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Abstract
In the present paper, we deal with the four step iterative process named DH-iterative scheme into hyperbolic
metric spaces. We modify this iteration into hyperbolic metric spaces where the symmetry condition is satis-
�ed. The weak w2-stability and data dependence results for contraction mapping in hyperbolic metric spaces
are established. Finally, we prove some results related to Δ-convergence and strong convergence theorems for
generalized (𝛼 , 𝛽 )-nonexpansive type 1 mappings and we o�er a numerical example of generalized (𝛼 , 𝛽 )-
nonexpansive type 1 mappings.
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1 Introduction

In �xed point theory, the role played by ambient spaces is paramount . Several problems diverse �elds of
since are naturally nonlinear. Therefore,transforming the linear version of a given problem into its equivalent
nonlinear version is very pertinent.
Moreover, studying various problems in spaces without a linear structure is signi�cant in applied and pure
sciences.
Several e�orts have been made to introduce a convex-like structure on a metric space .
In 1990, Reich and Shafrir [25] introduced hyperbolic metric spaces .
In 2004, Kohlenbach [19] introduced a more general hyperbolic metric space. AS an example for the convex-
like structure is a hyperbolic space . Banach and CAT(0) spaces are well known to be special cases of hyperbolic
spaces. Moreover, the class of hyperbolic spaces properly contains a Hilbert ball endowed with hyperbolic
spaces , Hadamard manifolds,R-tree,and the cartesian product of Hilbert spaces [13]. Our work will be a
carried out in the setting of hyperbolic space studied by Kohlenbach [19].
When we talk a bout the problems emulated into a �xed point, we mean to �nd a p∗ ∈ Y such that Gp∗ = p∗

, where G is a nonlinear mapping (self or non-self) of an arbitrary spaceY . Many researchers have paid very
good attention to �nding an analytical solution, but this has been almost practically impossible. In view of this,
iterative processes have been adopted to �nd approximate solutions.
The Picard iterative process is one of the very �rst iterative processes used to approximate a �xed point of a
contraction mapping G on a metric space (Y , 𝜌) . Note that a mapping G : Y → Y is called a contraction if
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there exists a constant 𝜇 ∈ [0, 1) such that

𝜌(Ga,Gb) ≤ 𝜇(a, b) , ∀a, b ∈ Y

If 𝜇 = 1 in inequality above then G is said to be a nonexpansive mapping. Even though the existence of the
�xed point is guaranteed in the case of nonexpansive mapping, the Picard iterative process fails to approximate
the �xed point ofG. To overcome this problem, researchers of this �eld developed di�erent iterative processes
to approximate �xed points of nonexpansive mappings and other mappings, which are more general than
nonexpansive. For example, look at Noor [23], Agarwal et al. [2], Abbas and Nazir [1] CR-iteration [10],
Normal-S iteration [27], Picard-S [14], Thakur et al. [34], and M iterative schemes [36]. ,etc.
In 2017, Pant and Shukla [24] introduced the class of generalized 𝛼-nonexpansive mappings, which is a larger
class of mappings than the classes of nonexpansive, Suzuki generalized nonexpansive and 𝛼-nonexpansive
mappings.
Very recently, in 2024, Al-baqeri et al [5] introduced new four steps iterative methods called the DH-iterative
scheme as follows:

p1 ∈ U ,

zi = G [(1 − 𝛼i )pi + 𝛼iGpi ]
wi = G [(1 − 𝛽 i )zi + 𝛽 iGzi ]
qi = G [(1 − 𝛾i )wi + 𝛾iGwi ]

pi+1 = G (Gqi ) (1.1)

for i ≥ 1, where {𝛼i }, {𝛽 i } and {𝛾i } are sequences in (0, 1). They proved that the DH iterative algorithm has
a better rate of convergence than most leading algorithms for contractive-like mappings and Reich-Suzuki-
type nonexpansive mappings. Under this algorithm, some �xed point convergence results , w2-stability for
contractive-like mappings are studied.
Motivated by the results that mentioned in [5], our work are organized as follows:
(1)Collect some basic de�nitions and theorems we need its in our studying.
(2)Study DH-iterative algorithm in hyperbolic metric space .
(3)Prove the weakw2-stability and data dependence results for contractionmapping in hyperbolic metric space.
(4)Establish some results related to the strong and Δ-convergence of the DH-iteration process for generalized
(𝛼 , 𝛽 )-nonexpansive type (1) mapping in uniformly convex hyperbolic metric spaces .
(5)Present numerical example of theDH-iteration process for generalized (𝛼 , 𝛽 )-nonexpansive type (1)map-
ping .

2 Preliminaries

We calledG : X →Y is a mapping if it is satis�ed every element in X has only one image inY byG its denoted
Gx = y for all x ∈ X , y ∈ Y .
Now we show some kinds of mappings in metric space

De�nition 2.1. Let (Y , 𝜌) be a metric space andU be a nonempty subset ofY . A mapping G :Y →Y is said to be the
following:
(C1)[20] G is called a contraction mapping if there exists a constant 𝜇 ∈ [0, 1) such that

𝜌(Ga,Gb) ≤ 𝜇𝜌(a, b) , ∀ a, b ∈ U

(C2) [7] G is called a contractive mapping if

𝜌(Ga,Gb) ≤ 𝜌(a, b) , ∀ a, b ∈ U , a ≠ b
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(C4)[7] G is called a nonexpensive mapping if 𝜇 = 1 then

𝜌(Ga,Gb) ≤ 𝜌(a, b) , ∀ a, b ∈ U

(C5) [11] Quasi-nonexpansive if

𝜌(Ga, e) ≤ 𝜌(a, e) f orall a ∈ U and p ∈ Fix(G)

where Fix(G) is the set of all �xed points of G.
(C6) [37] Mean non expansive mapping if, for all a, b ∈ U, there exist 𝛼 , 𝛽 ∈ [0, 1) with 𝛼 + 𝛽 ≤ 1 such that

𝜌(Ga,Gb) ≤ 𝛼 𝜌(a, b) + 𝛽 𝜌(a,Gb)

Several extensions and generalizations of nonexpansive mappings have been discussed by many authors due to their
importance in terms of applications. For instance, Suzuki in (2008) [26] introduced an interesting generalization of
nonexpansive mappings and presented some existence and convergence results. Another common name for such mappings
are known as mappings satisfying condition (C).

(C7)[31] Suzuki-generalized nonexpansive (or satisfy condition (C)) if

1
2
𝜌(Ga, a) ≤ 𝜌(a, b) ⇒ 𝜌(Ga,Gb) ≤ 𝜌(a, b) f orall a, b ∈ U

(C8) [12] Satisfy condition (C𝜆 ) if

𝜆 𝜌(Ga, b) ≤ 𝜌(a, b) ⇒ 𝜌(Ga,Gb) ≤ 𝜌(a, b) f orall a, b ∈ U

(C9) [24] Generalized 𝛼-nonexpansive mapping if,forall a, b ∈ U there exists
𝛼 ∈ [0, 1) such that

1
2
𝜌(Ga, a) ≤ 𝜌(a, b) ⇒ 𝜌(Ga,Gb) ≤ 𝛼 𝜌(Ga, b) + 𝛼 𝜌(a,Gb) + (1 − 2𝛼) 𝜌(a, b).

Akutsah and Narain [4] introduced the class of generalized (𝛼 , 𝛽 ) − nonexpansive type 1 mappings, which
generalizes the mappings above, and they gave some basic properties for this class of mappings.

De�nition 2.2. [4]
Let U be a nonempty subset of a metric space (Y , 𝜌). A mapping G : U → U is said to be generalized (𝛼 , 𝛽 ) −
nonexpansive type 1 if there exist 𝛼 , 𝛽 , 𝜆 ∈ [0, 1), with 𝛼 ≤ 𝛽 and 𝛼 + 𝛽 < 1 such that

𝜆 𝜌(Ga, a) ≤ 𝜌(a, b) ⇒ 𝜌(Ga,Gb) ≤ 𝛼 𝜌(Ga, b) + 𝛽 𝜌(a,Gb) + (1 − (𝛼 + 𝛽 )) 𝜌(a, b)

for all a, b ∈ U.

Proposition 2.3. [4]
(i)If G is a generalized (𝛼 , 𝛽 ) − nonexpansive type 1 mapping and has a �xed point, then G is quasi-nonexpansive
(ii) If G is a generalized (𝛼 , 𝛽 ) − nonexpansive type 1 mapping, then for all a, b ∈ Y.

𝜌(a,Gb) ≤ 2 + 𝛼 + 𝛽

1 − 𝛽
𝜌(a,Ga) + 𝜌(a, b)

(iii) If G is a generalized (𝛼 , 𝛽 ) − nonexpansive type 1 mapping, then Fix(G) is closed.

De�nition 2.4. [20]
Let (Y , 𝜌) be a metric space and {ai }∞i=1 and {bi }

∞
i=1 be two sequences in Y. We say that these sequences are equivalent if

lim
i→∞

𝜌(ai , bi ) = 0
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Timis [35] gave the following de�nition of weak w2 − stabilityusing equivalent sequences.

De�nition 2.5. ( [35],De�nition 2.4).
Let (Y , 𝜌) be a metric space, G be a self-mapping onY , and {ai }∞i=1 ⊂ Y be an iterative sequence de�ned

a1 ∈ Y

ai+1 = f (G , ai ) , ∀i ≥ 1

where f is a function. Suppose that {ai }∞i=1 converges strongly to p ∈ Fix(G). If for any equivalent sequence {bi }∞i=1 ⊂ Y
of {ai }∞i=1

lim
i→∞

𝜌(bi+1 , f (G , bi )) = 0⇒ lim
i→∞

bi = p∗

then the iterative sequence {ai }∞i=1 is said to be weak w
2 − stable with respect to G

In 1990, Reich and Shafrir [25] introduced hyperbolic metric spaces and studied an iteration process for
nonexpansive mappings ( we gave its de�nition before) in these spaces. In 2004, Kohlenbach [19] introduced
a more general hyperbolic metric space as follows.

De�nition 2.6. Let (Y , 𝜌) be a metric space, and then (Y , 𝜌,W ) will be the hyperbolic metric space if the function
W :Y ×Y × [0, 1] →Y is satisfying.
(i) 𝜌(c ,W (a, b , 𝛼)) ≤ (1 − 𝛼) 𝜌(c , a) + 𝛼 𝜌(c , b).
(ii)𝜌(W (a, b , 𝛼) ,W (a, b , 𝛽 )) = |𝛼 − 𝛽 | 𝜌(a, b).
(iii)W (a, b , 𝛼) =W (b , a, 1 − 𝛼).
(iv)𝜌(W (a, c , 𝛼) ,W (b , w , 𝛼)) ≤ (1 − 𝛼) 𝜌(a, b) + 𝛼 𝜌(c , w).
for all a, b , c , w ∈ Y and 𝛼 , 𝛽 ∈ [0, 1].

A linear example of a hyperbolic metric space is a Banach space and nonlinear examples are Hadamard
manifolds, the Hilbert open unit ball equipped with the hyperbolic metric (see [13]) , and CAT(0) spaces in
the sense of Gromov (see [7]).

De�nition 2.7. We consider a hyperbolic metric space (Y , 𝜌,W ). If a, b ∈ Y and 𝛼 ∈ [0, 1], then we will use
(1 − 𝛼) a ⊕ ab for W (a, b , 𝛼).
(i) A subset U of this hyperbolic metric space is called convex if a, b ∈ U implies that W (a, b , 𝛼) ∈ U. The following
equalities hold even for the more general setting of a convex metric space(see [32],Proposition (1.2)):

𝜌(b ,W (a, b , 𝛼)) = (1 − 𝛼) 𝜌(a, b) and 𝜌(a,W (a, b , 𝛼)) = 𝛼 𝜌(a, b)

for all a, b ∈ Y and 𝛼 ∈ [0, 1]. As a consequence, we obtain

W (a, b , 0) = a and W (a, b , 1) = b

(ii) This hyperbolic metric space is called uniformly convex 5(see [29]) (see [29]) if for any r > 0 and 𝜀 ∈ (0, 2] there
exists a constant 𝛿 ∈ (0, 1] such that

𝜌(W (a, b , 1
2
) , u) ≤ (1 − 𝛿)r

for all u , a, b ∈ Y with 𝜌(a, u) ≤ r , 𝜌(b , u) ≤ r and 𝜌(a, b) ≥ r𝜀 .
(iii) A mapping 𝜂 : (0,∞) × (0, 2] → (0, 1] is said to be a modulus of uniform convexity if 𝛿 = 𝜂 (r , 𝜀) for a given
r > 0 and 𝜀 ∈ (0, 2]. Furthermore, the mapping 𝜂 is called monotone if it decreases with respect to r for a �xed 𝜀.

De�nition 2.8. Let {ai }∞i=1 be a bounded sequence in a nonempty subset X of a metric space (Y , 𝜌). Then, the mapping
r (., {ai }) :Y → [0,∞) is de�ned by

r (a, {ai }) = lim sup
i→∞

𝜌(a, {ai }) , a ∈ Y
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The in�mum of r (., {ai }) overX is called the asymptotic radius of {ai }∞i=1 relative to X and is denoted by r (X , {ai }). A
point c ∈ X is said to be an asymptotic center of the sequence {ai }∞i=1 relative to X if

r (c , {ai }) = in f {r (a, {ai }) : a ∈ X}

and the set of all asymptotic centers of {ai }∞i=1 relative to X is denoted by A(X , ai ).

In 1976, Lim [22] introduced the concept of Δ-convergence, which is an analog of weak convergence, in
metric spaces using the asymptotic center.

De�nition 2.9. [22]
A sequence {ai }∞i=1 in a metric space (Y , 𝜌) is said to Δ − conver ge to a point a ∈ Y if a is the unique asymptotic center
of {ui }∞i=1 for every subsequence {ui }

∞
i=1 of {ai }

∞
i=1 In this case, we write Δ − limi→∞ ai = a and call a as Δ − limit of

{ai }∞i=1.

We give three lemmas that will be helpful in proving our main results.

Lemma 2.10. [21]
Let (Y , 𝜌,W ) be a complete uniformly convex hyperbolic metric space with the monotone modulus of uniform convexity 𝜂
andU be a nonempty closed and convex subset of Y . Then, every bounded sequence {ai }∞i=1 inY has a unique asymptotic
center relative to U.

Lemma 2.11. [18]
Let (Y , 𝜌,W ) be a uniformly convex hyperbolic metric space with the monotone modulus of uniform convexity 𝜂 . Let
a ∈ Y and {𝜎i } be a sequence in [p, q] for some p, q ∈ (0, 1) . If {ai }∞i=1 and {bi }

∞
i=1 are sequences inY such that

lim sup
i→∞

𝜌(ai , a) ≤ r , lim sup
i→∞

𝜌(bi , a) ≤ r , lim
i→∞

𝜌(W (ai , bi , 𝜎i ) , a) = r

for some r ≥ 0, then
lim
i→∞

𝜌(ai , bi ) = 0.

Lemma 2.12. [30]
Let {gi }∞i=1 ,{ri }

∞
i=1 and {ti }

∞
i=1 be non-negative real sequences with ri ∈ (0, 1) , ∀i ≥ 1and∑∞

i=1 ri = ∞. Suppose that
there exists n0 ∈ N such that, for all n ≥ n0 , one has the inequality

gi+1 ≤ (1 − ri )gi + ri ti .

Then, the following inequality holds:
0 ≤ lim sup

i→∞
gi ≤ lim sup

i→∞
ti

3 Weak w2-stability result

First,we put DH- iteration in hyperbolic metric spaces as follows:

p1 ∈ U

zi = G (W (pi ,Gpi , 𝛼i ))
wi = G (W (zi ,Gzi , 𝛽 i ))
qi = G (W (wi ,Gwi , 𝛾i ))

pi+1 = G (Gqi ). (3.1)

where U is nonempty convex subset of a hyperbolic metric space Y ,G is a self-mapping on U ,and {𝛼i }∞i=1,
{𝛽 i }∞i=1 and {𝛾i }∞i=1 are three real sequences in (0, 1).
Now we show the strong convergence theorem.
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Theorem 3.1. Let U is a nonempty closed convex subset of a hyperbolic metric space Y ,G is a self-mapping on U be
a contraction mapping with the constant 𝜇 ∈ [0, 1) such that Fp (G) ≠ ∅ and {pi }∞i=1 be the DH-iterative sequence
with real sequences {𝛼i }∞i=1, {𝛽 i }

∞
i=1 and {𝛾i }

∞
i=1 in (0, 1),satisfying ∑∞

i=1 𝛾i = ∞. Then, the sequence {pi }∞1 converges
strongly to a �xed point of G.

Proof. The contraction mapping G has a �xed point so it is easily shown that this �xed point is unique. Suppose p∗ is a
unique �xed point of G. From (3.1) we get

𝜌(zi , p∗) = 𝜌(G (W (pi ,Gpi , 𝛼i )) ,Gp∗)
≤ 𝜇𝜌(W (pi ,Gpi , 𝛼i ) , p∗)
≤ 𝜇[(1 − 𝛼i ) 𝜌(pi , p∗) + 𝛼i 𝜌(Gpi , p∗)]
≤ 𝜇[(1 − 𝛼i ) 𝜌(pi , p∗) + 𝛼i 𝜇𝜌(pi , p∗)]
= 𝜇(1 − 𝛼i (1 − 𝜇)) 𝜌(pi , p∗) (3.2)

𝜌(wi , p∗) = 𝜌(G (W (zi ,Gzi , 𝛽 i )) ,Gp∗)
≤ 𝜇𝜌(W (zi ,Gzi , 𝛽 i ) , p∗)
≤ 𝜇[(1 − 𝛽 i ) 𝜌(zi , p∗) + 𝛽 i 𝜌(Gzi , p∗)]
≤ 𝜇[(1 − 𝛽 i ) 𝜌(zi , p∗) + 𝛽 i 𝜇𝜌(zi , p∗)]
= 𝜇(1 − 𝛽 i (1 − 𝜇)) 𝜌(zi , p∗)

by (3.2) we obtain
= 𝜇(1 − 𝛽 i (1 − 𝜇)) 𝜇(1 − 𝛼i (1 − 𝜇)) 𝜌(pi , p∗)
= 𝜇2 (1 − 𝛽 i (1 − 𝜇)) (1 − 𝛼i (1 − 𝜇)) 𝜌(pi , p∗) (3.3)

And,by the same way we obtain

𝜌(qi , p∗) = 𝜌(G (W (wi ,Gwi , 𝛾i )) ,Gp∗)
≤ 𝜇𝜌(W (wi ,Gwi , 𝛾i ) , p∗)
≤ 𝜇[(1 − 𝛾i ) 𝜌(wi , p∗) + 𝛾i 𝜌(Gwi , p∗)]
≤ 𝜇[(1 − 𝛾i ) 𝜌(wi , p∗) + 𝛾i 𝜇𝜌(wi , p∗)]
= 𝜇(1 − 𝛾i (1 − 𝜇)) 𝜌(wi , p∗)

by (3.3) we get
= 𝜇(1 − 𝛾i (1 − 𝜇) (𝜇2 (1 − 𝛽 i (1 − 𝜇)) (1 − 𝛼i (1 − 𝜇)) 𝜌(pi , p∗))
= 𝜇3 (1 − 𝛾i (1 − 𝜇)) (1 − 𝛽 i (1 − 𝜇)) (1 − 𝛼i (1 − 𝜇)) 𝜌(pi , p∗)) (3.4)

Similarly, we get

𝜌(pi+1 , p∗) = 𝜌(G (Gqi ) ,Gp∗)
≤ 𝜇𝜌(Gqi , p∗)
≤ 𝜇2 𝜌(qi , p∗)

by (3.4) we obtain
≤ 𝜇5 ((1 − 𝛾i (1 − 𝜇)) (1 − 𝛽 i (1 − 𝜇)) (1 − 𝛼i (1 − 𝜇)) 𝜌(pi , p∗)) (3.5)

Because 𝜇 ∈ [0, 1) and {𝛼i }∞i=1, {𝛽 i }
∞
i=1 in (0, 1), then

(1 − 𝛼i (1 − 𝜇)) < 1

6
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(1 − 𝛽 i (1 − 𝜇)) < 1
The inequality (3.5) become

𝜌(pi+1 , p∗) ≤ 𝜇5 (1 − 𝛾i (1 − 𝜇)) 𝜌(pi , p∗).
Repetition of the above processes gives the following inequalities:

𝜌(pi+1 , p∗) ≤ 𝜇5 (1 − 𝛾i (1 − 𝜇)) 𝜌(pi , p∗)

𝜌(pi , p∗) ≤ 𝜇5 (1 − 𝛾i−1 (1 − 𝜇)) 𝜌(pi−1 , p∗)
𝜌(pi−1 , p∗) ≤ 𝜇5 (1 − 𝛾i−2 (1 − 𝜇)) 𝜌(pi−2 , p∗)

.

.

𝜌(p2 , p∗) ≤ 𝜇5 (1 − 𝛾1 (1 − 𝜇)) 𝜌(p1 , p∗)
Then we get

𝜌(pi+1 , p∗) ≤ 𝜌(p1 , p∗) (𝜇5)i
i∏
j=1

(1 − 𝛾 j (1 − 𝜇))

for all i ∈ N .Again,since 𝜇 ∈ [0, 1) and {𝛾i }∞i=1 in (0, 1),then (1 − 𝛾 j (1 − 𝜇)) < 1.
It is known that 1 − p ≤ e−p , for each p ∈ [0, 1],then we get

𝜌(pi+1 , p∗) ≤ 𝜌(p1 , p∗) (𝜇5)i e−(1−𝜇) ∑i
j=1 𝛾 j . (3.6)

Taking the limit of both sides as i → ∞ in (3.6) ,we have

lim
i→∞

𝜌(pi , p∗) = 0

, that is {pi } → p∗ .2

Now, we prove that the modi�ed iteration process de�ned by (3.1) is weak w2-stable with respect toG.

Theorem 3.2. Suppose that all conditions of theorem (3.1) hold. Then,the iteration process (3.1) is weak w2-stable with
respect to G.

Proof. Let{pi }∞i=1 be a sequence generated by ( 3.1) and {ai }
∞
i=1 ⊂ U be an equivalent sequence of {pi }∞i=1 put

𝜀i = 𝜌(ai+1 ,G (Gxi ))

where xi = G (W (hi ,Ghi , 𝛾i)),hi = G (W (ci ,Gci , 𝛽 i )) and ci = G (W (ai ,Gai , 𝛼i )). Let limi→∞ 𝜀i = 0.
Then ,we have

𝜌(qi , xi ) = 𝜌(G (W (wi ,Gwi , 𝛾i )) ,G (W (hi ,Ghi , 𝛾i )))
≤ 𝜇𝜌(W (wi ,Gwi , 𝛾i ) ,W (hi ,Ghi , 𝛾i ))
≤ 𝜇[(1 − 𝛾i ) 𝜌(wi , hi ) + 𝛾i 𝜌(Gwi ,Ghi )]
≤ 𝜇[(1 − 𝛾i ) 𝜌(wi , hi ) + 𝛾i 𝜇𝜌(wi , hi )]
≤ 𝜇(1 − 𝛾i (1 − 𝜇)) 𝜌(wi , hi ) (3.7)

The same

𝜌(wi , hi ) = 𝜌(G (W (zi ,Gzi , 𝛽 i )) ,G (W (ci ,Gci , 𝛽 i )))
≤ 𝜇𝜌(W (zi ,Gzi , 𝛽 i ) ,W (ci ,Gci , 𝛽 i ))
≤ 𝜇[(1 − 𝛽 i ) 𝜌(zi , ci ) + 𝛽 i 𝜌(Gzi ,Gci )]
≤ 𝜇[(1 − 𝛽 i ) 𝜌(zi , ci ) + 𝛽 i 𝜇𝜌(zi , ci )]
≤ 𝜇(1 − 𝛽 i (1 − 𝜇)) 𝜌(zi , ci ) (3.8)

7
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Similarly

𝜌(zi , ci ) = 𝜌(G (W (pi ,Gpi , 𝛼i )) ,G (W (ai ,Gai , 𝛼i )))
≤ 𝜇𝜌(W (pi ,Gpi , 𝛼i ) ,W (ai ,Gai , 𝛼i ))
≤ 𝜇[(1 − 𝛼i ) 𝜌(pi , ai ) + 𝛼i 𝜌(Gpi ,Gai )]
≤ 𝜇[(1 − 𝛼i ) 𝜌(pi , ai ) + 𝛼i 𝜇𝜌(pi , ai )]
≤ 𝜇(1 − 𝛼i (1 − 𝜇)) 𝜌(pi , ai ). (3.9)

And

𝜌(ai+1 , p∗) ≤ 𝜌(ai+1 , pi+1) + 𝜌(pi+1 , p∗)
≤ 𝜌(ai+1 ,G (Gxi )) + 𝜌(G (Gxi ) , pi+1) + 𝜌(pi+1 , p∗)
= 𝜀i + 𝜌(G (Gxi ) , pi+1) + 𝜌(pi+1 , p∗)
= 𝜀i + 𝜌(G (Gxi ) ,G (Gqi )) + 𝜌(pi+1 , p∗)
≤ 𝜀i + 𝜇𝜌((Gxi ) , (Gqi )) + 𝜌(pi+1 , p∗)
≤ 𝜀i + 𝜇2 𝜌(xi , qi ) + 𝜌(pi+1 , p∗)
≤ 𝜀i + 𝜇2 𝜌(qi , xi ) + 𝜌(pi+1 , p∗)
≤ 𝜀i + 𝜇3 (1 − 𝛾i (1 − 𝜇)) 𝜌(wi , hi ) + 𝜌(pi+1 , p∗)

By (3.8) we get
≤ 𝜀i + 𝜇4 (1 − 𝛾i (1 − 𝜇)) (1 − 𝛽 i (1 − 𝜇)) 𝜌(zi , ci ) + 𝜌(pi+1 , p∗)

Similary by (3.9) we obtain
≤ 𝜀i + 𝜇5 (1 − 𝛾i (1 − 𝜇)) (1 − 𝛽 i (1 − 𝜇)) (1 − 𝛼i (1 − 𝜇)) 𝜌(pi , ai )
+ 𝜌(pi+1 , p∗) (3.10)

Put (1 − 𝛾i (1 − 𝜇)) < 1 and from theorem (3.1) limi→∞ 𝜌(pi+1 , p∗) = 0 because {pi }∞i=1 and {ai }
∞
i=1 are equivalent

sequences then limi→∞ 𝜌(pi , ai ) = 0 also limi→∞ 𝜀i = 0. We take the limit for both sides in (3.10) then we get
limi→∞ 𝜌(ai+1 , p∗) = 0 so {pi }∞i=1 is w

2-stable with respect to G.2

4 Data dependence results

Now ,we prove the data dependence result for the modi�ed iteration process ( 3.1) using the de�nition of an
approximate operator .

De�nition 4.1. ( [6],p,166)
let (Y , 𝜌) be a metric space andG,Ḡ :Y →Y be tow operators.Ḡ is called an approximate operator ofG,if 𝜌(Ga, Ḡa) ≤
𝜖 for all a ∈ Y and for a �xed 𝜖 > 0 .

Theorem 4.2. Let Y ,U and G be the same as theorem (3.1) and Ḡ : U → U be an approximate operator of G for
given 𝜖 .Let {pi }∞i=1 be an iterative sequence generated by (3.1) and de�ne an iterative sequence {p̄i }

∞
i=1 as follows:

p̄i ∈ U

z̄i = Ḡ (W (p̄i , Ḡ p̄i , 𝛼i ))
w̄i = Ḡ (W (z̄i , Ḡ z̄i , 𝛽 i ))
q̄i = Ḡ (W (w̄i , Ḡw̄i , 𝛾i ))

p̄i+1 = Ḡ (Ḡq̄i ) (4.1)

8
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with real sequences {𝛼i }∞i=1, {𝛽 i }
∞
i=1 and {𝛾i }

∞
i=1 in (0, 1) satisfying 𝛼i ≥ 1

2 , ∀i ≥ 1 , and∑∞
i=1 𝛼i = ∞.If p∗ = Gp∗

and p̄∗ = Gp̄∗ such that limi→∞ p̄i = p̄∗ then one has

𝜌(p∗ , p̄∗) ≤ 15𝜖
(1 − 𝜇)

Where 𝜇 ∈ [0, 1).

Proof. From (3.1) and (4.1) we have

𝜌(zi , z̄i ) = 𝜌(G (W (pi ,Gpi , 𝛼i )) , Ḡ (W (p̄i , Ḡ p̄i , 𝛼i )))
≤ 𝜌(G (W (pi ,Gpi , 𝛼i )) ,G (W (p̄i , Ḡ p̄i , 𝛼i ))) + 𝜌(G (W (p̄i , Ḡ p̄i , 𝛼i )) , Ḡ (W (p̄i , Ḡ p̄i , 𝛼i )))
≤ 𝜇𝜌(W (pi ,Gpi , 𝛼i ) ,W (p̄i , Ḡ p̄i , 𝛼i )) + 𝜖

≤ 𝜇[(1 − 𝛼i ) 𝜌(pi , p̄i ) + 𝛼i 𝜌(Gpi , Ḡ p̄i )] + 𝜖

≤ 𝜇(1 − 𝛼i ) 𝜌(pi , p̄i ) + 𝜇𝛼i ( 𝜌(Gpi ,Gp̄i ) + 𝜌(Gp̄i , Ḡ p̄i )) + 𝜖

≤ 𝜇(1 − 𝛼i ) 𝜌(pi , p̄i ) + 𝜇2𝛼i 𝜌(pi , p̄i ) + 𝜇𝛼i𝜖 + 𝜖

≤ 𝜇(1 − 𝛼i (1 − 𝜇)) 𝜌(pi , p̄i ) + 𝜇𝛼i𝜖 + 𝜖

(4.2)

By ( 4.2) , we have

𝜌(wi , w̄i ) = 𝜌(G (W (zi ,Gzi , 𝛽 i )) , Ḡ (W (z̄i , Ḡ z̄i , 𝛽 i )))
≤ 𝜌(G (W (zi ,Gzi , 𝛽 i )) ,G (W (z̄i , Ḡ z̄i , 𝛽 i ))) + 𝜌(G (W (z̄i , Ḡ z̄i , 𝛽 i )) , Ḡ (W (z̄i , Ḡ z̄i , 𝛽 i )))
≤ 𝜇𝜌(W (zi ,Gzi , 𝛽 i )) , (W (z̄i , Ḡ z̄i , 𝛽 i )) + 𝜖

≤ 𝜇[(1 − 𝛽 i ) 𝜌(zi , z̄i ) + 𝛽 i 𝜌(Gzi , Ḡ z̄i )] + 𝜖

≤ 𝜇(1 − 𝛽 i ) 𝜌(zi , z̄i ) + 𝜇𝛽 i ( 𝜌(Gzi ,Gz̄i ) + 𝜌(Gz̄i , Ḡ z̄i )) + 𝜖

≤ 𝜇(1 − 𝛽 i ) 𝜌(zi , z̄i ) + 𝜇𝛽 i (𝜇𝜌(zi , z̄i ) + 𝜖 ) + 𝜖

≤ 𝜇(1 − 𝛽 i ) 𝜌(zi , z̄i ) + 𝜇2 𝛽 i 𝜌(zi , z̄i ) + 𝜇𝛽 i𝜖 + 𝜖

≤ 𝜇(1 − 𝛽 i (1 − 𝜇)) 𝜌(zi , z̄i ) + 𝜇𝛽 i𝜖 + 𝜖

≤ 𝜇(1 − 𝛽 i (1 − 𝜇)) [𝜇(1 − 𝛼i (1 − 𝜇)) 𝜌(pi , p̄i ) + 𝜇𝛼i𝜖 + 𝜖 ] + 𝜇𝛽 i𝜖 + 𝜖

≤ 𝜇2 (1 − 𝛽 i (1 − 𝜇)) (1 − 𝛼i (1 − 𝜇)) 𝜌(pi , p̄i ) + 𝜇2𝛼i𝜖 (1 − 𝛽 i (1 − 𝜇))
+ 𝜇𝜖 (1 − 𝛽 i (1 − 𝜇)) + 𝜇𝛽 i𝜖 + 𝜖 . (4.3)

Similarly,using (4.3) we get

𝜌(qi , q̄i ) = 𝜌(G (W (wi ,Gwi , 𝛾i )) , Ḡ (W (w̄i , Ḡw̄i , 𝛾i )))
≤ 𝜌(G (W (wi ,Gwi , 𝛾i )) ,G (W (w̄i , Ḡw̄i , 𝛾i ))) + 𝜌(G (W (w̄i , Ḡw̄i , 𝛾i )) , Ḡ (W (w̄ , Ḡw̄i , 𝛾i )))
≤ 𝜇𝜌(W (wi ,Gwi , 𝛾i )) , (W (w̄i , Ḡw̄i , 𝛾i )) + 𝜖

≤ 𝜇[(1 − 𝛾i ) 𝜌(wi , w̄i ) + 𝛾i 𝜌(Gwi , Ḡw̄i )] + 𝜖

≤ 𝜇(1 − 𝛾i ) 𝜌(wi , w̄i ) + 𝜇𝛾i [𝜌(Gwi ,Gw̄i ) + 𝜌(Gw̄i , Ḡw̄i )] + 𝜖

≤ 𝜇(1 − 𝛾i ) 𝜌(wi , w̄i ) + 𝜇𝛾i [𝜇𝜌(wi , w̄i ) + 𝜖 ] + 𝜖

≤ 𝜇(1 − 𝛾i ) 𝜌(wi , w̄i ) + 𝜇2𝛾i 𝜌(wi , w̄i ) + 𝜇𝛾i𝜖 + 𝜖

≤ 𝜇(1 − 𝛾i (1 − 𝜇)) 𝜌(wi , w̄i ) + 𝜇𝛾i𝜖 + 𝜖

≤ 𝜇(1 − 𝛾i (1 − 𝜇)) [𝜇2 (1 − 𝛽 i (1 − 𝜇)) (1 − 𝛼i (1 − 𝜇)) 𝜌(pi , p̄i )
+ 𝜇2𝛼i𝜖 (1 − 𝛽 i (1 − 𝜇)) + 𝜇𝜖 (1 − 𝛽 i (1 − 𝜇)) + 𝜇𝛽 i𝜖 + 𝜖 ] + 𝜇𝛾i𝜖 + 𝜖

≤ 𝜇3 (1 − 𝛾i (1 − 𝜇)) (1 − 𝛽 i (1 − 𝜇)) (1 − 𝛼i (1 − 𝜇)) 𝜌(pi , p̄i )
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+ 𝜇3𝛼i𝜖 (1 − 𝛽 i (1 − 𝜇)) (1 − 𝛾i (1 − 𝜇)) + 𝜇2𝜖 (1 − 𝛽 i (1 − 𝜇)) (1 − 𝛾i (1 − 𝜇))
+ 𝜇2 𝛽 i𝜖 (1 − 𝛾i (1 − 𝜇)) + 𝜇𝜖 (1 − 𝛾i (1 − 𝜇)) + 𝜇𝛾i𝜖 + 𝜖 . (4.4)

Finally ,using (4.4) we obtain

𝜌(pi+1 , p̄i+1) = 𝜌(G (Gqi ) , Ḡ (Ḡq̄i ))
≤ 𝜌(G (Gqi ) ,G (Ḡq̄i )) + 𝜌(G (Ḡq̄i ) , Ḡ (Ḡq̄i ))
≤ 𝜇𝜌(Gqi , Ḡq̄i ) + 𝜖

≤ 𝜇[𝜌(Gqi ,Gq̄i ) + 𝜌(Gq̄i , Ḡq̄i )] + 𝜖

≤ 𝜇[𝜇𝜌(qi , q̄i ) + 𝜖 ] + 𝜖

≤ 𝜇2 𝜌(qi , q̄i ) + 𝜇𝜖 + 𝜖

≤ 𝜇2 [𝜇3 (1 − 𝛾i (1 − 𝜇)) (1 − 𝛽 i (1 − 𝜇)) (1 − 𝛼i (1 − 𝜇)) 𝜌(pi , p̄i )
+ 𝜇3𝛼i𝜖 (1 − 𝛽 i (1 − 𝜇)) (1 − 𝛾i (1 − 𝜇)) + 𝜇2𝜖 (1 − 𝛽 i (1 − 𝜇)) (1 − 𝛾i (1 − 𝜇))
+ 𝜇2 𝛽 i𝜖 (1 − 𝛾i (1 − 𝜇)) + 𝜇𝜖 (1 − 𝛾i (1 − 𝜇)) + 𝜇𝛾i𝜖 + 𝜖 ] + 𝜇𝜖 + 𝜖

≤ 𝜇5 (1 − 𝛾i (1 − 𝜇)) (1 − 𝛽 i (1 − 𝜇)) (1 − 𝛼i (1 − 𝜇)) 𝜌(pi , p̄i )
+ 𝜇5𝛼i𝜖 (1 − 𝛽 i (1 − 𝜇)) (1 − 𝛾i (1 − 𝜇)) + 𝜇4𝜖 (1 − 𝛽 i (1 − 𝜇)) (1 − 𝛾i (1 − 𝜇))
+ 𝜇4 𝛽 i𝜖 (1 − 𝛾i (1 − 𝜇)) + 𝜇3𝜖 (1 − 𝛾i (1 − 𝜇)) + 𝜇3𝛾i𝜖 + 𝜇2𝜖 + 𝜇𝜖 + 𝜖 (4.5)

Since 𝜇 ∈ [0, 1) also 𝛼i , 𝛽 i , 𝛾i ∈ (0, 1) we get that

(1 − 𝛾i (1 − 𝜇)) < 1
(1 − 𝛽 i (1 − 𝜇)) < 1

𝜇5 , 𝜇4 , 𝜇3 , 𝜇2 , 𝜇 < 1

𝜇5𝛾i , 𝜇5 𝛽 i < 1 (4.6)

and (1 − 𝛼i + 𝜇𝛼i ) ≤ 2𝛼i . And by assumption 𝛼i ≥ 1
2 , we get (1 − 𝛼i ) ≤ 𝛼i .

Now we use all assumption ,then we get

≤ 𝜇5 (1 − 𝛼i (1 − 𝜇)) 𝜌(pi , p̄i ) + 𝜇5𝛼i𝜖 + 𝜇4𝜖 + 𝜇4𝜖 + 𝜇3𝜖 + 𝜇3𝜖

+ 𝜇2𝜖 + 𝜇𝜖 + 𝜖

≤ (1 − 𝛼i (1 − 𝜇)) 𝜌(pi , p̄i ) + 𝛼i𝜖 + 7𝜖
= (1 − 𝛼i (1 − 𝜇)) 𝜌(pi , p̄i ) + 𝛼i𝜖 + 7(1 − 𝛼i + 𝛼i )𝜖

Becouse(1 − 𝛼i ) ≤ 𝛼i then :

≤ (1 − 𝛼i (1 − 𝜇)) 𝜌(pi , p̄i ) + 𝛼i𝜖 + 14𝛼i𝜖
= (1 − 𝛼i (1 − 𝜇)) 𝜌(pi , p̄i ) + 15𝛼i𝜖

= (1 − 𝛼i (1 − 𝜇)) 𝜌(pi , p̄i ) + 𝛼i (1 − 𝜇) 15𝜖
(1 − 𝜇) . (4.7)

Now suppose gi = 𝜌(pi , p̄i ) , ri = 𝛼i (1 − 𝜇) and ti = 15𝜖
(1−𝜇) .

By lemma ( 2.10) we obtain
0 ≤ lim sup

i→∞
gi ≤ lim sup

i→∞
ti

We know that from Theorem ( 3.1) limi→∞ pi = p∗ and by the assumption in the hypotheses,we have limi→∞ p̄i = p̄∗,
then we get

𝜌(p∗ , p̄∗) ≤ 15𝜖
(1 − 𝜇)

. 2
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5 Convergence results

In this section, we discuss and study several preparatory results, which are needed to develop our convergence
theorems.

Lemma 5.1. let G be a generalized (𝛼 , 𝛽 )-nonexpansive type (1) mapping de�ne on a nonempty convex subset U of
a hyperbolic metric space Y with Fp (G) ≠ ∅ .If p∗ ∈ Fp (G) and {pi }∞i=1 is the iterative sequence de�ne by (3.1) ,then
limi→∞ 𝜌(pi , p∗) exists.

Proof. Using proposition (2.3) i,we get

𝜌(zi , p∗) = 𝜌(G (W (pi ,Gpi , 𝛼i )) , p∗)
≤ 𝜌(W (pi ,Gpi , 𝛼i ) , p∗)
≤ (1 − 𝛼i ) 𝜌(pi , p∗) + 𝛼i 𝜌(Gpi , p∗)
≤ (1 − 𝛼i ) 𝜌(pi , p∗) + 𝛼i 𝜌(pi , p∗)
= 𝜌(pi , p∗). (5.1)

Similarly

𝜌(wi , p∗) = 𝜌(G (W (zi ,Gzi , 𝛽 i )) , p∗)
≤ 𝜌(W (zi ,Gzi , 𝛽 i ) , p∗)
≤ (1 − 𝛽 i ) 𝜌(zi , p∗) + 𝛽 i 𝜌(Gzi , p∗)
≤ (1 − 𝛽 i ) 𝜌(zi , p∗) + 𝛽 i 𝜌(zi , p∗)
= 𝜌(zi , p∗) ≤ 𝜌(pi , p∗). (5.2)

Similarly, we get

𝜌(qi , p∗) = 𝜌(G (W (wi ,Gwi , 𝛾i )) , p∗)
≤ 𝜌(W (wi ,Gwi , 𝛾i ) , p∗)
≤ (1 − 𝛾i ) 𝜌(wi , p∗) + 𝛾i 𝜌(Gwi , p∗)
≤ (1 − 𝛾i ) 𝜌(wi , p∗) + 𝛾i 𝜌(Wi , p∗)
= 𝜌(wi , p∗) ≤ 𝜌(zi , p∗) ≤ 𝜌(pi , p∗). (5.3)

Finally, we get

𝜌(pi+1 , p∗) = 𝜌(G (Gqi ) , p∗)
≤ 𝜌(Gqi , p∗)
= 𝜌(qi , p∗) ≤ 𝜌(wi , p∗) ≤ 𝜌(zi , p∗) ≤ 𝜌(pi , p∗) (5.4)

Hence, we obtain
𝜌(pi+1 , p∗) ≤ 𝜌(pi , p∗)

This shows that {𝜌(pi , p∗)}∞i=1 is decreasing sequence and bounded from the below for each p
∗ ∈ Fp (G) .So,we obtain that

limi→∞ 𝜌(pi , p∗) exists for any p∗ ∈ Fp (G). 2

Theorem 5.2. let U be a nonempty closed convex subset of a complete uniformly convex hyperbolic metric space Y
with the monotone modulus of uniform convexity 𝜂 and G : U → U be a generalized (𝛼 , 𝛽 )-nonexpansive type (1)
mapping.Let {pi }∞i=1 be the iterative sequence de�ne by (3.1) with real sequences {𝛼i }

∞
i=1, {𝛽 i }

∞
i=1 and {𝛾i }

∞
i=1 in (0, 1)

.Then, Fp (G) ≠ ∅ if and only if {pi }∞i=1 is bounded sequence and limi→∞ 𝜌(pi ,Gpi ) = 0.

11
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Proof. Let Fp (G) ≠ ∅ and p∗ ∈ Fp (G) by Lemma (5.1), limi→∞ 𝜌(pi , p∗) exists and {pi }∞i=1 is bounded.Therefore,we
can consider that

lim
i→∞

𝜌(pi , p∗) = r f or some r ≥ 0 (5.5)

By proposition (2.3)(i) then we get
𝜌(Gpi , p∗) ≤ 𝜌(pi , p∗)

and we take lim sup of both sides of the inequality above ,we get that

lim sup
i→∞

𝜌(Gpi , p∗) ≤ r (5.6)

and we have by (5.1)
𝜌(zi , p∗) ≤ 𝜌(pi , p∗)

and taking lim sup of both sides of the inequality above ,we get that

lim sup
i→∞

𝜌(zi , p∗) ≤ r (5.7)

From the relation (5.4), it follows that

𝜌(pi+1 , p∗) = 𝜌(G (Gqi ) , p∗)
≤ 𝜌(Gqi , p∗)
≤ 𝜌(qi , p∗)
≤ (1 − 𝛾i ) 𝜌(wi , p∗) + 𝛾i 𝜌(Gwi , p∗)
≤ (1 − 𝛾i ) 𝜌(wi , p∗) + 𝛾i 𝜌(wi , p∗)
= 𝜌(wi , p∗)
≤ (1 − 𝛽 i ) 𝜌(zi , p∗) + 𝛽 i 𝜌(Gzi , p∗)
≤ (1 − 𝛽 i ) 𝜌(pi , p∗) + 𝛽 i 𝜌(zi , p∗)
= 𝜌(pi , p∗) − 𝛽 i 𝜌(pi , p∗) + 𝛽 i 𝜌(zi , p∗) (5.8)

Since 𝛽 i ∈ (0, 1) ,the last inequality leads to

𝜌(pi+1 , p∗) − 𝜌(pi , p∗) ≤
𝜌(pi+1 , p∗) − 𝜌(pi , p∗)

𝛽 i
≤ 𝜌(zi , p∗) − 𝜌(pi , p∗)

which implies that
𝜌(pi+1 , p∗) ≤ 𝜌(zi , p∗)

thus by (5.5) we get

r ≤ lim inf
i→∞

𝜌(zi , p∗) (5.9)

from ( 5.7)and (5.9) we have

lim
i→∞

𝜌(zi , p∗) = r (5.10)

from (5.1) we have
𝜌(zi , p∗) ≤ 𝜌(W (pi ,Gpi , 𝛼i )) , p∗) ≤ 𝜌(pi , p∗)

from (5.5)and (5.10) we get

lim
i→∞

𝜌(W (pi ,Gpi , 𝛼i ) , p∗) = r . (5.11)

12
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Also from (5.5), (5.6),(5.11) and lemma (2.11) we obtain

lim
i→∞

𝜌(pi ,Gpi ) = 0

Conversely,assume that{pi }∞i=0 is bounded and limi→∞ 𝜌(pi ,Gpi ) = 0 suppose p∗ ∈ A(U , {pi }) Using proposition
(2.3)(ii), we get

r (Gp∗ , {pi }) = lim sup
i→∞

𝜌(pi ,Gp∗)

≤ 2 + 𝛼 + 𝛽

1 − 𝛽
lim sup
i→∞

𝜌(pi ,Gpi ) + lim sup
i→∞

𝜌(pi , p∗)

= lim sup
i→∞

𝜌(pi , p∗)

= r (p∗ , {pi }) (5.12)

This implies that Gp∗ ∈ A(U , {pi }). Because the sequence {pi }∞i=1 is bounded and we use lemma (2.10) then
A(U , {pi }) consists of exactly one point .Hence ,we have Gp∗ = p∗. Thus, Fp (G) ≠ ∅.2

Considering the previous two results, we are now ready to prove theΔ-convergence theorem of themodi�ed
iterative sequence {pi }∞i=1 de�ned by (3.1) for a generalized (𝛼 , 𝛽 )- nonexpansive type 1 mapping.

Theorem 5.3. let U be a nonempty closed convex subset of a complete uniformly convex hyperbolic metric space Y with
the monotone modulus of uniform convexity 𝜂 and G :U →U be a generalized (𝛼 , 𝛽 )-nonexpansive type (1) mapping
with Fp (G) ≠ ∅. Let {pi }∞i=1 be the iterative sequence (3.1) with real sequences {𝛼i }

∞
i=1, {𝛽 i }

∞
i=1 and {𝛾i }

∞
i=1 in (0, 1)

.Then, the sequence {pi }∞i=1 Δ − conver gence to a �xed point of G.

Proof. From Lemma (2.10), the sequence {pi }∞i=1 has a unique asymptotic center A(U , {pi }) = {p}. Suppose {vi }∞i=1 be
any subsequence of {pi }∞i=1 such that A(U , {vi }) = {v}.by theorem (5.2), we get

lim
i→∞

𝜌(vi ,Gvi ) = 0. (5.13)

It follows similarly from the proof of Theorem (5.2) that v is a �xed point of G.Then,we claim that the �xed point v is
the unique asymptotic center for each subsequence {vi }∞i=1 of {pi }

∞
i=1. On the contrary ,we suppose that p ≠ v from lemma

(5.1), we deduce that limi→∞ 𝜌(pi , v) exists .Therefore,by the uniqueness of the asymptotic center we can see that

lim sup
i→∞

𝜌(vi , v) < lim sup
i→∞

𝜌(vi , p)

≤ lim sup
i→∞

𝜌(pi , p)

< lim sup
i→∞

𝜌(pi , v)

= lim sup
i→∞

𝜌(vi , v)

then we get p = v this is a contradiction.So ,a �xed point v ofG is the unique asymptotic center for each subsequence {vi }∞i=1
of {pi }∞i=1.This proves that the sequence {pi }

∞
i=1 Δ − conver ges to a �xed point of G. 2

Next , we prove tow strong convergence results for a generalized (𝛼 , 𝛽 )- nonexpansive type 1 mapping.

Theorem 5.4. . Under the assumptions of Theorem (5.3),ifU is a compact subset ofY ,then the sequence {pi }∞i=1 converges
strongly to a �xed point of G.

Proof. We consider an element p∗ ∈ U . The compactness of U implies that there exists a subsequence {pin }∞i=1 of {pi }
∞
i=1

such that limn→∞ 𝜌(pin , p∗) = 0.
According to proposition (2.3)(ii) ,we have

lim
n→∞

𝜌(pin ,Gp∗) ≤
2 + 𝛼 + 𝛽

1 − 𝛽
lim
n→∞

𝜌(pin ,Gpin ) + limn→∞
𝜌(pin , p∗)

13
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By theorem (5.2), we get limn→∞ 𝜌(pin ,Gpin ) = 0.Then, we have Gp∗ = p∗ that is p∗ ∈ Fp (G).Using (5.1), we obtain
limi→∞ 𝜌(pi , p∗) exists and hence {pi } converges strongly to a �xed point p∗.�

Theorem 5.5. . let Y ,U ,G and {pi }∞i=1 be the same as in theorem (5.3).Then ,the sequence{pi }
∞
i=1 converges strongly

to a �xed point of G if and only if

lim inf
i→∞

𝜌(pi , Fp (G)) = 0 or lim sup
i→∞

𝜌(pi , Fp (G)) = 0,

where 𝜌(p, Fp (G)) = inf{𝜌(p, p∗) : p∗ ∈ Fp (G)}.

Proof. If the sequence {pi }∞i=1 converges strongly to p
∗ ∈ Fp (G),then limi→∞ 𝜌(pi , p∗) = 0 .Becouse 0 ≤ 𝜌(pi , Fp (G)) ≤

𝜌(pi , p∗), we get limi→∞ 𝜌(pi , Fp (G)) = 0.
For the converse part,let lim inf i→∞ 𝜌(pi , Fp (G)) = 0.By Lemma (5.1) we get limi→∞ 𝜌(pi , Fp (G)) exists and hence
limi→∞ 𝜌(pi , Fp (G)) = 0.Therefore,there exist a subsequence {pin }∞i=1 of {pi }

∞
i=1 and a sequence {p

∗
n}∞n=1 in Fp (G)) such

that

𝜌(pin , p∗n) <
1
2n

f or all n ≥ 1

By the proof of lemma (5.1) ,we get

𝜌(pin+1 , p∗n+1) ≤ 𝜌(pin , p∗n) <
1
2n

thus,
𝜌(p∗n+1 , p

∗
n) ≤ 𝜌(p∗n+1 , pin+1 ) + 𝜌(pin+1 , p∗n)

<
1
2n+1

+ 1
2n

<
1
2n+1

→ 0 as → ∞

Hence, {p∗n}∞i=1 is a Cauchy sequence in Fp (G).From proposition (2.3)(iii), we have Fp (G) is closed and so {p∗n} converges
strongly to p∗ ∈ Fp (G).On the other hand,we get

𝜌(pin , p∗) ≤ 𝜌(pin , p∗n) + 𝜌(p∗n , p∗)

taking the limit of both sides of this inequality, we get that{pin }∞i=1 converges strongly to p
∗ ∈ Fp (G). Because

limi→∞ 𝜌(pi , p∗) exists by lemma(5.1),p∗ is strong limit of {pi }∞i=1 . �

In 1974, Senter and Dotson [28] introduced a mapping satisfying Condition (I), which is stated as follows:
A mapping G : U → U is said to satisfy Condition (I) if there exists a non-decreasing function f : [0,∞) →
[0,∞) with f (0) = 0 and f (b) > 0 for all b ∈ (0,∞), such that𝜌(p,Gp) ≥ f ( 𝜌(p, Fp (G))) for all p ∈ U .
Now, we present the �nal strong convergence result using Condition (I).

Theorem 5.6. Let U be a nonempty closed convex subset of a complete uniformly convex hyperbolic metric space Y with
the monotone modulus of uniform convexity 𝜂 and G :U →U be a generalized (𝛼 , 𝛽 )-nonexpansive type (1) mapping
with Fp (G) ≠ ∅. If G satis�es condition (1) and {pi }∞i=1 is the iterative sequence de�ne by (3.1) with real sequences
{𝛼i }∞i=1, {𝛽 i }

∞
i=1 and {𝛾i }

∞
i=1 in (0, 1) ,then {pi }

∞
i=1 converges strongly to a point of Fp (G)

Proof. From theorem (5.2),we have limi→∞ 𝜌(pi ,Gpi ) = 0. Then ,by condition (1),we get limi→∞ f ( 𝜌((pi , Fp (G))) ≤
limi→∞ 𝜌(pi ,Gpi ) = 0, that is, limi→∞ f ( 𝜌(pi , Fp (G))) = 0. Because f : [0,∞) → [0,∞) is a function with
f (0) = 0 and f (b) > 0 for all b ∈ (0,∞), we have limi→∞ 𝜌((pi , Fp (G)) = 0. By pervious theorem we obtain {pi }∞i=1
converges strongly to a point of Fp (G) �

Remark 5.7. . In this section, we used the generalized (𝛼 , 𝛽 )-nonexpansive type (1) mapping which contains the class
of generalized 𝛼-nonexpansive mapping on the hyperbolic metric space. Thus, Theorems 5.3-5.6 generalize the results of
[33, 36] in two ways: (1) the class of underlying space, and (2) the class of mappings.
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6 Numerical Example

In this section, we construct the following example of a generalized (𝛼, 𝛽 )-nonexpansive type 1 mapping.

Example 6.1. LetY = R with the usual metric and X = [0,∞). De�ne a mapping G : X → X.

Ga =

{
0 i f a ∈ [0, 1210 )
10a
24 i f [ 1210 ,∞)

(6.1)

Clearly, a = 0 is the �xed point of G . Then, the following:
(i) Because G is not continuous at the point a = 12

10 , G is not a nonexpansive mapping.
(ii) Let a = 8

10 and b =
12
10 . Then,

1
2
| a −Ga |= 4

10
≤ 4
10

=| a − b |

On the other hand ,

| Ga −Gb |= 1
2
≥ 4
10

=| a − b |

Thus, G is not a Suzuki-generalized nonexpansive mapping.
(iii) Let a = 8

10 and b =
12
10 . Then,

| Ga −Gb |≤ 𝛼 | a − b | +𝛽 | a −Gb |
1
2
≤ 4𝛼
10

+ 3𝛽
10

5 ≤ 4𝛼 + 3𝛽
Therefore, the implications fail to be satis�ed, which leads to the conclusion that G is not a mean nonexpansive mapping.
(iv) Now, we prove that G is a generalized (𝛼, 𝛽 )-nonexpansive type 1 mapping. For this purpose,let 𝜆 = 1

4 , 𝛼 = 11
24 ,

𝛽 = 12
24 , and consider the following cases:

• Case A: a ∈ [0, 1210 ). Then,𝜆 | a −Ga |= 1a
4 ≤| a − b | , which gives two possibilities (1) Let a < b. Then,

1a
4 ≤ b − a ⇒ b ≥ 5

4 a ⇒ b ∈ [0, 32 ).
(a) If b ∈ [0, 1210 ) , then we have

| Ga −Gb |≤ 𝛼 | Ga − b | +𝛽 | a −Gb | +(1 − (𝛼 + 𝛽 )) | a − b |

.

0 ≤ 11
24

| b | +12
24

| a | + 1
24

| a − b |

(b) If b ∈ [ 1210 ,
3
2 ) ,then we have

| Ga −Gb |= 10
24

| b |≤ 11
24

| b | +12
24

| a − 10
24
b | + 1

24
| a − b |

(2) Let a > b. Then,1a4 ≤ a − b ⇒ b ≤ 3
4 a ⇒ b ∈ [0, 9

10 ) ⊂ [0, 1210 ), which is already included in case (1)(a).

• Case B: a ∈ [ 1210 ,∞) . Then,𝜆 | a −Ga |= 1
4 | a − 10

24 a |= 7
48 a ≤| a − b | , which gives two possibilities:

(1) Let a < b. Then, 7
48 a ≤ b − a ⇒ b ≥ 55

48 a ⇒ b ∈ [ 118 ,∞) ⊂ [ 1210 ,∞). So

| Ga −Gb | =
10
24

| a − b |

<
11
24

( | 34
24
a − 34

24
b |) + 1

24
| a − b |

≤ 11
24

| 10
24
a − b | +11

24
| a − 10

24
b | + 1

24
| a − b |

≤ 11
24

| 10
24
a − b | +12

24
| a − 10

24
b | + 1

24
| a − b |
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(2) Let a > b. Then, 7
48 a ≤ a − b ⇒ b ≤ 41

48 a ⇒ b ∈ [ 4140 ,∞) .
(a) If b ∈ [ 4140 ,

12
10 ) , then we have

| Ga −Gb |= 10
24

| a |≤ 11
24

| 10
24
a − b | +12

24
| a | + 1

24
| a − b |

(b) If b ∈ [ 1210 ,∞) is already included in case (1).
Hence,G is a generalized (1124 ,

12
24 )-nonexpansive type 1 mapping with Fp (G) ≠ 𝜙

7 Conclusions

In this paper, we have modi�ed the our newly introduced iterative algorithm (1.1) into the hyperbolic metric
spaces and established the weakw2-stability and data dependence results for contraction mappings .We derived
some convergence results for(𝛼 , 𝛽 )-nonexpansive type 1 mappings using this modi�ed iterative scheme.
Finally, as future works for this paper, we appointed the following:-
Using similar approaches of this article, the generalized (𝛼 , 𝛽 )-nonexpansive type 2 mappings,which is intro-
duced by d by Akutsah and Narain [4], can be studied in hyperbolic metric spaces .
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