer p, positive integers r , s and s �xed, the average disorder number of the zero divisor graph

A(Γ(R)) =



2p (
(2(s2+3s)

2 −1)r+p2(
(s2+3s)
2 −1)r−p (

(s2+3s)
2 )r−5p (

(s2+3s)
2 −1)r+2

(p (
( (s2+3s)

2 )r−1)
, Char (R) = p;

2p (
2(s2+3s)

2 +2)r+p (
2(s2+3s)

2 )r−p (
(s2+3s+2)

2 )r−5p (
(s2+3s)
2 )r+2

(p (
( (s2+3s+2)

2 )r−1)
, Char (R) = p2 , pui = 0;

2p (
(2s2+8s+4)

2 )r+p2(
(s2+3s+2)

2 )r−p (
(s2+5s+2)

2 )r−5p (
(s2+3s+2)

2 )r+2

(p (
( (s2+5s+2)

2 )r−1)
, Char (R) = p2 , pui ≠ 0;

2p (
(2s2+10s+6)

2 )r+p2(
(2s2+10s+4)

2 )r−p2(
(s2+5s+4)

2 )r−5p (
(s2+5s+2)

2 )r+2

(p (
( (s2+5s+4)

2 )r−1)
, Char (R) = p3.

Proof. Using the ratio A(Γ(R)) =
2W (Γ(R))
|V (Γ(R)) | and the Wiener indices obtained in Proposition 1, the result

follows. �

Proposition 4. Let Γ(R) be the zero divisor graph of a ring of characteristic p given by Construction II. Then the Wiener
index,

W (Γ(R)) = 1
2
(p (h+1)r + p2hr − 2(p2r + pr ) + 2).
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Proof. LetV1 ,V2 andV3 be the order of partitioning of the vertices in Γ(R). ConsiderV1 = Ann(Z (R))\{0}.
we have that | V1 |= pr − 1 and the degree of every vertex x ∈ V1 , deg (x ∈ V1) = phr − 1 − 1 = phr − 2 due
to avoidance of self annihilation. Therefore the sum of the distances between vertices x ∈ V1 and any other
vertex inV (Γ(R)) is (phr − 2) (pr − 1) = p (h+1)r − phr − 2pr + 2.
Next, consider the set of verticesV2 which are linked by edges with vertices inV1 and among themselves such
that d(x , y ∈ V2) = phr + 2. Since | V2 |= pr , we have that∑︁

y∈V2

d(x , y) = pr (phr + 2) = p (h+1)r + 2pr .

Finally, letV3 be the set of vertices such that z ∈ V3 is only adjacent x ∈ V1. Therefore, | V3 |= (phr − 1) − (pr +
pr − 1) = phr − 2pr and the distance between every vertex in V3 and all other vertices in Γ(R) is phr + pr + 1.
Therefore, the sum of the minimum distances between z ∈ V3 and verticesV (Γ(R)) is obtained as∑︁

z∈V3

d(x , z) = (phr − 2pr ) (phr + pr + 1) =

p2hr + p (h+1)r + phr − 2p (h+1)r − 2p2r − 2pr = p2hr − p (h+1)r + phr − 2p2r − 2pr .

Therefore,

W (Γ(R)) = 1
2
(p (h+1)r − phr − 2pr + 2 + p (h+1)r + 2pr + p2hr − p (h+1)r + phr − 2p2r − 2pr )

which simpli�es to

1
2
(p (h+1)r + p2hr − 2p2r − 2pr + 2) = 1

2
(p (h+1)r + p2hr − 2(p2r + pr ) + 2).

�

Proposition 5. Let W (Γ(R)) be the Wiener index of the zero divisor graph of a ring of characteristic p given by
Construction II. Then the average disorder number A(Γ(R)) and the average distance index 𝜇(Γ(R)) are given by;

(i) A(Γ(R)) = p (h+1)r+p2hr−2(p2r+pr )+2
phr−1 .

(ii) 𝜇(Γ(R)) =
1
2 (p

(h+1)r+p2hr−2(p2r+pr )+2)
(phr−1) (phr−2) .

Proof. From the fact that | V (Γ(R)) |= phr − 1, using the ratios A(Γ(R)) =
2W (Γ(R))
|V (Γ(R)) | and the average

distance 𝜇(Γ(R)) between the vertices of Γ(R) , 𝜇(Γ(R)) =
W (Γ(R))©­«

| V (Γ(R)) |
2

ª®¬
, the results follows from the

previous Proposition 4. �

Proposition 6. Let Γ(R) be the zero divisor graph of classes of rings given by the Construction II of characteristics p2 , p3
and p4 andW (Γ(R)) be the Wiener index. Then,

W (Γ(R))


1
2 (p

(h+2)r + p (2h+1)r − 2(p3r + p2r )) , when Char (R) = p2;
1
2 (p

(h+3)r + p (2h+2)r − 2(p4r + p3r )) , when Char (R) = p3;
1
2 (p

(h+4)r + p (2h+3)r − 2(p5r + p4r )) , when Char (R) = p4.

Proof. The proof follows from Proposition 4. �
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5 Binding Numbers of the Classes of Completely Primary Finite Com-
mutative Rings

The reason for rapid and steady development in the study of the binding number b(Γ(R)) in graphs is related to
its diversity in both theoretical and real world applications. This is an important characteristic quantity which
is applicable in understanding the graph characteristics and vulnerability. We provide an investigation of the
binding numbers of some classes of cube radical zero and power four radical zero completely primary �nite
rings in the following results.

Proposition 7. Let Γ(R) be the zero divisor graph of a ring of characteristic p given by Construction I. Then the binding
number,

b(Γ(R)) = p (
(s2+3s)
2 −1)r − 1

p (
(s2+3s)
2 )r − p (

(s2+3s)
2 −1)r

.

Proof. Due to the fact that N (S) = Ann(Z (R)) \ {0} and S =V (Γ(R)) \ N (S).
we have | N (S) |= p (

(s2+3s)
2 −1)r − 1.

But | S |=| V (Γ(R)) \ N (S) |= p (
(s2+3s)
2 )r − 1 − (p (

(s2+3s)
2 −1)r − 1) = p (

(s2+3s)
2 )r − 1 − p (

(s2+3s)
2 −1)r + 1 = p (

(s2+3s)
2 )r −

p (
(s2+3s)
2 −1)r . Therefore, the binding number of Γ(R) ,

b(Γ(R)) = | N (S) |
| S | =

p (
(s2+3s)
2 −1)r − 1

p (
(s2+3s)
2 )r − p (

(s2+3s)
2 −1)r

.

�

Proposition 8. Let Γ(R) be the zero divisor graph of a ring of characteristic p2 given by Construction I. Then the binding
number,

b(Γ(R)) =


p (

(s2+3s)
2 )r−1

p (
(s2+3s+2)

2 )r−p (
(s2+3s)
2 )r

, pui = 0;

p (
(s2+3s+2)

2 )r−1

p (
(s2+5s+2)

2 )r−p (
(s2+3s+2)

2 )r
, pui ≠ 0.

Proof. Case(i), pui = 0.
Since N (S) = Ann(Z (R)) \ {0} and S =V (Γ(R)) \ N (S) ,
it is established that | N (S) |= p (

(s2+3s)
2 )r − 1.

But | S |=| V (Γ(R)) \ N (S) |= p (
(s2+3s+2)

2 )r − 1 − (p (
(s2+3s)
2 )r − 1) = p (

(s2+3s+2)
2 )r − 1 − p (

(s2+3s)
2 )r + 1 = p (

(s2+3s+2)
2 )r −

p (
(s2+3s)
2 )r . Therefore, the binding number of Γ(R) ,

b(Γ(R)) = | N (S) |
| S | =

p (
(s2+3s)
2 )r − 1

p (
(s2+3s+2)

2 )r − p (
(s2+3s)
2 )r

.

Case(ii), pui ≠ 0.

Given that | V (Γ(R)) |= p (
(s2+5s+2)

2 )r−1, consider the Ann(Z (R))∗ = N (S). We notice thatN (S) = p (
(s2+3s+2)

2 )r−1
and therefore

| S |= (p (
(s2+5s+2)

2 )r − 1) − (p (
(s2+3s+2)

2 )r − 1) = p (
(s2+5s+2)

2 )r − 1 − p (
(s2+3s+2)

2 )r + 1 =

p (
(s2+5s+2)

2 )r − p (
(s2+3s+2)

2 )r .
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Clearly,

b(Γ(R)) = p (
(s2+3s+2)

2 )r − 1

p (
(s2+5s+2)

2 )r − p (
(s2+3s+2)

2 )r
.

�

Proposition 9. Let R be a ring of characteristic p3 described by Construction I and Γ(R) be its zero divisor graph. Then,

b(Γ(R)) = p (
(s2+3s+2)

2 )r − 1

p (
(s2+5s+4)

2 )r − (p (
(s2+3s+2)

2 )r )
.

Proof. The proof follows from the fact that

| N (S) |=| Ann(Z (R))∗ |= p (
(s2+3s+2)

2 )r − 1

for the rings of characteristic p3 and S =V (Γ(R))\N (S). We have that | S |= (p (
(s2+5s+4)

2 )r−1)−(p (
(s2+3s+2)

2 )r−1) =
p (

(s2+5s+4)
2 )r − 1 − p (

(s2+3s+2)
2 )r + 1 = p (

(s2+5s+4)
2 )r − p (

(s2+3s+2)
2 )r

Using the ratio |N (S) |
|S | , we obtain

b(Γ(R)) = p (
(s2+3s+2)

2 )r − 1

p (
(s2+5s+4)

2 )r − p (
(s2+3s+2)

2 )r
.

�

Proposition 10. Let R be rings given by Constructions II and Γ(R) be the zero divisor graph. Then the binding number,

b(Γ(R)) =


1

phr−2 , when Char (R) = p;
phr−1

p (h+3)r−phr , when Char (R) = p2;
p (h−1)r

p (h+3)r−p (h−1)r , when Char (R) = p3 and p4.

Proof. With the fact that N (S) = Ann(Z (R))∗ and S = V (Γ(R)) \ N (S) , applying the ratio |N (S) |
|S | , the

results follows from the Proofs in Propositions 7, 8 and 9. �

6 Bounds On the Zagreb Indices of the Zero Divisor Graphs Γ(R) of the
Classes of Completely Primary Finite Rings

LetG = Γ(R) be a simple graph such thatG = (V , E) whose vertex setV (G) consist of elements {v1 , · · · , vn}
such that | V (G) |= n and the set of edges E(G) of order m. Given that the minimum degree of G is denoted
by 𝛿 (G) and Δ(G) is the maximum degree. Let di = degΓ(R) (vi ) , i = 1, 2, · · · , n be the vertex degrees of
vi ∈ Γ(R) so that di ≥ d2 ≥ · · · ≥ dn . The �rst Zagreb index is the sum of the squares of degrees of the vertices
and the second Zagreb index is the sum of the products of the degrees of the pairs of adjacent vertices. We
denote the �rst and second Zagreb indices of Γ(R) by Z1 (Γ(R)) and Z2 (Γ(R)) respectively. Therefore,

Z1 (Γ(R)) =
n∑︁
i=1

(deg (vi ))2 ,

Z2 (Γ(R)) =
n∑︁

i , j=1

(deg (vi )) (deg (v j))

where vi , v j are adjacent.



Asian J. Math. Appl. (2025) 2025:11

6.1 Bounds On First Zagreb Index, Z1(Γ(R)) of the Classes of Completely Primary
Finite Rings

We make use of Lemma 1, 2 and 3 to generally describe some of the results on the bounds on the �rst Zagreb
index of Γ(R) of the classes of power four radical zero rings.

Proposition 11. Let R be classes of rings described in Construction II and Γ(R) be the zero divisor graph with m
edges such that | Γ(R) |= p (h+(k−1))r − 1. If Δ(Γ(R)) and 𝛿 (Γ(R)) are the maximum and minimum degrees of Γ(R)
respectively, then for any r , k ∈ ℤ+ , p prime, and h is the dimension of R′−module U,

(i) Z1 (Γ(R)) ≥ ( (Δ(Γ(R)))2+(2m−Δ(Γ(R))))2
(p (h+(k−1)r )−2) + 2(p (h+(k−1) )r−3)

(p (h+(k−1)r )−2)2 .(Δ2 (Γ(R)) − 𝛿 (Γ(R)))2 , where Δ2 (Γ(R)) is the second
maximum degree of Γ(R).

(ii) Z1 (Γ(R)) ≤ 4m2 + 2((Δ(Γ(R)))2 − 4m((Δ(Γ(R))) − ((p (h+(k−1)r) − 2) ((p (h+(k−1)r) −
3)) [ T (Γ(R))

(p (h+(k−1)r )−2)Δ(Γ(R)) (I (Γ(R))) −
1

Δ(Γ(R)) ]
2

p (h+(k−1)r ) −3 .

Proof. (i) From Lemma 3, set r = p (h+(k−1)r − 2, ai = di+1 , bi = 1, i = 1, 2, · · · r which results to
(p (h+(k−1))r − 2) (∑p (h+(k−1) )r−1

i=2 d2i ) − (∑p (h+(k−1) )r−2
j=2 d2j )

2 =
∑p (h+(k−1) )r−1)
i , j=2 (di − d j)2. This results to

(p (h+(k−1))r ) (Z1 (Γ(R)) − (Δ(Γ(R)))2 = (2m − (Δ(Γ(R)))2 + ∑p (h+(k−1) )r−1
i , j=2 (di − d j). Now,∑p (h+(k−1) )r−1

i , j=2 | di − d j |= (p (h+(k−1))r − 3)d2 −
∑p (h+(k−1) )r−1
i=3 di +∑p (h+(k−1) )r−2

i , j=3 | di − d j | +
∑p (h+(k−1) )r−4
i=3 di − (p (h+(k−1))r − 4)dp (h+(k−1) )r−1 =

(p (h+(k−1))r −3) (d2 − dp (h+(k−1) )r−1) +
∑p (h+(k−1) )r−2
i , j=3 | di − d j |≥ (p (h+(k−1))r −3) (Δ2 (Γ(R) − (𝛿 (Γ(R))) (∗ ∗ ∗). which

results to ∑p (h+(k−1) )r−1
i , j=2 (di − d j)2

(p (h+(k−1) )r−2) (p (h+(k−1) )r−3)
2

≥
∑p (h+(k−1) )r−1
i , j=2 | di − d j |

(p (h+(k−1) )r−2) (p (h+(k−1) )r−3)
2

.

From this we obtain

p (h+(k−1) )r−1∑︁
i , j=2

(di − d j)2 ≥ 2
(p (h+(k−1))r − 2) (p (h+(k−1))r − 3)

(
p (h+(k−1) )r−1∑︁

i , j=2

| di − d j |2)

which together with (∗ ∗ ∗) gives∑p (h+(k−1) )r−1
i , j=2 (di − d j)2 ≥ 2(p (h+(k−1) )r−3)

p (h+(k−1) )r−2 (Δ2 (Γ(R)) − 𝛿 (Γ(R)))2 which is simpli�ed to give the result as desired.

(ii) We let the simple topological index of Γ(R) be T (Γ(R)) = ∏p (h+(k−1) )r−1
i=1 di and the inverse degree of Γ(R)

be I (G) = ∑p (h+(k−1) )r−1
i=1

1
di
.

Set r = p (h+(k−1))r − 2, ai = di+1 , i = 1, 2 · · · , r . Making use of Lemma 3, we have
p (h+(k−1) )r−1∑︁

i , j=2

did j ≥

(p (h+(k−1))r − 2) (p (h+(k−1))r − 3)
2

[ 1
p (h+(k−1))r − 2

p (h+(k−1) )r−2∏
j=2

d j
p (h+(k−1) )r−1∑︁

i=2

1
di
]

2
(p (h+(k−1) )r−3) =

(p (h+(k−1) )r−2) (p (h+(k−1) )r−3)
2 [ 1

(p (h+(k−1) )r−2) (Δ(Γ(R)))
∏p (h+(k−1) )r−2

j=2 d j (
∑
j
1
d j

− 1
Δ(Γ(R)) )]

2
(p (h+(k−1) )r−3) . =

(p (h+(k−1) )r−2) (p (h+(k−1) )r−3)
2 [ T (Γ(R))

(p (h+(k−1) )r−2) (Δ(Γ(R))) (I (Γ(R)) −
1

Δ(Γ(R)) ]
2

(p (h+(k−1) )r−3) .
From this we have that

p (h+(k−1) )r−1∑︁
i , j=2

(di − d j)2 =
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p (h+(k−1))r − 3
p (h+(k−1) )r−1∑︁

i=2

d2i − 2
p (h+(k−1) )r−1∑︁

i , j=2

did j ≤

(p (h+(k−1))r − 3) (Z1 (Γ(R)) − Δ(Γ(R)) (p (h+(k−1))r − 2) (p (h+(k−1))r − 3)×

[ T (Γ(R))
(p (h+(k−1)r) − 2)Δ(Γ(R))

(I (Γ(R))) − 1
Δ(Γ(R)) ]

2
p (h+(k−1)r ) −3 .

Which describes the upper bound on Z1 (Γ(R). �

Proposition 12. Let R be classes of rings described in Construction II and Γ(R) be the zero divisor graph with m edges
such that | Γ(R) |= p (h+(k−1))r − 1. If Δ(Γ(R)) is the maximum degree of each vi ∈ Γ(R) then,

Z1 (Γ(R)) ≤ (p (h+(k−1))r )m − Δ(Γ(R)) ((p (h+(k−1))r − 1) − Δ(Γ(R))) + 2(m − Δ(Γ(R)))
p (h+(k−1))r − 3

Proof. Let v1 be a vertex of maximum degree in Γ(R) and H = {vi1 , vi2, · · · ,viΔ(Γ(R) ) } ⊆ V (Γ(R)) be the
vertex set consisting of vertices adjacent to v1. Let Γv1 (R) = Γ(R) − v1 be the induced subgraph of Γ(R)
obtained by removing a vertex of minimum degree and d ′i be its degree. Then we have

d ′i =

{
di−1 , vi ∈ H ;
di , vi ∈ V (Γ(R)) \H

Since Γv1 (R) has p (h+(k−1))r − 2 vertices and m − Δ(Γ(R)) the maximum degree of a vertex in the subgraph,
then by Lemma 1 we obtain ∑︁

vi ∈V (Γ(R))
di = 2(m − Δ(Γ(R))) ,

Therefore ∑︁
vi ∈V (Γ(R))

2(m − Δ(Γ(R))) ≤ (m − Δ(Γ(R))) [2((m − Δ(Γ(R))))
p (h+(k−1))r − 3

+ (p (h+(k−1))r + 2)].

Now,

Z1 (Γ(R))) = (Δ(Γ(R)))2 +
∑︁
vi ∈H

d2i +
∑︁

vi ∈V (Γ(R)))\H ,i≠1
d2i =

(Δ(Γ(R)))2 +
∑︁
vi ∈H

(d ′i + 1)
2 +

∑︁
vi ∈V (Γv1 (R)))\H

d ′
2

i =

(Δ(Γ(R)))2 + Δ(Γ(R)) + 2
∑︁
vi ∈H

d ′i +
∑︁

vi ∈V (Γv1 (R)))
d ′

2

i , | H |= Δ(Γ(R))

≤ (Δ(Γ(R)))2 + Δ(Γ(R)) + 2
∑︁

vi ∈V (Γv1 (R)))
d ′i +

∑︁
vi ∈V (Γv1 (R)))

d ′
2

i

≤ (Δ(Γ(R)))2 + Δ(Γ(R)) + 4(m − Δ(Γ(R))) + (m − Δ(Γ(R))) [2((m − Δ(Γ(R))))
p (h+(k−1))r + 2

].

�
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6.2 Bounds On the Second Zagreb Index, Z2(Γ(R)) of the Classes of Completely Pri-
mary Finite Rings

Using the previous results obtained in Propositions 11 and 12, we generally present some results on the upper
and lower bounds on the second Zagreb index Z2 (Γ(R)) from the maximum and minimum degrees of Γ(R)
with m-edges as follows.

Proposition 13. Let R be classes of rings described in Construction II and Γ(R) is the zero divisor graph with m edges
such that | V (Γ(R)) |= p (h+(k−1))r − 1 and that Δ(Γ(R))) and 𝛿 (Γ(R)) are the maximum and minimum degrees of
Γ(R) respectively. Then for any prime integer p, positive integers r , k , and h the dimension R′−module U ,

(i) Z2 (Γ(R)) ≥ 2m2 − m(p (h+(k−1))r − 2)Δ(Γ(R)) + 1
2 (Δ(Γ(R)) − 2) [(Δ(Γ(R)))2 + (2m−Δ(Γ(R)))2

p (h+(k−1) )r−2 +
2(p (h+(k−1) )r−3)
(p (h+(k−1) )r−2)2 (Δ(Γ(R)) − 𝛿 (Γ(R)))2].

(ii) Z2 (Γ(R)) ≥ 2m2 − m(p (h+(k−1))r − 2)𝛿 (Γ(R)) + 1
2 (𝛿 (Γ(R)) − 1) [m(p

(h+(h−1))r ) − Δ(Γ(R)) (p (h+(h−1))r −
Δ(Γ(R))) + 2(m−Δ(Γ(R)))2

p (h+(k−1) )r−3 ].

Proof. (i) Given that 𝜇 is the average distance of the vertices adjacent to vi ∈ V (Γ(R)) , we have that

Z2 (Γ(R))) =
1
2

p (h+(k−1) )r−1∑︁
i=1

d2i 𝜇.

We have that

1
2

p (h+(k−1) )r−1∑︁
i=1

di [2m − di − ((p (h+(k−1))r − 1) − di − 1)Δ(Γ(R))] ≤

Z2 (Γ(R)) ≤
1
2

p (h+(k−1) )r−1∑︁
i=1

di [2m − di − ((p (h+(k−1))r − 1) − di − 1)𝛿 (Γ(R))]

where 2m2 − (p (h+(k−1))r − 2)mΔ(Γ(R)) + 1
2 (Δ(Γ(R)) − 1)Z1 (Γ(R))) ≤

Z2 (Γ(R))) ≤ 2m2 − (p (h+(k−1))r − 2)m 𝛿 (Γ(R)) + 1
2
(𝛿 (Γ(R)) − 1)Z1 (Γ(R))).

The inequality on the right hand side hold if and only if for every vi ,
di = p (h+(k−1))r − 2 or d j = 𝛿 (Γ(R)) for every vi if vi is non adjacent to v j in Γ(R).
Proof for (ii) follows from Proposition 12. �
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