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Abstract
In this paper, we presented two newmethods, namley, the

(
G′′

G′+A

)
-expansionmethod and the improved

(
G′′

G′+A

)
-

expansion method is proposed for constructing more general and a rich class of new exact traveling wave
solutions of nonlinear evolution equations (NLEES).

Mainly, methods have been applied to generalized nonlinear Burgers’ (gB) equation for new exact solutions.
Moreover, obtained solutions reveal that, these methods are very e�ective and powerful to handle various
nonlinear evolution equations.
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1 Introduction

Study of nonlinear evolution equations (NLEEs) have demonstrated to be imperative in modelling various
nonlinear systems that model numerous and varied natural phenomena. Numerous techniques have been pro-
posed to investigate exact solutions of such equations (NLEEs) such the sine-cosine [1], the tanh-coth method
[2, 3], the mapping method [4, 5], the improved F-expansion scheme [6], the Adomain decomposition ap-

proach [7, 8], Darboux transformation [9], the
(
G′

G

)
-expansion method [10, 11], the improved and general-

ized
(
G′

G

)
expansion methods [12], the

(
G′

G2

)
-expansion method [13], the

(
G′

G �
1
G

)
-expansion method [14],

the extended hyperbolic function method [15], the Jacobi elliptic function expansion method [16].Sometimes,
numerical techniques are good alternatives to analytical ones, for instance, see [17, 18].

The importance of our present work is, in order to generate many exact traveling wave solutions, new

approach
(
G′′

G′+A

)
-expansion method and new approach improved

(
G′′

G′+A

)
-expansion method. For illustration

and to depict of the proposed methods, the generalized nonlinear Burgers’ (gB) equation have been studied
and generated abundant and more types of new travelling wave solutions.
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2 Description of new methods

Consider the general nonlinear partial di�erential equations (NLPDEs), say, in two variables,

Ψ (v, vt , vx , vtt , vxt , vxx , ...) = 0, (1)

where v = v(x , t) is an unknown function, Ψ is a polynomial in v(x , t) and the subscripts stand for the
partial derivatives.

We suppose that the combination of real variables x and t by a complex variable 𝜉

v(x , t) = v(𝜉 ) , 𝜉 = ax − ct , (2)

where a is the wave number and c is the speed of the traveling wave. Now using Eq. (2), Eq. (1) is converted
into an ordinary di�erential equation for v = v(𝜉 ):

Φ

(
v, −cv′, av′, c2v′′, −cav′′, a2v′′, ...

)
= 0, ′ ≡ 𝜕

𝜕𝜉
. (3)

According to possibility, Eq. (3) can be integrated term by term one or more times, yields constant(s) of
integration. The integral constant may be zero, for simplicity.

2.1 New
(
G ′′

G ′+A

)
-expansion method

Suppose that the traveling wave solution of Eq. (3) can be expressed as follows:

v (𝜉 ) =
N∑︁
i=0

ai

(
G ′′

G ′ + A

) i
, (4)

where the coe�cients ai (i = 0, 1, 2, ..., N ) , a and c are arbitrary constants, and G = G (𝜉 ) satis�es the
following auxiliary ordinary di�erential equation (ODE)

G ′′′ + 𝜇G ′ + 𝜆 = 0, (5)

then by the help of Eq. (5) we get (
G ′′

G ′ + A

) ′
= −

(
G ′′

G ′ + A

)2
− 𝜇, (6)

where 𝜆 = A𝜇; and A are constants, the positive integer N can be determined by using homogeneous
balance between the highest order derivatives and the nonlinear terms appearing in ODE (3).

Substituting Eq. (4) into Eq. (3), using Eq. (6) repeatedly, and setting the coe�cients of the each order of(
G′′

G′+A

) i
to zero, we obtain a set of nonlinear algebraic equations for ai (i = 0, 1, 2, ..., N ) , a, c and 𝜇. With the

aid of the computer program Maple, we can solve the set of nonlinear algebraic equations and obtain all the
constants ai (i = 0, 1, 2, ..., N ) , a and c.

2.2 New improved
(
G ′′

G ′+A

)
- expansion method

Suppose that the travelling wave solution of Eq. (3) can be expressed as follows:

v (𝜉 ) =
N∑︁
i=0

ai
©­­«

(
G′′

G′+A

)
1 + 𝛼

(
G′′
G′+A

) ª®®¬
i

, (7)
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where the coe�cients ai (i = 0, 1, 2, ..., N ) , a, c and 𝛼 are arbitrary constants. Moreover,
G = G (𝜉 ) satis�es auxiliary ODE Eq. (5).
We determine the positive integer N , explained previously.
Substituting Eq. (7) into Eq. (3), using Eq. (6) repeatedly, and setting the coe�cients of the each order of(

G′′

G′+A

) i
to zero, we obtain a set of nonlinear algebraic equations for ai (i = 0, 1, 2, ..., N ) , a, c , 𝛼 and 𝜇. With

the aid of the computer program Maple, we can solve the set of nonlinear algebraic equations and obtain all
the constants ai (i = 0, 1, 2, ..., N ) , a and c.

Using the general solution of Eq. (5), we have the following solutions
Family 1. When 𝜇 < 0,(

G ′′

G ′ + A

)
=

√−𝜇
(
C1 cosh

(√−𝜇 (𝜉 + h)
)
+ C2 sinh

(√−𝜇 (𝜉 + h)
) )

C1 sinh
(√−𝜇 (𝜉 + h)

)
+ C2 cosh

(√−𝜇 (𝜉 + h)
) , (8)

case (i). If C2 ≠ 0, C1 = 0, (
G ′′

G ′ + A

)
=
√−𝜇 tanh

(√−𝜇 (𝜉 + h)
)
, (9)

case (ii). If C1 ≠ 0, C2 = 0, (
G ′′

G ′ + A

)
=
√−𝜇 coth

(√−𝜇 (𝜉 + h)
)
. (10)

Family 2. When 𝜇 > 0,(
G ′′

G ′ + A

)
=

√
𝜇
(
C1 cos

(√
𝜇 (𝜉 + h)

)
+ C2 sin

(√
𝜇 (𝜉 + h)

) )
C1 sin

(√
𝜇 (𝜉 + h)

)
− C2 cos

(√
𝜇 (𝜉 + h)

) , (11)

case (i). If C2 ≠ 0, C1 = 0, (
G ′′

G ′ + A

)
= −√𝜇 tan

(√
𝜇 (𝜉 + h)

)
, (12)

case (ii). If C1 ≠ 0, C2 = 0, (
G ′′

G ′ + A

)
=
√
𝜇 cot

(√
𝜇 (𝜉 + h)

)
, (13)

where h is constant of integration.

3 Application of new methods

In this section, we aim �rst to apply the our new methods for solve (gB) equation.

3.1 The gB equation

consider the gB equation [19, 20]

ut (x , t) + ur (x , t) ux (x , t) − 𝛽uxx (x , t) = 0, (14)

using the transformation u(x , t) = u(𝜉 ) , 𝜉 = ax − ct in Eq. (14), we �nd

− cu′(𝜉 ) + aur (𝜉 )u′(𝜉 ) − 𝛽 a2u′′ (𝜉 ) = 0. (15)

Integrating once Eq. (15), and neglecting the constants of integration, we �nd
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− cu(𝜉 ) + a
r + 1 (u(𝜉 ))r+1 − 𝛽 a2u′ (𝜉 ) = 0. (16)

Balancing Eq. (16) give:

(r + 1)N = N + 1⇒ N =
1
r
.

To obtain closed form solutions, should be a positive integer. To achieve this goal we use

u(𝜉 ) = (w(𝜉 ))
1
r , 2 < r ∈ z+ (17)

that will carry out Eq. (16) to the ODE

− cw(𝜉 ) + a
r + 1 (w(𝜉 ))2 − 𝛽 a2

r
w′ (𝜉 ) = 0. (18)

Application of new
(
G′′

G′+A

)
-expansion method

Taking the homogeneous balance between w2 and w′ in Eq. (18), we obtain N = 1. Therefore, the solution of
Eq. (18) is of the form:

w (𝜉 ) = a0 + a1
(
G ′′

G ′ + A

)
, (19)

where a0 and a1 are arbitrary constants to be determined.
Substituting Eq. (19) into Eq. (18), using Eq. (6) repeatedly, and setting the coe�cients of the each order

of
(
G′′

G′+A

) i
to zero, we obtain a set of nonlinear algebraic equations for ai (i = 0, 1, 2, ..., N ) , a, c , r , 𝛽 and 𝜇.

Solving the system of algebraic equations with the aid of the computer program Maple, we obtain

a0 =
±√−𝜇a𝛽 (r + 1)

r
, a1 =

−a𝛽 (r + 1)
r

, c =
±2√−𝜇a2 𝛽

r
. (20)

Substituting Eq. (20) into Eq. (19), along with Eq. (8) and simplifying, yields

u1,2 (𝜉 ) =

(√−𝜇a𝛽 (r + 1)
r

) 1
r

[
±1 −

C1 cosh
(√−𝜇 (𝜉 + h)

)
+ C2 sinh

(√−𝜇 (𝜉 + h)
)

C1 sinh
(√−𝜇 (𝜉 + h)

)
+ C2 cosh

(√−𝜇 (𝜉 + h)
) ] 1r .

Substituting Eq. (20) into Eq. (19), along with Eq. (9) and simplifying, yields

u3,4 (𝜉 ) =
[√−𝜇a𝛽 (r + 1)

r
(
1 − tanh

(√−𝜇 (𝜉 + h)
) ) ] 1r

.

Substituting Eq. (20) into Eq. (19), along with Eq. (10) and simplifying, yields

u5,6 (𝜉 ) =
[√−𝜇a𝛽 (r + 1)

r
(
1 − coth

(√−𝜇 (𝜉 + h)
) ) ] 1r

.

Substituting Eq. (20) into Eq. (19), along with Eq. (11) and simplifying, yields
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u7,8 (𝜉 ) =

(
a𝛽 (r + 1)

r

) 1
r

[
±√−𝜇 −

√
𝜇
(
C1 cos

(√
𝜇 (𝜉 + h)

)
+ C2 sin

(√
𝜇 (𝜉 + h)

) )
C1 sin

(√
𝜇 (𝜉 + h)

)
− C2 cos

(√
𝜇 (𝜉 + h)

) ] 1
r

.

Substituting Eq. (20) into Eq. (19), along with Eq. (12) and simplifying, yields

u9,10 (𝜉 ) =
[
a𝛽 (r + 1)

r
(
±√−𝜇 + √

𝜇 tan
(√

𝜇 (𝜉 + h)
) ) ] 1r

.

Substituting Eq. (20) into Eq. (19), along with Eq. (13) and simplifying, yields

u11,12 (𝜉 ) =
[
a𝛽 (r + 1)

r
(
±√−𝜇 − √

𝜇 cot
(√

𝜇 (𝜉 + h)
) ) ] 1r

,

where 𝜉 = ax ∓ 2
√−𝜇a2 𝛽

r t.

Application of new improved
(
G′′

G′+A

)
-expansion method

Similarly, taking the homogeneous balance between w2 and w′ in Eq. (18), we obtain N = 1. Therefore, the
solution of Eq. (18) is of the form:

w (𝜉 ) = a0 + a1
©­­«

(
G′′

G′+A

)
1 + 𝛼

(
G′′
G′+A

) ª®®¬ , (21)

where a0 and a1 are arbitrary constants to be determined.
Substituting Eq. (21) into Eq. (18), using Eq. (6) repeatedly, and setting the coe�cients of the each order

of
(
G′′

G′+A

) i
to zero, we obtain a set of nonlinear algebraic equations for ai (i = 0, 1, 2, ..., N ) , a, c , r , 𝛽 , 𝛼 and

𝜇. Solving the system of algebraic equations with the aid of the computer program Maple, we obtain

a0 =
a𝛽 (r + 1)

(
𝛼 𝜇 ± √−𝜇

)
r

, a1 =
−a𝛽 (r + 1)

(
𝛼2 𝜇 + 1

)
r

, c =
±2√−𝜇a2 𝛽

r
. (22)

Substituting Eq. (22) into Eq. (21), along with Eq. (8) and simplifying, yields

u1,2 (𝜉 ) =

(
a𝛽 (r + 1)

r

) 1
r

[ (
𝛼 𝜇 ± √−𝜇

)
−
√−𝜇

(
𝛼2 𝜇 + 1

) (
C1 cosh

(√−𝜇 (𝜉 + h)
)
+ C2 sinh

(√−𝜇 (𝜉 + h)
) )

A1 sinh
(√−𝜇 (𝜉 + h)

)
+ A2 cosh

(√−𝜇 (𝜉 + h)
) ] 1

r

,

where A1 = C1 + 𝛼C2
√−𝜇, A2 = C2 + 𝛼C1

√−𝜇.
Substituting Eq. (22) into Eq. (21), along with Eq. (9) and simplifying, yields

u3,4 (𝜉 ) =

(
a𝛽 (r + 1)

r

) 1
r

[ (
𝛼 𝜇 ± √−𝜇

)
−
√−𝜇

(
𝛼2 𝜇 + 1

)
tanh

(√−𝜇 (𝜉 + h)
)

1 + 𝛼
√−𝜇 tanh

(√−𝜇 (𝜉 + h)
) ] 1

r

.
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Substituting Eq. (22) into Eq. (21), along with Eq. (10) and simplifying, yields

u5,6 (𝜉 ) =

(
a𝛽 (r + 1)

r

) 1
r

[ (
𝛼 𝜇 ± √−𝜇

)
−
√−𝜇

(
𝛼2 𝜇 + 1

)
coth

(√−𝜇 (𝜉 + h)
)

1 + 𝛼
√−𝜇 coth

(√−𝜇 (𝜉 + h)
) ] 1

r

.

Substituting Eq. (22) into Eq. (21), along with Eq. (11) and simplifying, yields

u7,8 (𝜉 ) =

(
a𝛽 (r + 1)

r

) 1
r

[ (
𝛼 𝜇 ± √−𝜇

)
−
√
𝜇
(
𝛼2 𝜇 + 1

) (
C1 cos

(√
𝜇 (𝜉 + h)

)
+ C2 sin

(√
𝜇 (𝜉 + h)

) )
A1 sin

(√
𝜇 (𝜉 + h)

)
+ A2 cos

(√
𝜇 (𝜉 + h)

) ] 1
r

,

where A1 = C1 + 𝛼C2
√
𝜇, A2 = 𝛼C1

√
𝜇 − C2.

Substituting Eq. (22) into Eq. (21), along with Eq. (12) and simplifying, yields

u9,10 (𝜉 ) =

(
a𝛽 (r + 1)

r

) 1
r

[ (
𝛼 𝜇 ± √−𝜇

)
+
√
𝜇
(
𝛼2 𝜇 + 1

)
tan

(√
𝜇 (𝜉 + h)

)
1 − 𝛼

√
𝜇 tan

(√
𝜇 (𝜉 + h)

) ] 1
r

.

Substituting Eq. (22) into Eq. (21), along with Eq. (13) and simplifying, yields

u11,12 (𝜉 ) =

(
a𝛽 (r + 1)

r

) 1
r

[ (
𝛼 𝜇 ± √−𝜇

)
−
√
𝜇
(
𝛼2 𝜇 + 1

)
cot

(√
𝜇 (𝜉 + h)

)
1 + 𝛼

√
𝜇 cot

(√
𝜇 (𝜉 + h)

) ] 1
r

.

where 𝜉 = ax ∓ 2
√−𝜇a2 𝛽

r t.

4 Conclusion

In this paper, new approach of
(
G′′

G′+A

)
-expansion method and new improved

(
G′′

G′+A

)
-expansion method with

linear auxiliary equation have been proposed to construct many new and more general exact solutions of
NLEEs. The methods have been successfully implemented to �nd new for generalized nonlinear Burgers’
(gB) equation. The results show that this method is a powerful Mathematical tool for obtaining new exact
solutions for our equation. It is also a promising method to solve other NLEEs.
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