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Abstract

This paper introduces new fixed point theorems for Ciri¢-Reich-Rus-type contraction mappings in be-metric
spaces. We provide an example to demonstrate the proven results. Finally, we apply the results to fractional
differential equations. The fractional derivative as convolution serves numerous functions. It can represent
memory, as in the elasticity hypothesis. The Caputo and Caputo-Fabrizio types can be understood as filters of
the local derivative, having power and exponent functions.
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1 Introduction

Kannan [11] developed a discontinuity of contraction mappings that can possess a fixed point on a complete
metric space, closing the gap established by Banach [4] for nearly thirty years. Reich [18] demonstrated the
fixed point theorem with three metric points, combining Banach and Kanann notions on a full metric space.
Ciri¢ [5] expanded Banach’s ideas to establish the fixed point theorem with six metrics. Kannan [11], Re-
ich [18], Ciri¢ [5] and Rus [19] fixed point theorems have been examined and expanded in several direc-
tions.

Later, Karapinar et al. [12] blends Reich-Ciri¢ and Rus ideas to prove an interpolative Reich-Rus-Ciri¢ in par-
tial metric spaces. Karapinar and Agarwal [13] analysed interpolative Rus-Reich-Ciri¢ contractions in metric
space using simulation functions. Aydi et al. [1] showed w-interpolative Reich-Rus-Ciri¢ contractions in metric
spaces. Mishra et al. [15] established the fixed point theorem for interpolative Reich-Rus-Ciri¢ and Hardy-
Rogers contraction on quasi-partial b-metric space, as well as related fixed point results. For more literature on
this direction we refer our readers to [2, 9, 23, 24].

Czerwik’s [6] study of a b-metric space yielded numerous fixed point solutions for single-valued mappings.
Gahler established the concept of a b-metric in [10], using the example of a triangle’s area in R%. Similarly,
fixed point results were found for mappings in such spaces. Unlike other recent metric space generalisations,

2-metric spaces are not topologically identical to metric spaces. The conclusions achieved in 2-metric spaces
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do not easily translate to metric spaces. Mustafa et al. [16] created a new type of generalised metric space
known as bg-metric spaces by combining 2-metric and b-metric notions. Singh et al. [21] demonstrated fixed
point theorems in a generalised bg-metric space of (¢, ¢)-weakly contractive mapping. For more innovation
on this direction we recall [7, 8, 20, 22].

In this paper, we introduce some fixed point theorems under various contractive conditions in a generalized
bg-metric spaces, as a generalization of both 2-metric and b-metric spaces. Then we prove. These include
interpolative Rus-Reich-Ciri¢ contractions conditions. We illustrate these results by appropriate examples, as
well as an application to fractional differential equations. The results is focused on extension and generalization
of the results from Mustafa et al. [16], Karapinarer al. [12] and several other works from the literature.

2 Preliminaries

This subsection provides some important definitions, lemmas, propositions, and theorems to help with the

proving of the key results.
We use the notion of 2-metric spaces proposed by Gahler in [10] below.
Definition 2.1. Let X be a non-empty set and dg : X X X x X — [0, 00) be a map satisfying the following properties.
(@) Fory, s,k € X,do(vy, g, k) = 0 when at least two of the three points are the same.
(@) If v # ¢, then there is a point k € X where dy(vy, g, k) # 0.
(iir) Symmetry property for y, s, k € X,

d2(7’g’K) = d2(77k,g):d2(§’7’K):dQ(gi K,’)/)
do(k,y,¢) =dy(k, s,7).

(tv) Rectangle inequality
do(y, ¢, k) <do(y, ¢, 9) +do(s, k, I) +do(k, v, )

fory, s,k € X.
Then dy is a 2-metric and (X, dg) is a 2-metric space.
Mustafa et al. [10] defined bg-metric as the combination of 2-metric and b-metric notions.
Definition 2.2. Let X be a non-empty set, and dg : X xX xX — [0, 00) be a map that meets the following requirements.
@) Fory, s,k €X,dy(y, s, k) =0 when at least two of the three poinis are the same.
(i) If y # ¢, then there is a point k € X where dy(y, s, k) # 0.
(iit) Symmetry property fory, s, k € X,

do(y, &, ¢) =do(s,v, k) =da(s, k,¥)
de(k,v,¢) =do(k,s,¥).

dQ(‘y, S, K)

(tv) s-rectangle inequality: there exists s > 1 such that

dQ()’a S, K) < S[dQ('y, S, 19) +d2(§, K, ﬁ) +d2(K’ Y ﬂ)]

fory, s, k, % eX.
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Then dg is a bg-metric and (X, dg) is a bg-metric space. If s = 1, the bg-metric reduces to the 2-metric.
The following example satisfies the properties of bg-metric.

Example 2.1. Consider X = [0, o0) and dy(y, g, k) = [ys+sk+ky|Pify # ¢ # k # y.andelsedy(y, 5, k) =0,
where p > 1 is an area number. Given the convexity of the function S(y) = y? for v > 0, using Jensen’s inequality, we
have

(a+b+c) <37V (a +b" +cP).
Thus, one can show that (X, dg) is a bo-metric space with s < 371,
The following are Cauchy sequence, convergent and completeness property for bg-metric space.

Definition 2.8. [16] Let {y,} be a sequence in a bg-metric space (X, dy).

(@) {yn} is said to be bg-convergent to x € X, written as

hm yn = ')’,

n—oo

if forall k € X,
do(Yn, v, k) = 0.

(i) {y.} is said to be bg-Cauchy sequence in X if for all k € X,

d2(’)’n, 7, K) = 0

(@) (X, dg) is said to be bo-complete if every bg-Cauchy sequence is a bg-convergent sequence.
Refer the following lemma for future use to prove Cauchy convergence.

Lemma 2.1. [16] Assume (X, dg) is a by-metric space and that {y,} and {g,} are bg-convergent to y and s, respec-
tively. Finally, we have

1 L )
S—2d2(7, S, k) < nlggomfdz(yn, Sny k), < r}glgosupdz(n, Sns K),

< SQdQ(y’ S K):

Jorall k € X. In particular, if ¢, = ¢ constant, then

1 . .
;dg(%g,K) < gglgomfdg(n,s‘,K),SJgrgosude(n,g,K),SSdz(%s*,K)-

The following are preliminary results that will be used to develop the main results.

Karapinar et al. [12] demonstrated interpolative Reich-Rus-Ciri contractions on partial metric spaces as fol-
lows.

Theorem 2.1. [12] Let (X, p) be an entire metric space. Consider S : X — X as an interpolative Reich-Rus-Ciri¢
contraction mapping, such that

P(SY,S¢) < nlp(y, )1°.[p(y, SV [p(s, S&)1' ™77, (2.1)
Jorall y, ¢ € X\Fix(S) where Fix(S) = {y € X, Sy =y}. Then S has a fixed point in X.

Mustafa et al. [16] formulated the following theorem.
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Theorem 2.2. Let (X, <) be a partially ordered set. Assume X has a bg-metric dg, making (X, dg) a complete by-
metric space. Let S : X — X be an increasing mapping in comparison to <. There is an element v € X with vy < Sy,.
Let us assume that

Sd?(sy’ Sg? K) < ﬁ((dQ(% S, K))M(y’ ) K),

Jorall k € X and all comparable elements y, ¢ € X, where

d( ’S ) d‘ ,S ,
M(y,s,x) = max{dg(y,g,K), 2(v, Sy, K)ds(s, S¢ K)}'

1 +dy(Sy, S¢, «)

If'S is bg-continuous, then it contains a fixed point. Furthermore, S’s fixed point set is well-ordered if and only if it has a
single fixed point.

3 Main Results

The following is the main results.

Theorem 8.1. Consider (X, do) as a whole metric space. Consider S : X — X as an interpolative Reich-Rus-Ciri¢
contraction mapping, such that

sdy(Sy,Se, k) < nlda(y, s, )1°.[da(y, Sy, ©)]*.[da(s, Ss, )] 772, 3.1
Jorally, s, k € X\Fix(S) where Fix(S) ={y € X,Sy =y}t ands > 2,n < 1. Then S has a fixed point in X.

Proof. Letyy € X and define a sequence {y, },en in X by

Yo = S¥Yu-1,

foralln € N. If y,, = y,,41 forall n € N the fixed point is archived. On contrary we assume that y,, > v,,1, and
we shall show that the sequence {do(v,, Yn+1, k) }neN is a decreasing sequence for all n € N.

By (3.5), ¥y = y4—1 and ¢ = vy, we get

3d2(8771—1 , S)’n; K),

Sd2(7717 Yn+1> K)

SdQ('yn: Ynels k) < n[dQ('}/n—l:'}’n’ K)]6-[d2(7n—l:s'}’n—la K)]a
[d2(7n> Syn) K)]l_d_é;
5d2('yn, Yuels k) < n[d2(7n—1, Yn> K)]6~[d2(7n—1, Yn> K)]*
~[d2(7ny Yn+1, K)]l—a—é,
Sd2(7n: 7n+1 ’ K) S n[dQ(’}/n—l ’ '}’n, K)]6+a'[d2(77l9 77l+]: K)] 1_0_6’
a+o
s[d2(')’n, 7n+1: K)] S Tl[d2(7n—1, ')’n, K)]6+a’
a+o n S+
[d2(771; Yn+1, K)] < ?[d2(7n—la Vs k)] ,
1
T] S+a
dQ('}’n: Yuels k) < (;) d2(7n—1’ Yn> K).

Repeating the above procedure through induction, we get
N\
do (s s ) < (L) da Gy, v 0. (3.2
Letting n — oo in the above inequality, we obtain

d2(’)’n, 7n+1: K) S O)

which is a contradiction. Therefore, the sequence {d9(v,, Yn+1, ) }nen is decreasing. O
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We use the rectangular inequality and (3.5) to show that {y,} is a bg-Cauchy sequence.

d2(771: Ym> k) < SdQ(’)’n: Ym > 7m+1) + Sd2('yn, K, ym+1) +
SdQ(K, Yn>s 7711+1)a

< sdo (Y, Yims Yme1) +
*[do (Yms Vet &) +do(Yur1, Y1, K) +
do(Yms Ym+1> Y1) +5d2 (K, Vu, Y1),
< sdo(Yus Yo Yme1) +

S2d2(7m; 7m+1: K) + 32d2(77l+1 ’ 7m+1, K) +

SQdQ (7m, Ym+1, 7n+1) + SdQ(K’ Yn> ym+1)'

By using (7) of Definition 2.2 and the concepts in Lemma 2.1, we obtain

dQ(YVI, )’m; K) S 52d2(7n+1, 7m+1, K))

< 52d2(87m s’)/m, K).
Using (3.5), with y = y,, and ¢ = y,,, we have
1
?d2(7n, Yms K) < Sd2(57n, S)’m, K)-
S SU[dQ('Yn,Ym,K)]é'[dQ(’Yn,S')’n,K)]a-
[dQ(Ym, S)/nn K)] 1_0_65
< s [d2(7n, Ym>s K)]é-[dQ(yn, Yn+1> K)]a-
[d2 (')’m, Ym+1> K)] 1_0_6;
1
?d2(7n, Yms K) < 0,
d2(7na Ym>s k) = 0,
we deduce that
)gl;lodg(’}Q’H Vm; K) = 07

This is a contradiction. Thus, {y,,} is a bg-Cauchy sequence in X. Because (X, dg) is a bg-complete, the sequence
{yn} bg-converges to some & € X, that is, lim dg(y,, 9, «) = 0.
n—o0

Now to show that @ is a fixed point of S. Using the rectangle inequality, we get

A

d?(Sﬁa 0, K) — SdQ(Sﬁ’ S'}’m, ﬁ) + SdQ(ﬂ’ K) S?’m) + SdQ(Ka Sﬂy S)’m),
d2(50, 7, K) SdQ(Sﬁ, S’)’m, 7)) + SdQ(ﬁ, K, Sym) +
0 [da (9, yu, €)]°.[d2 (9, SO, €)1 [da (ya, Syu, €)]' 7.

IA

Letting n — oo and using the continuity of S and (7) of Definition 2.2, we have

A

do(SY, 9, k) < sdo(SP, SOY, 9) + sdy (9, k, ST) +
U[d2(19, 3, K)]fs,[dg(ﬂ, S, K)]“[d2(l9’ S9, «)] 1—(1—5’
do(SY, 9, k) < sdo(F, k, ST),

A
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(1 =5)de(S9, 9, k)
dg(S9, 9, )

IA

IA

we have

Thus, ¥ is a fixed point of S.

Assume that S contains two fixed locations. In contrast, © and 6 are distinct fixed points of S. Using (3.5), we

have
sda(S9, S0, k) < nlda(9, 0, K)]°.[da (8, ST, k)]*.[d2(6, SO, k)] 777,
sdo (9,6, k) < nlda(9, 0, )]°.[de (I, 9, K)]".[d2(6, 6, )],
sdo(9,0,k) < 0,
de(9,6,k) < 0,

which is a contradiction, that ¢ = 8. Hence ¥ is a unique fixed point of S.

The following theorem demonstrates some novel results. We extend Mustafa et al. [16]’s Theorem 2.2 for
interpolative mapping in bg-metric spaces.

Theorem 3.2. Assume (X, dg) is a complete by metric space. Let S : X — X represent an increasing interpolative
mapping. Then there exists an element y € X where yo < Sy,. Suppose that

dy(y, Sy, k)da(s, Sg, k) 1=
dQ(')/, S% K) '

Jorall k € X and all comparable elements v, ¢ € X. If S is bg-continuous, then S has one and only fixed point.

sdy(Sy, S¢, k) < uldy(y, s, «)]7. (3.3)

Proof. Starting with the given vy, using a Picard sequence y,, = S"yq. Since yy > Sy and S is an increasing
function we obtain the following

Y0 < Syo < S%yp < -+ < S"yy < Sy < ..

We commerce by showing that lim do (v, ¥as1, k) = 0, since y,, < v,41 for eachn € N, then by (3.3) we have
n—oo

sdy(SyYn-1, S¥n, k) < ulde(yu-1, vu, K)17.
[d2(7n71, SYu-1, K)do(Yn, SYn, K) ] -
d2 (’)’n—la 577L—1a K) ’
5d2(7na Ynsl, K) < ﬂ[dQ(yn—l, Yus K]
[d2(7n—1, Yns K)dQ()/n, Yn+!s K) ] -
d2(771—17 Yus K) ’
1-o
5d2(7na Ynsl, K) < ﬂ[dQ(yn—l, Yus K)]7. [d2(7na Yn+ls K)] s
J7 1-0
Aoy s, K) < Eldo (s, v 017 |da s v 0]
1-(1-0) y
|42 Y, )] < Loy 017,
d o< & o
[ 2(7n:7n+l’K)] < ;[d2(7n—1’ Yus K17,

1

M\ &
d2(7)1;7n+!’K) ?) dﬁ(%l*];)’n, K)’

IA
—_—
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proceeding with a reparation of same steps as above, eventually we squire the following results for n* steps

1n

d2(7na7n+ly K) < (%)UdQ('}/n—l: Yns K).

For n — oo in the above inequality we have

d?(ﬂyn; 77l+1) K) S 05

which is a contradiction. Therefore the sequence dg(y,,, Yns1, k) = 0. The other steps of the proof of fixed point,
uniqueness and bg-Cauchy convergent is the same as in Theorem 3.1. Hence this complete this proofs. ]

Due to the novelty of Theorem 3.1 we introduce the following corollary’s.
Corollary 3.1. Let (X, dg) be a bo-metric spaces. Let S : X — X be non decreasing continuous interpolative contractive

mapping suppose that there exists k1 € [0, 1] and L > 1 such that

Sd2(577 Sg’K) < L[max{dQ(yy g’K);dQ(Y7 S% K)’d2(§7Sg’K);

d2(7’S§,K)+d2(§7577K) b
2 i

1-k
| min{da(y, Sy, ), da(s, Sy, 03|

Jor all elements y, ¢, k € X. Then S have one and only one fixed point.

Proof. Proof follows from Theorem 3.1.

Corollary 3.2. Ler (X, dg) be a by-complete by-metric spaces. A mapping S : X — X is a weakly interpolative
contractive mapping if there exists y € [0, 1] and L > 1 such that

dgo(y, Sy, k)ds(s, S,
sda(Sy, S¢, k) < L[max{dQ(y, 1, z(yljd:()yg(gg K)g K)
d?(?’; SV, K)dQ(S', Sg‘, K) H .
1 +dy(Sy, S¢, «) H .[mm{dg(y, 57, %),

I-p
da(y, S5, 1), do(s, S5, 1), do(5, Sy, 0}|

>

Jor all elements y, ¢, k € X. Then S have one and only one fixed point.
Proof. Again the proof follows from Theorem 3.1.

We give an example for demonstration of Theorem 3.1.

Example 8.1. Let X = [0, 1] be a set with a by-metric defined as dy(y, s, k) = [ys+sk+ky|Pif vy £ ¢ £ k £,
otherwise dyg(y, ¢, k) = 0, where p = s = 2. Define the mapping S : X — X by

Sy=-.y>0. (8.4)

< | =

In demonstration of Theorem 3.1, we proof the following example.

We begin by finding the bg-metrics according to inequality 3.5.
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Fory=2,¢ =38,k =1ands =2, we have

do(y,5,%) = lys+sk+«xyl?
< I2x8+3x1+1x2|?
< |11)* = 121.

dy(y,Sy, k) = lly.Sy+Sy.x+«yl?,
< 12x0.5+0.5x1+1x2|?,
< 118.5]1? = 12.25.

do(s,Ss,x) = lls.S¢+Ss.k+xs|?,
< I8x0.5+0.5x1+1x3|7?,
< 11511 =25,

dg(Sy,Ss, k) = [ISy.S¢ +Sc.k+«Sy|?,
< 10.83%0.5+0.5x1+1x0.33]2,
< P =1,

By using inequality 3.5 and 6 = 0.5, @ = 0.2, we obtain

2x1 < p[121]'22%5,[25192.12]"3,
2 < p[l11].[1.65].[2.63],
2 < 47.67n.

For < 1 the above inequality satisfy all the conditions in Theorem 3.1. Hence S has a unique fixed point
k=1.

4  An application to nonlinear fractional differential equation in bg-metric

space

The fractional derivative as convolution serves numerous functions. It can represent memory, as in the elas-
ticity hypothesis. The Caputo and Caputo-Fabrizio types can be understood as filters of the local derivative,
having power and exponent functions (refer to [25]).

The purpose of this section is to provide an application of Theorem 3.1 to get a unique solution of a non-linear
fractional differential equation, where we can apply an interpolative Reich-Rus-Ciri¢ contraction mapping in
bg-metric spaces.

The following are basic definitions of fractional calculus from [14, 17].

Definition 4.1. For a continuous function g : [0, o) — R, the Caputo derivative of fractional order 9 is defined by

1 t
D19 ¢ - - [—s n—-9-1_.(n) s dS,
0 = o [ =g
(n—1<9 <n,n=1[0]+1), where [}] denote the iteger part of the real number .

Definition 4.2. [17] The Riemann-Liouville fractional derivative of order ¥ for continuous function defined g(t) is
defined by

1 d\n !
Dﬁg(t) = m(a) ‘/0' (t — s)”—19+1g(s)ds,

where [] denotes the integer part of the real number & and n = [9] + 1, provided that the right hand side is pointwise
defined on (0, o).
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Lemma 4.1. The Banach space (X, ||.||), denoted by C = C([0, 1], X) is a continuous function from [0, 1] into X.
do(y,6,6) = llys+sk+xylP =lly -<lf,p 22,

The following non-linear fractional differential equation with integral boundary valued conditions inspired by

Baleanu et al. [3].
Dly(t)=g(t,y(1), 0<t<1, 1<9<2
y(0) =0, 4.1)

y() = [ y(s)ds, 0 <o <1,
where D? denotes the Riemann-Liouville fractional derivative of order ¢ and g : [0, 1]xX — X isa continuous

function.
Theorem 4.1. Suppose that
() ¢ :R% = R is a continuous function endowed with the following conditions
lgt, ) —gt, ol = nly-sll
Jorallt € [0, 1] and y, ¢ € R, where
do(y,6,6) = lys+sc+xyl =ly sl =lly-sl,p > 2,
and

da(y,s,6) = [da(y, s, «)]°.[de(y, Sy, K)]".[da(s, Ss, k)] 77°.

(i1) there exists a constant n such that

IA
—

]7 =
Then, the differential equation (4.1) has a unique solution.

Proof. Define a mapping S : X — X by

1 L
Y0 = oy [ =9 e v(sds -
9 1
m[g (1-5)""1g(s, y(s))ds +

9 o[ ps
=5 (/0 (=" g, y(0)dr |ds, (¢ € [0, 1]).

5 Conclusion

This paper aims to obtain fresh conclusions for fixed point theorems for Ciri¢-Reich-Rus-type contraction
mapping in bg-Metric spaces. Also, provide an example to demonstrate the proven results. Finally, it presents

an application of fractional differential equations.
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