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Abstract
In this study, non-Newtonian Gadovan numbers are introduced and their properties are examined within non-
Newtonian calculus, a mathematical approach that has recently garnered signi�cant attention. We also obtain
the generating matrix of non-Newtonian Padovan numbers.
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1 Introduction

The sequence of Padovan numbers was discovered by Richard Padovan. The formula for obtaining the
Padovan sequences is

Pn+3 = Pn+1 + Pn

with P0 = P1 = P2 = 1, [6]. Some of the terms of the Padovan sequence are

1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, . . . .

The sequence of Gadovan numbers was de�ned by Diskaya and Menken, which generalizes a new class of
Padovan numbers. The formula for obtaining the Gadovan sequences is

GPn+3 = GPn+1 +GPn

withGP0 = a, GP1 = b andGP2 = c, [3]. Some of the terms of the Gadovan sequence are

a, b , c , a + b , b + c , a + b + c , a + 2b + c , a + 2b + 2c , . . . .

The non-Newtonian calculus, introduced by Grossman and Katz in 1972, o�ers an alternative viewpoint
to classic Newtonian and Leibnizian calculus, creating a novel branch of mathematics, [4]. This emerging
discipline incorporates a wide array of innovative topics for exploration. Non-Newtonian calculus encompasses
various forms of computation, geometric, bigeometric, quadratic and biquadratic approaches. Furthermore,
it demonstrates considerable promise for applications across diverse domains such as technology, engineering,
physics, �nance, dynamic systems, and cancer therapy.

A completely ordered �eld is called arithmetic if its realm is a subset of ℝ. A generator is a one-to-one
function whose domain ℝ and whose range is a subset of ℝ. Let 𝛼 be a generator with range A. The set of
non-Newtonian real numbers is denoted by ℝ𝛼 .
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Let 𝛼 be arbitrarily chosen generator which image the set ℝ to A and ∗-calculus also be the ordered pairs
of arithmetics. The following notations will be used
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𝛼-zero and 𝛼-one numbers are denoted by ¤0 = 𝛼 (0) and ¤1 = 𝛼 (1), [1].
This paper expands on the concepts introduced in [2, 5] by exploring their application toGadovan numbers.

The central focus is to de�ne and investigate the non-Newtonian forms of this well-known sequence.

2 Main Results

De�nition 1. [2], The non-Newtonian Padovan sequence is de�ned by the relation for n > 0

NNPn+3 = NNPn+1 ¤+NNPn ,

with initial values NNP0 = NNP1 = NNP2 = 1, where NNPn = ¤Pn = 𝛼 (Pn).

The non-Newtonian Padovan numbers are generated by a matrix

Q =


¤0 ¤1 ¤0
¤0 ¤0 ¤1
¤1 ¤1 ¤0

 .
The powers ofQ give

Qn =


NNPn−5 NNPn−3 NNPn−4
NNPn−4 NNPn−2 NNPn−3
NNPn−3 NNPn−1 NNPn−2

 .
The characteristic equation of the non-Newtonian Padovan sequence is

¤x ¤3 ¤− ¤x ¤−¤1 = ¤0,

so we have to solve this equation, we �nd three distinct roots q1, q2 and q3, [2].

Theorem 2. [2], The Binet-like formula for the n-th non-Newtonian Padovan number is

NNPn = ¤p1 ¤×¤q ¤n1 ¤+ ¤p2 ¤×¤q
¤n
2 ¤+ ¤p3 ¤×¤q

¤n
3 .

De�nition 3. The non-Newtonian Gadovan sequence is de�ned by the relation for n ≥ 1

NNGPn+3 = NNGPn+1 ¤+ NNGPn ,

with initial values NNGP1 = ¤a, NNGP2 = ¤b, NNGP3 = ¤c, where

NNGPn = 𝛼 (GPn) .
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The non-Newtonian Gadovan sequence, denoted by {NNGPn}, is

¤a, ¤b, ¤c, ¤a ¤+ ¤b, ¤b ¤+¤c, ¤a ¤+ ¤b ¤+¤c, ¤a ¤+¤2 ¤x ¤b ¤+¤c, ¤a ¤+¤2 ¤x ¤b ¤+¤2 ¤x ¤c, . . . .

Using the generator I, de�ned by 𝛼 (x) = x, we obtain Gadovan numbers concerning classical arithmetic.
Also, by choosing the generator exp de�ned by 𝛼 (x) = ex , we obtain Gadovan numbers with respect to geo-
metric arithmetic, as follows:

ea, eb , ec , ea+b , ea+c , ea+b+c , ea+2b+c , . . . , eGPn , . . . .

The characteristic equation of the non-Newtonian Gadovan numbers is

¤x ¤3 ¤− ¤x ¤−¤1 = ¤0.

In the following theorem, we focus on the relation between non-Newtonian Padovan and non-Newtonian
Gadovan numbers.

Theorem 4. Let NNPn and NNGPn be n-th non-Newtonian Padovan and n-th non-Newtonian Gadovan numbers,
respectively. Then, for n ≥ 4

NNGPn = ¤a ¤×NNPn−4 ¤+ ¤b ¤×NNPn−2 ¤+¤c ¤×NNPn−3 .

Proof. We establish this using the principle of mathematical induction. Since

NNGP4 = ¤a ¤×NNP0 ¤+ ¤b ¤×NNP2 ¤+¤c ¤×NNP1 = ¤a ¤+ ¤b

and

NNGP5 = ¤a ¤×NNP1 ¤+ ¤b ¤×NNP3 ¤+¤c ¤×NNP2 = ¤b ¤+¤c

the result is true for n = 4, 5. Assume that the relation is true for all positive integers n ≤ k. Then,

NNGPk+3 = NNGPk+1 ¤+ NNGPk
= ¤a ¤×NNPk−3 ¤+ ¤b ¤×NNPk−1 ¤+¤c ¤×NNPk−2 + ¤a ¤×NNPk−4 ¤+ ¤b ¤×NNPk−2 ¤+¤c ¤×NNPk−3
= ¤a ¤×(NNPk−3 ¤+NNPk−4) ¤+ ¤b ¤×(NNPk−1 ¤+NNPk−2) ¤+¤c ¤×(NNPk−2 ¤+NNPk−3)
= ¤a ¤×NNPk−1 ¤+ ¤b ¤×NNPk+1 ¤+¤c ¤×NNPk

Thus, by the strong version of the principle of mathematical induction, the formula works for all positive
integers n. �

Theorem 5. The Binet-like formula for the n-th non-Newtonian Gadovan number is

NNGPn = ¤p1 ¤× ¤𝛾1 ¤×¤q ¤n1 ¤+ ¤p2 ¤× ¤𝛾2 ¤×¤q ¤n2 ¤+ ¤p3 ¤× ¤𝛾3 ¤×¤q ¤n3 ,

where

¤𝛾1 = ¤a ¤×¤q ¤−¤41 ¤+ ¤b ¤×¤q ¤−¤21 ¤+¤c ¤×¤q ¤−¤31 ,

¤𝛾2 = ¤a ¤×¤q ¤−¤42 ¤+ ¤b ¤×¤q ¤−¤22 ¤+¤c ¤×¤q ¤−¤32 ,

¤𝛾3 = ¤a ¤×¤q ¤−¤43 ¤+ ¤b ¤×¤q ¤−¤23 ¤+¤c ¤×¤q ¤−¤33 .
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Proof. Using Theorem 2, we have

NNGPn = ¤a ¤×NNPn−4 ¤+ ¤b ¤×NNPn−2 ¤+¤c ¤×NNPn−3
= ¤a ¤×( ¤p1 ¤×¤q ¤n ¤−

¤4
1 ¤+ ¤p2 ¤×¤q ¤n ¤−

¤4
2 ¤+ ¤p3 ¤×¤q ¤n ¤−

¤4
3 ) ¤+ ¤b ¤×( ¤p1 ¤×¤q ¤n ¤−

¤2
1 ¤+ ¤p2 ¤×¤q ¤n ¤−

¤2
2 ¤+ ¤p3 ¤×¤q ¤n ¤−

¤2
3 )

¤+¤c ¤×( ¤p1 ¤×¤q ¤n ¤−
¤3

1 ¤+ ¤p2 ¤×¤q ¤n ¤−
¤3

2 ¤+ ¤p3 ¤×¤q ¤n ¤−
¤3

3 )

= ¤p1 ¤×( ¤a ¤×¤q ¤−
¤4

1 ¤+ ¤b ¤×¤q ¤−¤21 ¤+¤c ¤×¤q ¤−¤31 ) ¤×¤q ¤n1 ¤+ ¤p2 ¤×( ¤a ¤×¤q
¤−¤4
2 ¤+ ¤b ¤×¤q ¤−¤22 ¤+¤c ¤×¤q ¤−¤32 ) ¤×¤q ¤n2

¤+ ¤p3 ¤×( ¤a ¤×¤q ¤−
¤4

3 ¤+ ¤b ¤×¤q ¤−¤23 ¤+¤c ¤×¤q ¤−¤33 ) ¤×¤q ¤n3
= ¤p1 ¤× ¤𝛾1 ¤×¤q ¤n1 ¤+ ¤p2 ¤× ¤𝛾2 ¤×¤q ¤n2 ¤+ ¤p3 ¤× ¤𝛾3 ¤×¤q ¤n3 .

�

Theorem 6. The generating function of the non-Newtonian Gadovan numbers is

𝔾NNGP ( ¤x) = ¤a ¤× ¤x ¤+ ¤b ¤× ¤x ¤2 ¤+( ¤c ¤− ¤a) ¤× ¤x ¤3
¤1 ¤− ¤x ¤2 ¤− ¤x ¤3

𝛼 .

Proof. Assume that the function

𝔾NNGP ( ¤x) = 𝛼

∞∑︁
n=1

NNGPn ¤× ¤x ¤n = NNGP1 ¤× ¤x ¤+NNGP2 ¤× ¤x ¤2 ¤+ · · · ¤+NNGPn ¤× ¤x ¤n ¤+ · · ·

be the generating function of the non-Newtonian Gadovan numbers. Multiply both of side of the equality by
the term ¤− ¤x ¤2 such as

( ¤− ¤x ¤2) ¤×𝔾NNGP ( ¤x) = ¤−NNGP1 ¤× ¤x ¤3 ¤−NNGP2 ¤× ¤x ¤4 ¤− · · · ¤−NNGPn ¤× ¤x ¤n ¤+¤2 ¤− · · ·

and that is multiplied every side with ¤− ¤x ¤3 such as

( ¤− ¤x ¤3) ¤×𝔾NNGP ( ¤x) = ¤−NNGP ¤× ¤x ¤4 ¤−NNGP2 ¤× ¤x ¤5 ¤− · · · ¤−NNGPn ¤× ¤x ¤n ¤+¤3 ¤− · · · .

Then, we write

( ¤1 ¤− ¤x ¤2 ¤− ¤x ¤3) ¤×𝔾NNGP ( ¤x) = NNGP1 ¤× ¤x ¤+NNGP2 ¤× ¤x ¤2 ¤+(NNGP3 ¤−NNGP1) ¤× ¤x ¤3

¤+(NNGP4 ¤−NNGP2 ¤−NNGP1) ¤× ¤x ¤4 ¤+ · · · ¤+
(NNGPn ¤−NNGPn−2 ¤−NNGPn−3) ¤× ¤x ¤n ¤+ · · · .

Now, by using NNGP1 = ¤a , NNGP2 = ¤b , NNGP3 = ¤c , NNGP4 = ¤a ¤+ ¤b, NNGP5 = ¤b ¤+¤c ,..., we obtain that

𝔾NNGP ( ¤x) = ¤a ¤× ¤x ¤+ ¤b ¤× ¤x ¤2 ¤+( ¤c ¤− ¤a) ¤× ¤x ¤3
¤1 ¤− ¤x ¤2 ¤− ¤x ¤3

𝛼 .

�

If ¤a = ¤b = ¤c = ¤1, the generator function of non-Newtonian Padovan numbers 𝔾NNP ( ¤x) is obtained.

Theorem 7. Let m and n be positive integers. Then,

𝛼

m∑︁
n=1

¤( m
n

¤) ¤×NNGPn = NNGP3m .
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Proof. Applying the Binet-like formula, we obtain the identity

𝛼

m∑︁
n=1

¤( m
n

¤) ¤×NNGPn = 𝛼

m∑︁
n=1

¤( m
n

¤) ¤×( ¤p1 ¤× ¤𝛾1 ¤×¤q ¤n1 ¤+ ¤p2 ¤× ¤𝛾2 ¤×¤q ¤n2 ¤+ ¤p3 ¤× ¤𝛾3 ¤×¤q ¤n3)

= ¤p1 ¤× ¤𝛾1 ¤×
(
𝛼

m∑︁
n=1

¤( m
n

¤) ¤×¤q ¤n1 ¤×¤1
( ¤m ¤− ¤n)

)
¤+ ¤p2 ¤× ¤𝛾2 ¤×

(
𝛼

m∑︁
n=1

¤( m
n

¤) ¤×¤q ¤n2 ¤×¤1
( ¤m ¤− ¤n)

)
¤+ ¤p3 ¤× ¤𝛾3 ¤×

(
𝛼

m∑︁
n=1

¤( m
n

¤) ¤×¤q ¤n3 ¤×¤1
( ¤m ¤− ¤n)

)
= ¤p1 ¤× ¤𝛾1 ¤×( ¤q1 ¤+¤1) ¤m ¤+ ¤p2 ¤× ¤𝛾2 ¤×( ¤q2 ¤+¤1) ¤m ¤+ ¤p3 ¤× ¤𝛾3 ¤×( ¤q3 ¤+¤1) ¤m

= ¤p1 ¤× ¤𝛾1 ¤×¤q
¤3 ¤× ¤m
1 ¤+ ¤p2 ¤× ¤𝛾2 ¤×¤q

¤3 ¤× ¤m
2 ¤+ ¤p3 ¤× ¤𝛾3 ¤×¤q

¤3 ¤× ¤m
3

= NNGP3m

�

Theorem 8. Let m, n and k be positive integers. Then,

𝛼

m∑︁
k=1

¤( m
n

¤) ¤×NNGPn−k = NNGPn+2m .

Proof. The proof can be proven as in the proof 7. �

Theorem 9. For all n ≥ 1,
NNGPn−3 NNGPn−1 NNGPn−2
NNGPn−2 NNGPn NNGPn−1
NNGPn−1 NNGPn+1 NNGPn

 =


NNPn−3 NNPn−1 NNPn−2
NNPn−2 NNPn NNPn−1
NNPn−1 NNPn+1 NNPn

 ¤×

¤c ¤− ¤a ¤b ¤a
¤a ¤c ¤b
¤b ¤a ¤+ ¤b ¤c

 .
Proof. Let 

NNPn−3 NNPn−1 NNPn−2
NNPn−2 NNPn NNPn−1
NNPn−1 NNPn+1 NNPn

 ¤×

¤c ¤− ¤a ¤b ¤a
¤a ¤c ¤b
¤b ¤a ¤+ ¤b ¤c

 =


X Y Z
K L M
A B C

 .
Then, we write

X = ( ¤c ¤− ¤a) ¤×NNPn−3 ¤+ ¤a ¤×NNPn−1 ¤+ ¤b ¤×NNPn−2
= ¤c ¤×NNPn−3 ¤− ¤a ¤×NNPn−3 ¤+ ¤a ¤×(NNPn−3 ¤+NNPn−4) ¤+ ¤b ¤×NNPn−2
= ¤a ¤×NNPn−4 ¤+ ¤b ¤×NNPn−2 ¤+¤c ¤×NNPn−3 = NNGPn−3 ,

Y = ¤b ¤×NNPn−3 ¤+¤c ¤×NNPn−1 ¤+( ¤a ¤+ ¤b) ¤×NNPn−2
= ¤b ¤×NNPn−3 ¤+¤c ¤×NNPn−1 ¤+ ¤a ¤×NNPn−2 ¤+ ¤b ¤×NNPn−2
= ¤a ¤×NNPn−2 ¤+ ¤b ¤×NNPn ¤+¤c ¤×NNPn−1 = NNGPn−1 ,

Z = ¤a ¤×NNPn−3 ¤+ ¤b ¤×NNPn−1 ¤+¤c ¤×NNPn−2 = NNGPn−2 ,

K = ( ¤c ¤− ¤a) ¤×NNPn−2 ¤+ ¤a ¤×NNPn ¤+ ¤b ¤×NNPn−1
= ¤c ¤×NNPn−2 ¤− ¤a ¤×NNPn−2 ¤+ ¤a ¤×(NNPn−2 ¤+NNPn−3) ¤+ ¤b ¤×NNPn−1
= ¤a ¤×NNPn−3 ¤+ ¤b ¤×NNPn−1 ¤+¤c ¤×NNPn−2 = NNGPn−2 ,

5
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L = ¤b ¤×NNPn−2 ¤+¤c ¤×NNPn ¤+( ¤a ¤+ ¤b) ¤×NNPn−1
= ¤b ¤×NNPn−2 ¤+¤c ¤×NNPn ¤+ ¤a ¤×NNPn−1 ¤+ ¤b ¤×NNPn−1
= ¤a ¤×NNPn−1 ¤+ ¤b ¤×NNPn+1 ¤+¤c ¤×NNPn = NNGPn ,

M = ¤a ¤×NNPn−2 ¤+ ¤b ¤×NNPn ¤+¤c ¤×NNPn−1 = NNGPn−1 ,

A = ( ¤c ¤− ¤a) ¤×NNPn−1 ¤+ ¤a ¤×NNPn+1 ¤+ ¤b ¤×NNPn
= ¤c ¤×NNPn−1 ¤− ¤a ¤×NNPn−1 ¤+ ¤a ¤×(NNPn−1 ¤+NNPn−2) ¤+ ¤b ¤×NNPn
= ¤a ¤×NNPn−2 ¤+ ¤b ¤×NNPn ¤+¤c ¤×NNPn−1 = NNGPn−1 ,

B = ¤b ¤×NNPn−1 ¤+¤c ¤×NNPn+1 ¤+( ¤a ¤+ ¤b) ¤×NNPn
= ¤b ¤×NNPn−1 ¤+¤c ¤×NNPn+1 ¤+ ¤a ¤×NNPn ¤+ ¤b ¤×NNPn
= ¤a ¤×NNPn ¤+ ¤b ¤×NNPn+2 ¤+¤c ¤×NNPn+1 = NNGPn+1 ,

C = ¤a ¤×NNPn−1 ¤+b ¤×NNPn+1 ¤+¤c ¤×NNPn = NNGPn.

So, 
X Y Z
K L M
A B C

 =


NNGPn−3 NNGPn−1 NNGPn−2
NNGPn−2 NNGPn NNGPn−1
NNGPn−1 NNGPn+1 NNGPn

 .
�

3 Conclusion

This study introduces Gadovan numbers within the context of non-Newtonian calculus and investigates their
fundamental properties. Additionally, it gives the generating matrix for non-Newtonian Padovan numbers,
providing a clearer understanding of their mathematical structure. Future research can further explore the use
of these numbers in di�erent disciplines, contributing to the development of non-Newtonian calculus.
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