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Abstract
In this study, non-Newtonian Gadovan numbers are introduced and their properties are examined within non-
Newtonian calculus, a mathematical approach that has recently garnered signicant attention. We also obtain
the generating matrix of non-Newtonian Padovan numbers.
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1 Introduction

The sequence of Padovan numbers was discovered by Richard Padovan. The formula for obtaining the
Padovan sequences is

Pn+3 = Pn+1 + Pn

with P0 = P1 = P2 = 1, [6]. Some of the terms of the Padovan sequence are

1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, . . . .

The sequence of Gadovan numbers was dened by Diskaya and Menken, which generalizes a new class of
Padovan numbers. The formula for obtaining the Gadovan sequences is

GPn+3 = GPn+1 +GPn

withGP0 = a, GP1 = b andGP2 = c, [3]. Some of the terms of the Gadovan sequence are

a, b , c , a + b , b + c , a + b + c , a + 2b + c , a + 2b + 2c , . . . .

The non-Newtonian calculus, introduced by Grossman and Katz in 1972, oers an alternative viewpoint
to classic Newtonian and Leibnizian calculus, creating a novel branch of mathematics, [4]. This emerging
discipline incorporates a wide array of innovative topics for exploration. Non-Newtonian calculus encompasses
various forms of computation, geometric, bigeometric, quadratic and biquadratic approaches. Furthermore,
it demonstrates considerable promise for applications across diverse domains such as technology, engineering,
physics, nance, dynamic systems, and cancer therapy.

A completely ordered eld is called arithmetic if its realm is a subset of ℝ. A generator is a one-to-one
function whose domain ℝ and whose range is a subset of ℝ. Let 𝛼 be a generator with range A. The set of
non-Newtonian real numbers is denoted by ℝ𝛼 .
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Let 𝛼 be arbitrarily chosen generator which image the set ℝ to A and ∗-calculus also be the ordered pairs
of arithmetics. The following notations will be used
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𝛼-zero and 𝛼-one numbers are denoted by ¤0 = 𝛼 (0) and ¤1 = 𝛼 (1), [1].
This paper expands on the concepts introduced in [2, 5] by exploring their application toGadovan numbers.

The central focus is to dene and investigate the non-Newtonian forms of this well-known sequence.

2 Main Results

Denition 1. [2], The non-Newtonian Padovan sequence is dened by the relation for n > 0

NNPn+3 = NNPn+1 ¤+NNPn ,

with initial values NNP0 = NNP1 = NNP2 = 1, where NNPn = ¤Pn = 𝛼 (Pn).

The non-Newtonian Padovan numbers are generated by a matrix

Q =


¤0 ¤1 ¤0
¤0 ¤0 ¤1
¤1 ¤1 ¤0

 .
The powers ofQ give

Qn =


NNPn−5 NNPn−3 NNPn−4
NNPn−4 NNPn−2 NNPn−3
NNPn−3 NNPn−1 NNPn−2

 .
The characteristic equation of the non-Newtonian Padovan sequence is

¤x ¤3 ¤− ¤x ¤−¤1 = ¤0,

so we have to solve this equation, we nd three distinct roots q1, q2 and q3, [2].

Theorem 2. [2], The Binet-like formula for the n-th non-Newtonian Padovan number is

NNPn = ¤p1 ¤×¤q ¤n1 ¤+ ¤p2 ¤×¤q
¤n
2 ¤+ ¤p3 ¤×¤q

¤n
3 .

Denition 3. The non-Newtonian Gadovan sequence is dened by the relation for n ≥ 1

NNGPn+3 = NNGPn+1 ¤+ NNGPn ,

with initial values NNGP1 = ¤a, NNGP2 = ¤b, NNGP3 = ¤c, where

NNGPn = 𝛼 (GPn) .
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The non-Newtonian Gadovan sequence, denoted by {NNGPn}, is

¤a, ¤b, ¤c, ¤a ¤+ ¤b, ¤b ¤+¤c, ¤a ¤+ ¤b ¤+¤c, ¤a ¤+¤2 ¤x ¤b ¤+¤c, ¤a ¤+¤2 ¤x ¤b ¤+¤2 ¤x ¤c, . . . .

Using the generator I, dened by 𝛼 (x) = x, we obtain Gadovan numbers concerning classical arithmetic.
Also, by choosing the generator exp dened by 𝛼 (x) = ex , we obtain Gadovan numbers with respect to geo-
metric arithmetic, as follows:

ea, eb , ec , ea+b , ea+c , ea+b+c , ea+2b+c , . . . , eGPn , . . . .

The characteristic equation of the non-Newtonian Gadovan numbers is

¤x ¤3 ¤− ¤x ¤−¤1 = ¤0.

In the following theorem, we focus on the relation between non-Newtonian Padovan and non-Newtonian
Gadovan numbers.

Theorem 4. Let NNPn and NNGPn be n-th non-Newtonian Padovan and n-th non-Newtonian Gadovan numbers,
respectively. Then, for n ≥ 4

NNGPn = ¤a ¤×NNPn−4 ¤+ ¤b ¤×NNPn−2 ¤+¤c ¤×NNPn−3 .

Proof. We establish this using the principle of mathematical induction. Since

NNGP4 = ¤a ¤×NNP0 ¤+ ¤b ¤×NNP2 ¤+¤c ¤×NNP1 = ¤a ¤+ ¤b

and

NNGP5 = ¤a ¤×NNP1 ¤+ ¤b ¤×NNP3 ¤+¤c ¤×NNP2 = ¤b ¤+¤c

the result is true for n = 4, 5. Assume that the relation is true for all positive integers n ≤ k. Then,

NNGPk+3 = NNGPk+1 ¤+ NNGPk
= ¤a ¤×NNPk−3 ¤+ ¤b ¤×NNPk−1 ¤+¤c ¤×NNPk−2 + ¤a ¤×NNPk−4 ¤+ ¤b ¤×NNPk−2 ¤+¤c ¤×NNPk−3
= ¤a ¤×(NNPk−3 ¤+NNPk−4) ¤+ ¤b ¤×(NNPk−1 ¤+NNPk−2) ¤+¤c ¤×(NNPk−2 ¤+NNPk−3)
= ¤a ¤×NNPk−1 ¤+ ¤b ¤×NNPk+1 ¤+¤c ¤×NNPk

Thus, by the strong version of the principle of mathematical induction, the formula works for all positive
integers n. �

Theorem 5. The Binet-like formula for the n-th non-Newtonian Gadovan number is

NNGPn = ¤p1 ¤× ¤𝛾1 ¤×¤q ¤n1 ¤+ ¤p2 ¤× ¤𝛾2 ¤×¤q ¤n2 ¤+ ¤p3 ¤× ¤𝛾3 ¤×¤q ¤n3 ,

where

¤𝛾1 = ¤a ¤×¤q ¤−¤41 ¤+ ¤b ¤×¤q ¤−¤21 ¤+¤c ¤×¤q ¤−¤31 ,

¤𝛾2 = ¤a ¤×¤q ¤−¤42 ¤+ ¤b ¤×¤q ¤−¤22 ¤+¤c ¤×¤q ¤−¤32 ,

¤𝛾3 = ¤a ¤×¤q ¤−¤43 ¤+ ¤b ¤×¤q ¤−¤23 ¤+¤c ¤×¤q ¤−¤33 .
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Proof. Using Theorem 2, we have

NNGPn = ¤a ¤×NNPn−4 ¤+ ¤b ¤×NNPn−2 ¤+¤c ¤×NNPn−3
= ¤a ¤×( ¤p1 ¤×¤q ¤n ¤−

¤4
1 ¤+ ¤p2 ¤×¤q ¤n ¤−

¤4
2 ¤+ ¤p3 ¤×¤q ¤n ¤−
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3 ) ¤+ ¤b ¤×( ¤p1 ¤×¤q ¤n ¤−

¤2
1 ¤+ ¤p2 ¤×¤q ¤n ¤−

¤2
2 ¤+ ¤p3 ¤×¤q ¤n ¤−

¤2
3 )

¤+¤c ¤×( ¤p1 ¤×¤q ¤n ¤−
¤3

1 ¤+ ¤p2 ¤×¤q ¤n ¤−
¤3

2 ¤+ ¤p3 ¤×¤q ¤n ¤−
¤3

3 )

= ¤p1 ¤×( ¤a ¤×¤q ¤−
¤4

1 ¤+ ¤b ¤×¤q ¤−¤21 ¤+¤c ¤×¤q ¤−¤31 ) ¤×¤q ¤n1 ¤+ ¤p2 ¤×( ¤a ¤×¤q
¤−¤4
2 ¤+ ¤b ¤×¤q ¤−¤22 ¤+¤c ¤×¤q ¤−¤32 ) ¤×¤q ¤n2

¤+ ¤p3 ¤×( ¤a ¤×¤q ¤−
¤4

3 ¤+ ¤b ¤×¤q ¤−¤23 ¤+¤c ¤×¤q ¤−¤33 ) ¤×¤q ¤n3
= ¤p1 ¤× ¤𝛾1 ¤×¤q ¤n1 ¤+ ¤p2 ¤× ¤𝛾2 ¤×¤q ¤n2 ¤+ ¤p3 ¤× ¤𝛾3 ¤×¤q ¤n3 .

�

Theorem 6. The generating function of the non-Newtonian Gadovan numbers is

𝔾NNGP ( ¤x) = ¤a ¤× ¤x ¤+ ¤b ¤× ¤x ¤2 ¤+( ¤c ¤− ¤a) ¤× ¤x ¤3
¤1 ¤− ¤x ¤2 ¤− ¤x ¤3

𝛼 .

Proof. Assume that the function

𝔾NNGP ( ¤x) = 𝛼

∞∑︁
n=1

NNGPn ¤× ¤x ¤n = NNGP1 ¤× ¤x ¤+NNGP2 ¤× ¤x ¤2 ¤+ · · · ¤+NNGPn ¤× ¤x ¤n ¤+ · · ·

be the generating function of the non-Newtonian Gadovan numbers. Multiply both of side of the equality by
the term ¤− ¤x ¤2 such as

( ¤− ¤x ¤2) ¤×𝔾NNGP ( ¤x) = ¤−NNGP1 ¤× ¤x ¤3 ¤−NNGP2 ¤× ¤x ¤4 ¤− · · · ¤−NNGPn ¤× ¤x ¤n ¤+¤2 ¤− · · ·

and that is multiplied every side with ¤− ¤x ¤3 such as

( ¤− ¤x ¤3) ¤×𝔾NNGP ( ¤x) = ¤−NNGP ¤× ¤x ¤4 ¤−NNGP2 ¤× ¤x ¤5 ¤− · · · ¤−NNGPn ¤× ¤x ¤n ¤+¤3 ¤− · · · .

Then, we write

( ¤1 ¤− ¤x ¤2 ¤− ¤x ¤3) ¤×𝔾NNGP ( ¤x) = NNGP1 ¤× ¤x ¤+NNGP2 ¤× ¤x ¤2 ¤+(NNGP3 ¤−NNGP1) ¤× ¤x ¤3

¤+(NNGP4 ¤−NNGP2 ¤−NNGP1) ¤× ¤x ¤4 ¤+ · · · ¤+
(NNGPn ¤−NNGPn−2 ¤−NNGPn−3) ¤× ¤x ¤n ¤+ · · · .

Now, by using NNGP1 = ¤a , NNGP2 = ¤b , NNGP3 = ¤c , NNGP4 = ¤a ¤+ ¤b, NNGP5 = ¤b ¤+¤c ,..., we obtain that

𝔾NNGP ( ¤x) = ¤a ¤× ¤x ¤+ ¤b ¤× ¤x ¤2 ¤+( ¤c ¤− ¤a) ¤× ¤x ¤3
¤1 ¤− ¤x ¤2 ¤− ¤x ¤3

𝛼 .

�

If ¤a = ¤b = ¤c = ¤1, the generator function of non-Newtonian Padovan numbers 𝔾NNP ( ¤x) is obtained.

Theorem 7. Let m and n be positive integers. Then,

𝛼

m∑︁
n=1

¤( m
n

¤) ¤×NNGPn = NNGP3m .
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Proof. Applying the Binet-like formula, we obtain the identity

𝛼
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= ¤p1 ¤× ¤𝛾1 ¤×
(
𝛼

m∑︁
n=1

¤( m
n

¤) ¤×¤q ¤n1 ¤×¤1
( ¤m ¤− ¤n)

)
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(
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( ¤m ¤− ¤n)

)
¤+ ¤p3 ¤× ¤𝛾3 ¤×

(
𝛼

m∑︁
n=1

¤( m
n

¤) ¤×¤q ¤n3 ¤×¤1
( ¤m ¤− ¤n)

)
= ¤p1 ¤× ¤𝛾1 ¤×( ¤q1 ¤+¤1) ¤m ¤+ ¤p2 ¤× ¤𝛾2 ¤×( ¤q2 ¤+¤1) ¤m ¤+ ¤p3 ¤× ¤𝛾3 ¤×( ¤q3 ¤+¤1) ¤m

= ¤p1 ¤× ¤𝛾1 ¤×¤q
¤3 ¤× ¤m
1 ¤+ ¤p2 ¤× ¤𝛾2 ¤×¤q

¤3 ¤× ¤m
2 ¤+ ¤p3 ¤× ¤𝛾3 ¤×¤q

¤3 ¤× ¤m
3

= NNGP3m

�

Theorem 8. Let m, n and k be positive integers. Then,

𝛼

m∑︁
k=1

¤( m
n

¤) ¤×NNGPn−k = NNGPn+2m .

Proof. The proof can be proven as in the proof 7. �

Theorem 9. For all n ≥ 1,
NNGPn−3 NNGPn−1 NNGPn−2
NNGPn−2 NNGPn NNGPn−1
NNGPn−1 NNGPn+1 NNGPn

 =


NNPn−3 NNPn−1 NNPn−2
NNPn−2 NNPn NNPn−1
NNPn−1 NNPn+1 NNPn

 ¤×

¤c ¤− ¤a ¤b ¤a
¤a ¤c ¤b
¤b ¤a ¤+ ¤b ¤c

 .
Proof. Let 

NNPn−3 NNPn−1 NNPn−2
NNPn−2 NNPn NNPn−1
NNPn−1 NNPn+1 NNPn

 ¤×

¤c ¤− ¤a ¤b ¤a
¤a ¤c ¤b
¤b ¤a ¤+ ¤b ¤c

 =


X Y Z
K L M
A B C

 .
Then, we write

X = ( ¤c ¤− ¤a) ¤×NNPn−3 ¤+ ¤a ¤×NNPn−1 ¤+ ¤b ¤×NNPn−2
= ¤c ¤×NNPn−3 ¤− ¤a ¤×NNPn−3 ¤+ ¤a ¤×(NNPn−3 ¤+NNPn−4) ¤+ ¤b ¤×NNPn−2
= ¤a ¤×NNPn−4 ¤+ ¤b ¤×NNPn−2 ¤+¤c ¤×NNPn−3 = NNGPn−3 ,

Y = ¤b ¤×NNPn−3 ¤+¤c ¤×NNPn−1 ¤+( ¤a ¤+ ¤b) ¤×NNPn−2
= ¤b ¤×NNPn−3 ¤+¤c ¤×NNPn−1 ¤+ ¤a ¤×NNPn−2 ¤+ ¤b ¤×NNPn−2
= ¤a ¤×NNPn−2 ¤+ ¤b ¤×NNPn ¤+¤c ¤×NNPn−1 = NNGPn−1 ,

Z = ¤a ¤×NNPn−3 ¤+ ¤b ¤×NNPn−1 ¤+¤c ¤×NNPn−2 = NNGPn−2 ,

K = ( ¤c ¤− ¤a) ¤×NNPn−2 ¤+ ¤a ¤×NNPn ¤+ ¤b ¤×NNPn−1
= ¤c ¤×NNPn−2 ¤− ¤a ¤×NNPn−2 ¤+ ¤a ¤×(NNPn−2 ¤+NNPn−3) ¤+ ¤b ¤×NNPn−1
= ¤a ¤×NNPn−3 ¤+ ¤b ¤×NNPn−1 ¤+¤c ¤×NNPn−2 = NNGPn−2 ,

5
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L = ¤b ¤×NNPn−2 ¤+¤c ¤×NNPn ¤+( ¤a ¤+ ¤b) ¤×NNPn−1
= ¤b ¤×NNPn−2 ¤+¤c ¤×NNPn ¤+ ¤a ¤×NNPn−1 ¤+ ¤b ¤×NNPn−1
= ¤a ¤×NNPn−1 ¤+ ¤b ¤×NNPn+1 ¤+¤c ¤×NNPn = NNGPn ,

M = ¤a ¤×NNPn−2 ¤+ ¤b ¤×NNPn ¤+¤c ¤×NNPn−1 = NNGPn−1 ,

A = ( ¤c ¤− ¤a) ¤×NNPn−1 ¤+ ¤a ¤×NNPn+1 ¤+ ¤b ¤×NNPn
= ¤c ¤×NNPn−1 ¤− ¤a ¤×NNPn−1 ¤+ ¤a ¤×(NNPn−1 ¤+NNPn−2) ¤+ ¤b ¤×NNPn
= ¤a ¤×NNPn−2 ¤+ ¤b ¤×NNPn ¤+¤c ¤×NNPn−1 = NNGPn−1 ,

B = ¤b ¤×NNPn−1 ¤+¤c ¤×NNPn+1 ¤+( ¤a ¤+ ¤b) ¤×NNPn
= ¤b ¤×NNPn−1 ¤+¤c ¤×NNPn+1 ¤+ ¤a ¤×NNPn ¤+ ¤b ¤×NNPn
= ¤a ¤×NNPn ¤+ ¤b ¤×NNPn+2 ¤+¤c ¤×NNPn+1 = NNGPn+1 ,

C = ¤a ¤×NNPn−1 ¤+b ¤×NNPn+1 ¤+¤c ¤×NNPn = NNGPn.

So, 
X Y Z
K L M
A B C

 =


NNGPn−3 NNGPn−1 NNGPn−2
NNGPn−2 NNGPn NNGPn−1
NNGPn−1 NNGPn+1 NNGPn

 .
�

3 Conclusion

This study introduces Gadovan numbers within the context of non-Newtonian calculus and investigates their
fundamental properties. Additionally, it gives the generating matrix for non-Newtonian Padovan numbers,
providing a clearer understanding of their mathematical structure. Future research can further explore the use
of these numbers in dierent disciplines, contributing to the development of non-Newtonian calculus.
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