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Abstract

In the present paper, we deal with the four step iterative process named DH -iterative scheme into hyperbolic
metric spaces. We modify this iteration into hyperbolic metric spaces where the symmetry condition is satis-
fied. The weak w?-stability and data dependence results for contraction mapping in hyperbolic metric spaces
are established. Finally, we prove some results related to A-convergence and strong convergence theorems for
generalized (@, B)-nonexpansive type 1 mappings and we offer a numerical example of generalized («, B)-

nonexpansive type 1 mappings.
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1 Introduction

In fixed point theory, the role played by ambient spaces is paramount . Several problems diverse fields of
since are naturally nonlinear. Therefore,transforming the linear version of a given problem into its equivalent
nonlinear version is very pertinent.

Moreover, studying various problems in spaces without a linear structure is significant in applied and pure
sciences.

Several efforts have been made to introduce a convex-like structure on a metric space .

In 1990, Reich and Shafrir [25] introduced hyperbolic metric spaces .

In 2004, Kohlenbach [19] introduced a more general hyperbolic metric space. AS an example for the convex-
like structure is a hyperbolic space . Banach and CAT(0) spaces are well known to be special cases of hyperbolic
spaces. Moreover, the class of hyperbolic spaces properly contains a Hilbert ball endowed with hyperbolic
spaces , Hadamard manifolds,R-tree,and the cartesian product of Hilbert spaces [13]. Our work will be a
carried out in the setting of hyperbolic space studied by Kohlenbach [19].

When we talk a bout the problems emulated into a fixed point, we mean to find a p* € Y such that Gp* = p*
, where G is a nonlinear mapping (self or non-self) of an arbitrary space Y. Many researchers have paid very
good attention to finding an analytical solution, but this has been almost practically impossible. In view of this,
iterative processes have been adopted to find approximate solutions.

The Picard iterative process is one of the very first iterative processes used to approximate a fixed point of a
contraction mapping G on a metric space (Y, p) . Note that a mapping G : Y — Y is called a contraction if
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there exists a constant g € [0, 1) such that
p(Ga,Gb) < u(a,b),Ya,beyY

If 4 = 1 in inequality above then G is said to be a nonexpansive mapping. Even though the existence of the
fixed point is guaranteed in the case of nonexpansive mapping, the Picard iterative process fails to approximate
the fixed point of G. To overcome this problem, researchers of this field developed different iterative processes
to approximate fixed points of nonexpansive mappings and other mappings, which are more general than
nonexpansive. For example, look at Noor [23], Agarwal et al. [2], Abbas and Nazir [1] CR-iteration [10],
Normal-S iteration [27], Picard-S [14], Thakur et al. [34], and M iterative schemes [30]. ,etc.

In 2017, Pant and Shukla [24] introduced the class of generalized a-nonexpansive mappings, which is a larger
class of mappings than the classes of nonexpansive, Suzuki generalized nonexpansive and @-nonexpansive
mappings.

Very recently, in 2024, Al-baqeri et al [5] introduced new four steps iterative methods called the DH-iterative
scheme as follows:

€ U,
2 = G[(1—a)pi + a:Gpi]
w; = G[(1-pi)zi+ BiGz]
¢ = G[(1-y)w +7yGuw]
pie1 = G(Ggi) (1.1)

fori > 1, where {a;}, {B:} and {v;} are sequences in (0, 1). They proved that the DH iterative algorithm has
a better rate of convergence than most leading algorithms for contractive-like mappings and Reich-Suzuki-
type nonexpansive mappings. Under this algorithm, some fixed point convergence results , w?-stability for
contractive-like mappings are studied.

Motivated by the results that mentioned in [5], our work are organized as follows:

(1)Collect some basic definitions and theorems we need its in our studying.

(2)Study DH -iterative algorithm in hyperbolic metric space .

(8)Prove the weak w?-stability and data dependence results for contraction mapping in hyperbolic metric space.
(4)Establish some results related to the strong and A-convergence of the DH -iteration process for generalized
(a, B)-nonexpansive type (1) mapping in uniformly convex hyperbolic metric spaces .

(5)Present numerical example of the DH -iteration process for generalized (a, B8)-nonexpansive type (1) map-
ping .

2 Preliminaries

We called G : X — Y is a mapping if it is satisfied every element in X has only one image in Y by G its denoted
Gr=y forall ze X, yeY.
Now we show some kinds of mappings in metric space

Definition 2.1. Let (Y, p) be a metric space and U be a nonempty subset of Y . A mapping G : Y — Y is said to be the
Jollowing:
(CD[20] G is called a contraction mapping if there exists a constant u € [0, 1) such that

p(Ga,Gb) < pup(a,b), VY a,belU
(C2) [7] G is called a contractive mapping if

o(Ga,Gb) < p(a,b), VY a,belU, a#+b
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(CH[7] G is called a nonexpensive mapping if u = 1 then
p(Ga,Gb) < p(a,b), VY a,belU
(C5) [11] Quasi-nonexpansive if
p(Ga,e) < p(a,e) forall aeU and p € Fizx(G)

where Fix(G) is the set of all fixed points of G.
(C6) [37] Mean non expansive mapping if, for all a, b € U, there exist &, B € [0, 1) with @ + B < 1 such that

0(Ga,Gb) < ap(a,b) + Bp(a, Gb)

Several extensions and generalizations of nonexpansive mappings have been discussed by many authors due to their
importance in terms of applications. For instance, Suzuki in (2008) [26] introduced an interesting generalization of
nonexpansive mappings and presented some existence and convergence results. Another common name for such mappings
are known as mappings satisfying condition (C).

(C7)[81] Suzuki-generalized nonexpansive (or satisfy condition (C)) if

%p(Ga, a) < p(a,b) = p(Ga,Gb) < p(a,b) forall a,beU
(C8) [12] Satisfy condition (Cy) if
Ap(Ga,b) < p(a,b) = p(Ga,Gb) < p(a,b) forall a,belU

(C9) [24] Generalized a-nonexpansive mapping if,forall a, b € U there exists
a € [0, 1) such that

%p(Ga, a) < p(a,b) = p(Ga,Gb) < ap(Ga, b) +ap(a, Gb)+ (1 —2a)p(a,b).

Akutsah and Narain [4] introduced the class of generalized (a, B) — nonexpansive type 1 mappings, which
generalizes the mappings above, and they gave some basic properties for this class of mappings.

Definition 2.2. [4]
Let U be a nonempty subset of a metric space (Y, p). A mapping G : U — U is said to be generalized (a, B) —
nonexpansive type 1 if there exist a, 8,1 € [0, 1), witha < B and a + B < 1 such that

Ap(Ga,a) < p(a,b) = p(Ga,Gb) < ap(Ga,b)+ Bp(a,Gb)+ (1 - (a+B))p(a,b)
Jorall a,beU.

Proposition 2.3. [4]
@If G is a generalized (a, B) — nonexpansive type 1 mapping and has a fixed point, then G is quasi-nonexpansive
(@) If G is a generalized (a, B) — nonexpansive type 1 mapping, then for all a,b €Y.

p(a, Gb) < 2+1?—41‘;Bp(41, Ga)+ p(a, b)

(iii) If G is a generalized (@, B) — nonexpansive type 1 mapping, then Fix(G) is closed.
Definition 2.4. [20]

Let (Y, p) be a metric space and {a;}:2, and {b;};?, be two sequences in Y. We say that these sequences are equivalent if

lim p(a;, b;) =0
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Timis [35] gave the following definition of weak w? — stabilityusing equivalent sequences.

Definition 2.5. ( [35],Definition 2.4).
Let (Y, p) be ametric space, G be a self-mapping on'Y, and {a;};2, C'Y be an iterative sequence defined

a]EY

aiv1 = f(G,a;),Vi > 1

where f is a function. Suppose that {a;};2, converges strongly to p € Fix(G). If for any equivalent sequence {b;}2, C'Y
of{ai};zl
lim p(biy1, (G, b)) =0 = lim b; = p*

then the iterative sequence {a;}>2 , is said to be weak w? — stable with respect to G

In 1990, Reich and Shafrir [25] introduced hyperbolic metric spaces and studied an iteration process for
nonexpansive mappings ( we gave its definition before) in these spaces. In 2004, Kohlenbach [19] introduced
a more general hyperbolic metric space as follows.

Definition 2.6. Let (Y, p) be a metric space, and then (Y, p, W) will be the hyperbolic metric space if the function
W .Y xYx|[0,1] =Y is satisfying.

@) plc, W (a,b,a)) <(1-a)p(c,a)+aplc,b).

(@pV (a,b, @), W (a,b, B)) = o - Blp(a, b).

@)W (a, b, ) =W (b, a, 1 — ).

oW (a,c,a), W(b,w,a)) < (1-a)p(a,b)+ap(c,w).

Jorall a,b,c,weY and a,p € [0,1].

A linear example of a hyperbolic metric space is a Banach space and nonlinear examples are Hadamard
manifolds, the Hilbert open unit ball equipped with the hyperbolic metric (see [13]) , and CAT(0) spaces in
the sense of Gromov (see [7]).

Definition 2.7. We consider a hyperbolic metric space (Y, p, W). If a,b € Y and a € [0, 1], then we will use
(I1-a)a®ab for W(a,b,a).

(1) A subset U of this hyperbolic metric space is called convex if a, b € U implies that W (a, b, @) € U. The following
equalities hold even for the more general setting of a convex metric space(see [32], Proposition (1.2)):

p(b) W(aa br a)) = (1 - a')p(a7 b) and p(a’ W(a) b, a’)) = ap(ar b)
Jorall a,beY and « € [0, 1]. As a consequence, we obtain
Wa,b,0)=aand W(a,b,1) =5

(it) This hyperbolic metric space is called uniformly convex 5(see [29]) (see [29]) if for any r > 0 and & € (0, 2] there
exists a constant § € (0, 1] such that

PV (a,b, ), ) < (1= 0)r
Jorallu,a,b €Y with p(a,u) <r, p(b,u) <rand p(a,b) >re.
(iii) A mapping n : (0, 00) x (0, 2] — (0, 1] is said to be a modulus of uniform convexity if 6 = n(r, €) for a given

r > 0and & € (0, 2]. Furthermore, the mapping n is called monotone if it decreases with respect to r for a fixed &.

Definition 2.8. Let {a;}7, be a bounded sequence in a nonempty subset X of a metric space (Y, p). Then, the mapping
r(.,{a;i}) : Y — [0, 00) is defined by

r(a,{a;}) =limsup p(a, {a;}),a €Y

1—00
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The infimum of r (., {a;}) overX is called the asymptotic radius of {a;};2 | relative to X and is denoted by r (X, {a;}). A

point ¢ € X is said to be an asymptotic center of the sequence {a;}?° | relative to X if

r(c, {a;}) =inf{r(a,{a;}) : a € X}
and the set of all asymptotic centers of {a;};2 relative to X is denoted by A(X, a;).

In 1976, Lim [22] introduced the concept of A-convergence, which is an analog of weak convergence, in
metric spaces using the asymptotic center.

Definition 2.9. [22]
A sequence {a;}

o0
i=1
o0

of {ui}32, for every subsequence {u;}:2, of {a;};2, In this case, we write A —1im; e a; = a and call a as A - limit of
@i}y

We give three lemmas that will be helpful in proving our main results.

in a metric space (Y, p) is said to A — converge to a point a € Y if a is the unique asymptotic center

Lemma 2.10. [21]

Let (Y, p, W) be a complete uniformly convex hyperbolic metric space with the monotone modulus of uniform convexity n
and U be a nonempty closed and convex subset of Y. Then, every bounded sequence {a;}:2 | in'Y has a unique asymptotic
center relative to U.

Lemma 2.11. [18]
Let (Y, p, W) be a uniformly convex hyperbolic metric space with the monotone modulus of uniform convexity . Let
a €Y and {0} be a sequence in [p, q] for some p, q € (0, 1). If{a;};2, and {b;};2 | are sequences in'Y such that

limsup p(a;, a) <7, limsup p(b;, @) <r, lim p(W (a;, bi, 03), a) =7

i—00 i—0o0
Jor some r > 0, then

lim p(a;, bi) = 0.

Lemma 2.12. [30]
Let {gi}2, Ari}2, and {t;};2, be non-negative real sequences with r; € (0, 1), Vi > land 32, r; = co. Suppose that
there exists ng € N such that, for all n > ng, one has the inequality

giv1 < (1 =rp)gi +1it;.

Then, the following inequality holds:
0 <limsupg; < limsupy;

i—o00 i—00

8 Weak w?-stability result

First,we put DH - iteration in hyperbolic metric spaces as follows:

P € U
2 = GW(pi,Gp;, @)
wi = GW(z, Gz, B:))
¢ = GW(wi,Gw,vyi))
pint = G(Gg)). 8.1)

where U is nonempty convex subset of a hyperbolic metric space Y,G is a self-mapping on U,and {a;}? |,
{Bi}:2, and {y;}32, are three real sequences in (0, 1).

Now we show the strong convergence theorem.
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Theorem 3.1. Let U is a nonempty closed convex subset of a hyperbolic metric space Y ,G is a self~-mapping on U be
a contraction mapping with the constant p € [0, 1) such that F,(G) # 0 and {p;};2, be the DH-iterative sequence

)

with real sequences {a;}22 |, {Bi}:2, and {y:}72, in (0, 1),satisfying ZZ 1 ¥i = oo. Then, the sequence {p;}{ converges
strongly to a fixed point of G.

Proof. The contraction mapping G has a fixed point so it is easily shown that this fixed point is unique. Suppose p* is a
unique fixed point of G. From (3.1) we get

p(GW (pi, Gpi, @;)), Gp*)

up(W (pi, Gpi, @i), p*)

pl(l =) p(pi, p*) + @i p(Gpi, p7)]

pl(1 = @) p(pi, p*) + @i up(pi, p)]

p(l = a;(1 = w)p(pi, p*) (3.2)

p(zi, ")

IN NN

p(GW (2, Gz, Bi)), Gp™)

up(W (i, Gz, Bi), p*)

pl(1 = Bi)p(zi, p*) + Bip(Gzi, p*)]
pl(1 = Bi)p(zi, p*) + Binp(zi, p*)]
u(l = Bi(1 = mw)p(z, p*)

p(wi, p*)

IN NN

by (3.2) we obtain
= p(1=p4:1-w)pl —a;i(1 - w)ppi, p*)
= (1= Bi(1- )1 = ai(1 - p)p(pi, p*) (3.3)

And,by the same way we obtain

p(GW (w;, Gw;, v:)), Gp™)

up(W (w;i, Gwi, vi), p*)

pl(1 =) p(wi, p*) + yi p(Gwi, p*)]
pl(1 =) p(wi, p*) + yiup(wi, p*)]
p(l =yi(1 = ) p(wi, p*)

p(qi, p")

IANIN A

by (3.3) we get
= pu(1-y(1 - w21 -:(1 = w)(1 = a:(1 - w)p(pi, p))
(1= y:(1 = @) (1= Bi(1 = @) (1= a; (1= w)ppi, p%)) 3.4)

Similarly, we get
p(G(Gg;), Gp¥)

up(Ggi, p*)
w2 o(gi, p*)

p(PleP*)

IA

IA

by (3.4) we obtain
(1 =y (1= @)1 = Bi(1 = )1 = e (1 = ) p(pi, p*)) (3.5)

IA

Because p € [0, 1) and {a;}2 |, {Bi}2, in (0, 1), then

(1-ai(l-p) <1
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(I-Bi(1-pw) <1
The inequality (3.5) become
p(pist, ) < 1 (1= i (1= 1) p(pi, p°).
Repetition of the above processes gives the following inequalities:
p(pist, ) < (1= yi(1 = ) p(pi, p*)
p(pi, p7) < 1’ (1 =yiea (1= W) p(pic1, p")
p(pi1, %) < 1° (1= yica(1 = 1)) p(pizg, p*)

p(p2,p*) < (1= y1(1 = w)p(p1,p)
Then we get

p(piv1, ') < p(p1, pY(°) [ [ =90 = )

j=1
Joralli € N .Again,since p € [0, 1) and {y;}72 | in (0, 1),then (1 = y;(1 - p)) < L
1t is known that 1 — p < e, for each p € [0, 1],then we get
ppict, 1) < plp1, p) (Yo T B, 3.6)

Tuaking the limit of both sides as i — oo in (5.6) ;we have

lim p(pi, ) = 0
, that is {p;} — p* .0

Now, we prove that the modified iteration process defined by (3.1) is weak w?-stable with respect to G.

Theorem 8.2. Suppose that all conditions of theorem (5. 1) hold. Then,the iteration process (3. 1) is weak w?-stable with
respect to G.

Proof. Let{p;}?, be a sequence generated by ( 3.1) and {a;}:2, C U be an equivalent sequence of {p;}:2 put
i = p(aim1, G(Gxy))

where x; = G(W (h;, Ghi, vi)),hi = G(W (¢;, Ge;, Bi)) and ¢; = G(W (a;, Ga;, @;)). Let lim;_, &; = 0.
Then ,we have

p(gi,xi) = p(GW (w;, Gwi, v:)), GW (hi, Ghi, v)))
< wupW (wi, Guwi, vi), W(hi, Ghi, i)
< (I =y)p(wi, ki) +yip(Gw;, Ghy)]
< pl(l =) p(wi, hi) +vipp(wi, hi)]
< (1 =yi(1 = w)p(wi, h;) (3.7)
The same
p(wi,hi) = p(GW (z,Gz, Bi), GW (ci, Gei, Bi)))
< ppW(zi, Gz, Bi), Wci, Gei, Bi))
< ul(l = Bi)p(zi,¢) + Bip(Gzi, Gei)]
< pul(1 = Bi)p(zisci) + Bipp(zis ¢i)]
< p(l=Bi(1-w)p(zi,c) (3.8)
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Similarly
pzisci) = p(GW (pi,Gpi, i), GW (ai, Ga;, @;)))

< upW (pi, Gpi, @), W(ai, Gai, a;))

< ul(1=a)p(pi, a;) + aip(Gp;, Ga;)]

< pl(l=a)ppi, @) +aipp(pi, ai)]

< (=i (1= w)p(pi, ai). (3.9)
And

plais1, p) < p(aiv1, pis1) + p(Pir1s P7)

< pain, G(Gy) + p(G(Gai), pis1) + p(Pists P7)

= & +p(G(Gx;), pis1) + p(Pir1, P")

= &+ p(G(Gx;), G(Ggi)) + p(pis1, p7)

< &+ pup((Gxi), (Ggi)) + p(Pis1, 1)

< &+ (i, qi) + p(piss )

< e+ 12p(qi, 1) + p(pivt, p°)

< e+ pP (=51 = w)p(w;, hi) + p(pis1, p*)

By (3.8) we get
g+ 1 (1 =y (1= @) (1= B:(1 = ) p(zi, i) + p(pis1, p¥)

IA

Similary by (3.9) we obtain

IA

g+ 101 =y (1= @)1= (1= w)(1 = a:(1 - w)p(pi, a;)
p(Pis1, p") (8.10)

Put (1 =y (1 = p)) < 1 and from theorem (3.1) lim; o p(pir1, p*) = O because {p;};2 | and {a;};2 | are equivalent
sequences then lim;_,co p(pi, a;) = 0 also lim;&; = 0. We take the limit for both sides in (3.10) then we get
lim; e p(ais1, p*) = 050 {pi};2, is w?-stable with respect to G.O

4  Data dependence results

Now ,we prove the data dependence result for the modified iteration process ( 3.1) using the definition of an
approximate operator .

Definition 4.1. ( [6],p,166)
let (Y, p) be a metric space and G,G : Y —'Y be tow operators.G is called an approximate operator of G,if p(Ga, Ga) <
€ foralla €Y and for a fixed e > 0.

Theorem 4.2. Let Y, U and G be the same as theorem (3.1) and G : U — U be an approximate operator of G for
given € Let {p;}7 | be an iterative sequence generated by (3.1) and define an iterative sequence {p;}?° | as follows:

pi € U
5 = GV (pi,Gpi, ai))
w, = GW (%, Gz, Bi))
i = GW (wi,Gwj,vi))
pin1 = G(G§) 4.1)
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with real sequences {;}:2,, {Bi}:2, and {yi}:2, in (0, 1) satisfying a; > %, Vi>1,and 372 a; = o If p* = Gp*
and p* = Gp* such that lim;_,«, p; = p* then one has

B 15€
B S—
PP, P7) a-

Where u € [0, 1).
Proof. From (3.1) and (4. 1) we have

p(GW (pi, Gpi, @), GW (pi, Gpi, i)

p(GW (pi, Gpi, i), G (pi, Gpi, @i))) + p(G(W (pi, Gpi, @), GW (bi, Gpi, @i)))
upW (pi, Gpi, ai), W (i, Gpi, i) + €

ul(1 =) p(pi, pi) + aip(Gpi, Gpi)] + €

u(1 =) p(pi, pi) + pai(p(Gpi, Gpi) + p(Gpi, Gpi)) + €

1(1 = @) p(pi, pi) + 1P ip(pi, pi) + paie + €

(1 = ai(1 = W) p(pi, pi) + paie + €

o(zi, %)

ININ AN IN NN

4.2)

By (4.2), we have

p(w;, w;) p(GW (zi, Gz, Bi), GW (21, G, Bi)))

p(GW (2, Gzi, Bi), GW (%, Gz, Bi))) + p(G(W (2, Gz, Bi)), GW (2, G, Bi)))
upW (zi, Gz, Bi)), W (zi, G, Bi)) + €

ul(1 = Bi)p(zi, %) + Bip(Gzi, GE)] +€

u(1 = Bi)p(zi, %) + uBi(p(Gzi, Gz;) + p(Gzi, GZ)) + €

u(l = Bi)p(zi, z:) + uPBi(pp(zi, 2i) + €) + €

(1= Bi)p(=i, &) + 12 Bip(2i, &) + pPic + €

u(l = Bi(1 = ) p(zi, 2i) + uPie + €

p(1 = Bi(1 = ) [u(1 = ai(1 = ) p(pi, pi) + paie + €] + puPie + e

12 (1= Be(1 = ) (1 = i (1 = @) p(pi, pr) + P eie(1 = Bi(1 = p))

pe(l = Bi(1 - )+ pupie +e. (4.3)

+ A IA AN IA A AN IN A TA

Similarly,using (4.3) we get

P, @) = p(GW (wi, Gw;, vi)), GW (w;, Gy, i)
< p(GW (wi, Gwi, i), G (w;, Gy, ¥:))) + p(GC W (Wi, Goi, 1)), GOV (w, Gy, 7i)))
< pupW (wi, Gwi, v:)), W (i, Gy, vi)) + €
< ul(X=y) p(wi, @) + i p(Gw;, Giy)] + €
< u(1 =) pwi, w;) + pyi[ p(Gwi, Giy) + p(Giy, Gy)] + €
< u(l=vyi)p(wi, ;) + pyi[up(wi, w;) + €] + €
< u(l =) p(wi, @) + pPyi p(w;, ;) + pyie + €
< p(=yi(l = p)p(w;, w;) + pyie + €
< p(l=yi (1= w)[p*(1 = Bi(1 = w)(1 = ai(1 = ) p(pi, pi)
+ plaie(1=Bi(1 - p) + pe(l = Bi(1 = w) + ppie + €] + pyie + €
< P =yi(1= ) (1= Bi(1 = w)(1 = ai(1 = 1) p(pi, pi)

9
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+ fPaie(1-i(1 - w)(1=yi(1 - w)+ pe(1 = (1= w)(1 -y (1 - p)
+ 2Bie(1—yi(1 - w) + pe(1 —y;(1 = p) + pyie +e. 4.4)

Finally ,using (4.4) we obtain

P(Pix1, piv1) =

ININ A IN A

N+ + A

+ +

p(G(Gqi), G(Gg))

p(G(Gqi), G(G§)) + p(G(GGy), G(GGr))

1p(Gai, Gg;) + €

ulp(Gai, GGi) + p(Gai, Ggi)] + €

ulup(gi, 4i) +€l +e

12 p(qi, 4i) + pe +€

PP (1 =y (1= @) (1= Bi(1 = ) (1 = a; (1 = ) p(pi, i)

pPaie(1 = Bi(1 = w)(1 = yi(1 = w) + p®e(1 = B;i(1 = ) (1 =y (1 = )
12 Bie(1—yi(1— )+ pe(l =y (1 = p)) + pyie + €] + pe +e

(1 =y (1= m)(1 = Be(1 = )(1 = a; (1= w)p(pi, i)
pwaie(l=Bi(1=m)(1-yi(1-pw)+pu'e(l=Bi(1- @)1 -y:(1-p)
wpie(1—yi(1 = )+ pPe(1 = yi(1 = ) + pPyie + p’e + pe + € (4.5)

Since u € [0, 1) also a;, B;, vi € (0, 1) we get that

(I-7(1-p) <l

(1-Bi(1-pm) <1

u5, /14, ,u3,,u2, u<l
1yi, 1w’ Bi < 1 (4.6)

and (1 — a; + pa;) < 2a;. And by assumption a; > % , weget (1 —a;) < a;.

Now we use all assumption ,then we get

(1= ai(1= @) p(pi, pi) + praie + pte + pte + pPe + ple
/126+ﬂ€+6

(1 —a;(1 — w)p(pi, pi) + aie + 7€

(1 —ai(1 = w)ppi, pi) +aie + 7(1 — a; + a;)e

IA

N+

Becouse(1 — a;) < a;then :

< (I =ai(1 = w)p(pi, pi) +aie + 1da;e
= (1-ai(1=w)p(pi, pi) + 15a;e

_ 15
= (1—a;(1 = w)p(pi, pi) + (1 — ) ———

(1-p)°

4.7)

15¢

Now suppose gi = p(pi, pi) , ri = @i(1 — p) and t; = 7255

By lemma ( 2.10) we obtain

0 <limsupg; <limsupy;

i1—00 1—00

We know that from Theorem ( 8.1) lim; o p; = p* and by the assumption in the hypotheses,we have lim; . p; = p%,

then we get

15¢
(1-w)

p(p", p") <
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5 Convergence results

In this section, we discuss and study several preparatory results, which are needed to develop our convergence
theorems.

Lemma 5.1. let G be a generalized («, B)-nonexpansive type (1) mapping define on a nonempty convex subset U of
a hyperbolic metric space Y with Fy(G) # 0 Af p* € F,(G) and {p;}?, is the iterative sequence define by (3.1) ,then
hmi—»oo P(Pz ’ P*) exists.

Proof. Using proposition (2.3) i,we get

pzi,p") = p(GW (pi, Gp,, @i)), p*)
< pW(pi, Gpi, @), p")
< (I =a)ppi, p") +aip(Gpi, p*)
< (I—a)p(pi, ") +aip(pi, p")
= p(pi,p")- b.1)
Similarly
p(wi,p*) = p(GW (zi, Gz, Bi)), p")
< pW(zi,Gz, Bi), ")
< (1=B)p(zi, ") + Bip(Gzi, p¥)
< (1=B)p(zi,p") + Bip(zi, ")
= p(zi, ") < ppis p). (6.2)
Similarly, we get
g, p") = p(GW (w;, Gw;, ¥:)), p*)
< p(W(wi’Gwi, Yl):p*)
< (I =vy)pwi, p*) +yip(Gw;, p*)
< (I =vy)pwi, p*) +vip(W;, p*)
= p(wi,p") < p(zi, p*) < p(pi, 7). (5.3)
Finally, we get
p(Pis1, 27) = p(G(Gg), p")
< p(Gyi, p")
= p(g,p") < p(wi, p*) < p(zi,p") < p(pi, P°) (5.4)

Hence, we obtain
p(piv1, 2") < p(pis p7)

This shows that {p(pi, p*)}:2, is decreasing sequence and bounded from the below for each p* € Fy(G) .So,we obtain that
lim; e p(pi, p*) exists for any p* € F,(G). O

Theorem 5.2. let U be a nonempty closed convex subset of a complete uniformly convex hyperbolic metric space Y
with the monotone modulus of uniform convexity n and G : U — U be a generalized (a, B)-nonexpansive type (1)
mapping.Let {p;}:2, be the iterative sequence define by (3. 1) with real sequences {a;};2,, {Bi}e, and {yi}2, in (0, 1)

Then, F,(G) # 0 if and only if {p:}2 is bounded sequence and lim; o p(pi, Gp;) = 0.

11
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Proof. Let Fy(G) # 0 and p* € Fy(G) by Lemma (5.1), lim; o p(pi, p*) exists and {p;}:2, is bounded. Therefore,we

can consider that
lim p(p;, p*)=r for somer >0 (5.5)
By proposition (2.3)(i) then we get

p(Gpi, p*) < p(pis p*)

and we take lim sup of both sides of the inequality above ,we get that

limsup p(Gp;, p*) < (6.6)

1—00

and we have by (5.1)
p(zi, p7) < p(pis p")

and taking lim sup of both sides of the inequality above ,we get that

limsup p(z;, p*) <7 (5.7)

From the relation (5.4), it follows that
p(piv1,2") = p(G(Ggi), p")

< p(Ggi, p")

< pgi,p?)

< (A =y)p@wi, p) +yip(Gw;, p7)

< (L=w)p(wi, p*) +yip(wi, p*)

= pw;,p)

< (1=Bip(zi, p") + Bip(Gzi, p7)

< (1=B)pi, p") + Bip(zi, p*)

pPi, p) = Bip(pi, p7) + Bip(zi, p7) (5.8)

Since B; € (0, 1) ,the last inequality leads to

p(Pix1, p*) = p(pi, P*)
Bi

p(pis1, p7) — p(pi, p*) < < p(zi, p°) = p(Pi, P7)

which implies that
p(Pir1, P7) < plzi, p7)
thus by (5.5) we get

r < liminf p(z;, p*) (5.9)
Jrom ( 5.7)and (5.9) we have
lim p(z;, p") =7 (5.10)

Sfrom (5.1) we have
p(zi, p) < p(W (pi, Gp,, @), p*) < p(pis P7)
from (5.5)and (5.10) we get

hm p(W(Pl’GP”a'l)ap*):r (511)

12
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Also from (5.5), (5.6),(5.11) and lemma (2.11) we obtain
lim p(p;, Gpi) = 0

Conversely,assume that{p;}? is bounded and lim; . p(pi, Gp;) = O suppose p* € AU, {p:}) Using proposition
(2.8)(11), we get

r(Gp*, {pi}) = limsup p(p;, Gp*)
< ZJ;C_Y—Jrﬁhm sup p(pi, Gpi) +lim sup p(p;, p°)
= llmsupP(Pz,P*)
= 4, ) -

This implies that Gp* € AU, {p;}). Because the sequence {p;};>, is bounded and we use lemma (2.10) then
AU, {pi}) consists of exactly one point .Hence ,we have Gp* = p*. Thus, I,(G) # 0.0

Considering the previous two results, we are now ready to prove the A-convergence theorem of the modified
iterative sequence {p;};2, defined by (3.1) for a generalized (@, 8)- nonexpansive type 1 mapping.

Theorem 5.3. let U be a nonempty closed convex subset of a complete uniformly convex hyperbolic metric space Y with
the monotone modulus of uniform convexity n and G : U — U be a generalized (a, B)-nonexpansive type (1) mapping
with F,(G) # 0. Let {p;};2, be the iterative sequence (3. 1) with real sequences {@;}2,, {Bi}:2, and {y:}32, in (0, 1)
.Then, the sequence {p;};2, A — convergence to a fived point of G.

Proof. From Lemma (2.10), the sequence {p;};> | has a unique asymptotic center AU, {p;}) = {p}. Suppose {v;}2 be
any subsequence of {p;}:2 | such that AU, {v;}) = {v}.by theorem (5.2), we get

lim p(v;, Gv;) = 0. (5.13)
1t follows similarly from the proof of Theorem (5.2) that v is a fixed point of G.Then,we claim that the fixed point v is

the unique asymptotic center for each subsequence {v;}7, of {pi};2,. On the contrary ,we suppose that p # v from lemma
(5.1), we deduce that lim;_,« p(p;, v) exists . Therefore,by the uniqueness of the asymptotic center we can see that

A

lim sup p(v;, v) lim sup p(v;, p)

i—00 1—00

lim sup p(pi, p)

1—00

IA

< limsup p(pi, v)

1—00
= limsup p(v;, v)
i—00
then we get p = v this is a contradiction.So ,a fixed point v of G is the unique asymptotic center for each subsequence {v; }:2
of {pi}:2,- This proves that the sequence {p;}>, A — converges to a fixed point of G. O

Next , we prove tow strong convergence results for a generalized (@, B8)- nonexpansive type 1 mapping.

Theorem 5.4. . Under the assumptions of Theorem (5.3),if U is a compact subset of Y ,then the sequence {p;}?> | converges
strongly to a fixed point of G.

Proof. We consider an element p* € U . The compactness of U implies that there exists a subsequence {p;, };2, of {pi};2;
such that lim, e p(pi,, p*) = 0.
According to proposition (2.3)(ii) ,we have

a+p

lim p(p;,, Gp*) < Q’L—ﬂ

T lim p(pi,, Gpi,) + lim p(pi,, p7)

13
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By theorem (5.2), we get lim, o p(pi,, Gpi,) = 0.Then, we have Gp* = p* that is p* € I',(G).Using (5.1), we obtain
lim; 00 p(p;, p*) exists and hence {p;} converges strongly to a fixed point p*.0

Theorem 5.5. . let Y, U, G and {p;}2, be the same as in theorem (5.3).Then ,the sequence{p;}:> converges strongly
to a fixed point of G if and only if

liminf p(p;, F,(G)) =0 or limsup p(p;, F,(G)) =0,

where p(p, F,(G)) =inf{p(p, p*) : p* € F,(G)}.

Proof. Ifthe sequence {p;};2, convergesstrongly to p* € F,(G),thenlim;_c p(pi, p*) = 0.Becouse 0 < p(p;, F,(G)) <
p(pi, "), we get imi o p(pi, F(G)) = 0.

For the converse part,let liminf; e p(pi, F,(G)) = 0.By Lemma (5.1) we get lim;_,co p(pi, F(G)) exists and hence
lim; e p(pi, 5 (G)) = 0.Therefore,there exist a subsequence {p;, };2, of {pi}:2, and a sequence {p, }>" | in I,(G)) such
that

p(pi,» Py) < % forall n>1
By the proof of lemma (5. 1) ,we get

* % 1
p(pin+l’p)l+1) S p(pin’pn) < 2_7!

thus,
PPpi1> tn) S PPrays Piner) + PPivrs D)

1 1 1

< 2n+1 + Q_H < 2n+1

-0 a5 —>

Hence, {p;,}:2, is a Cauchy sequence in I, (G).From proposition (2.3)(iii), we have F, (G ) is closed and so {p,,} converges
strongly to p* € I,(G).On the other hand,we get

p(i, P7) < p(pi, ) + PPy, P7)

taking the limit of both sides of this inequality, we get that{p; }32, converges strongly to p* € F,(G). Because

lim; 00 p(pi, p*) exists by lemma(5.1),p* is strong limit of {p;}3, . O

In 1974, Senter and Dotson [28] introduced a mapping satisfying Condition (I), which is stated as follows:
A mapping G : U — U is said to satisfy Condition (I) if there exists a non-decreasing function f : [0, o0) —
[0, co) with £(0) =0 and f(b) > 0 forall b € (0, c0), such thatp(p, Gp) > f(p(p, I,(G))) forallp e U.
Now, we present the final strong convergence result using Condition (I).

Theorem 5.6. Let U be a nonempty closed convex subset of a complete uniformly convex hyperbolic metric space Y with
the monotone modulus of uniform convexity n and G : U — U be a generalized (a, B)-nonexpansive rype (1) mapping
with F,(G) # 0. If G satisfies condition (1) and {p;};2, is the iterative sequence define by (3.1) with real sequences
{@i}2, ABiY2, and {yi}:2, in (0, 1) ,then {p;}:2, converges strongly to a point of F,(G)

Proof. Fromtheorem (5.2),we havelim;_,o p(pi, Gp;) = 0. Then,by condition (1),we getlim; o f (p((pi, I,(G))) <
lim;_Le p(pi, Gpi) = 0, that is, lim;_e [ (p(pi, F(G))) = 0. Because [ : [0, 00) — [0, c0) is a function with
F(0)=0and f(b) > 0 forallb € (0, o), we have lim; o p((pi, F,(G)) = 0. By pervious theorem we obtain {p;}>*
converges strongly to a point of I,(G) O

Remark 5.7. . In this section, we used the generalized («, B)-nonexpansive type (1) mapping which contains the class
of generalized a-nonexpansive mapping on the hyperbolic metric space. Thus, Theorems 5.3-5.6 generalize the results of
[88, 36] in two ways: (1) the class of underlying space, and (2) the class of mappings.

14
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6 Numerical Example

In this section, we construct the following example of a generalized (a, 8)-nonexpansive type 1 mapping.
Example 6.1. Let Y = R with the usual metric and X = [0, o). Define a mapping G : X — X.
{ if a€]0, —é)
10a f [10’
Clearly, a = 0 is the fixed point of G. Then, the following:

(i) Because G is not continuous at the point a = %, G s not a nonexpansive mapping.

(ii) Let a = 10 and b = 1z . Then,

(6.1)

4 4

1
§|a—Ga|—E —0 |(l—b|

On the other hand ,

—

|Ga-Gb|== Zio—|a—b|

Thus, G is not a Suzuki-generalized nonexpansive mapping.
(ii1) Let a = % and b = % Then,

|Ga-Gb|ca|la-b|+B8|a-Gb|

1 4a N 3B

2 =10 10

5<4a+3B
Therefore, the implications fail to be satisfied, which leads to the conclusion that G is not a mean nonexpansive mapping.
(iv) Now, we prove that G is a generalized (a, B)-nonexpansive type 1 mapping. For this purposelet A = 1, a = é 411’

B = %, and consider the following cases:

e Case A: a € |0, 10) Then,A | a — Ga |= T" <| a—-b |, which gives two possibilities (1) Let a < b. Then,
%sb—a:w>—a=>be[0,2).
@ Ifb € |0, 10) then we have

|Ga—Gbl<a|Ga-b|+B |a-Gb|+(1-(a+B)) |a—b]

11 12 1
0_ﬂ|b|+ﬂ|a|+ﬂ|a—b|
O Ifb e [{(2],3) then we have
12 1 1
|Ga—Gb|——|b|_—|b| |a——0b|+—|a—b|

91
(2) Let a > b. Then, < le «q_bhb=b< 4a =be]0, 10) c [0, 10) which is already included in case (1)(a).

e Case B: a € [10,00) Then,A | a —Ga |—% | a — —2 |= 2~ 1sa <| a—0b |, which gives two possibilities:
(1) Let a < b. Then, 48a§b—a=>b>5ga=>b€[% ) C [—é,oo).So

]
|Ga—Gb| = —Ola—bl
11 34
< ﬂ(|2—a——b|)+ la—1b|
10 11 10 1
= 24'24 “bltgyle ﬂ“ gz a0l
10 12 10, 1
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(2) Let a > b. Then, %aﬁa—b:ﬂ)ﬁ%a:}'be[—}],m)-

@Ifbe [i—(l), %) , then we have
110
24 24
) Ifb € [}—2, o) is already included in case (1).
Hence,G is a generalized ( %, %)—nonexpansive type 1 mapping with I,(G) # ¢

a—b|+2|a|+i|a—b|

10
|Ga=Gbl= g lals 51 51

7 Conclusions

In this paper, we have modified the our newly introduced iterative algorithm (1.1) into the hyperbolic metric
spaces and established the weak w?-stability and data dependence results for contraction mappings .We derived
some convergence results for(a, 8)-nonexpansive type 1 mappings using this modified iterative scheme.
Finally, as future works for this paper, we appointed the following:-

Using similar approaches of this article, the generalized (@, 8)-nonexpansive type 2 mappings,which is intro-
duced by d by Akutsah and Narain [4], can be studied in hyperbolic metric spaces .
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