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Abstract

In the paper, we give some interesting access structures of secret sharing schemes based on torsion codes of
MacDonald codes over Fo+ukFy+vFy. Later, we study Simplex and MacDonald codes over the finite ring FoRS.
We discuss the properties of these codes by giving their weight distributions and Gray images. By studying the
binary Gray images of Simplex and MacDonald codes over FuRS, we aim to construct efficient secret sharing
schemes. These schemes exploit the inherent properties of codes, such as minimum weight, which are essential
for reliable information sharing. Understanding the access structure of these schemes is vital as it determines
which subsets of participants can reconstruct the secret. Through this comprehensive analysis, we contribute
to the field of coding theory by showing how Simplex and MacDonald codes over FoRS can be effectively used
in cryptographic applications to design secret sharing schemes.
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1 Introduction

A secret sharing scheme (SSS) is a method by which a dealer distributes shares of a secret to participants such
that only qualified subsets of participants can recover the secret from their shares. SSS was introduced in 1979
by Shamir [1] and Blakley [2]. Since then, many applications of SSS to several different kinds of cryptographic
protocols have appeared. For example, SSS can be used in a secure key management scheme and multiparty
computation. SSS has been an important cryptographic primitive.

There are many approaches to the design of SSSs. One of them is based on linear codes over finite fields.
[t was first pointed out by McEliece-Sarwate [3] that Shamir’s secret sharing scheme is closely related to the
Reed-Solomon coding scheme. After that, Massey [4] constructed secret sharing schemes by linear codes. The
relationship between a minimal qualified set and minimal codeword of its dual code was also characterized in
[4]. However, the access structure of the secret sharing scheme, which is based on a linear code,e is hard to
determine in general. Several authors have considered the minimal codewords of certain codes and character-
ized the access structure of the secret sharing schemes [5—7]. Only well-structured linear codes can have secret
sharing schemes with desirable access structures. The access structures based on some linear codes over finite
fields have been determined in [8, 9]. Secret sharing schemes from linear codes over finite chain rings were
considered in [10, 11].

In [12], A. Dertli and Y. Cengellenmis constructed MacDonald codes over the ring R = Fy + vFy. Also, in
[18], R. Dertli and S. Eren constructed MacDonald codes over the finite non-chain ring S = Fo +ulF9 +vFy and
then studied the torsion codes. In this paper, we give some interesting access structures of SSS based on torsion
codes of MacDonald codes over Fo + uF9 +vF9. This paper aims to present a special case of coding theory and
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cryptography, especially over the finite ring FoRS. This includes studying the structure and properties of linear
simplex and MacDonald codes over FoRS, studying the properties of gray images of linear codes over FyRS,
and analyzing the Hamming weight distributions of these gray images to understand their error detection and
correction capabilities. In addition, the study aims to examine the structure of the minimal linear code over
F9RS, highlighting its efficiency and reliability. Finally, the study aims to construct secret sharing schemes based
on the minimal linear simplex and MacDonald codes over FoRS and shows how these codes can be effectively
used to establish reliable and robust methods for secret information sharing between multiple parties. Through
this detailed analysis, our work aims to improve the understanding and application of coding theory concepts

in cryptography.

2 Secret Sharing Schemes From Linear Codes

We use P to denote the set of participants. The subset of participants 4 C P, which can recover the secret,
is called a qualified set, while a set B C P that can’t recover the secret is called an unqualified set. Moreover,
the secret sharing scheme is perfect if all the unqualified sets cannot get information about the secret in the
information theoretic sense. We consider only perfect secret sharing schemes in this paper. A secret sharing
scheme is ideal if the shares are the same size as the secret. If 4 C P is a qualified set and for all C c A4 with
C is an unqualified set, then A is called a minimal qualified set. The set of all qualified sets is called the access
structure of the corresponding secret sharing scheme. Let A denote the access structure, thatis A= {4 C P : A
is a qualified set}.

There are many methods to design secret sharing schemes. One of them is to employ linear codes over the
finite field Fq. We can construct secret sharing schemes from linear codes with the method in [4]. Let C be an
[n, k], linear code and C* be its dual code. Let H = (ho, h1,- - - , hy—1) be the generator matrix of C*. The
dealer choose u € Fq"_k randomly such that u- iy = s. Here is the secret to be shared. Letu- H = (s, ¢1, ..., ¢p_1),
participant P; receives ¢; as his share, 1 <4 < n— 1. The secret sharing scheme constructed in this way is ideal.
Generally, we have the following result.

Lemma 1 [4] Let G be a generator matrix of an [n, k], linear code C. In the secret sharing scheme based on C, a set of
shares {t;,, tig, -+, t;,}, 1 <i] <+ <ip <nm—Tland1 <m < n -1, determines the secret if and only if there is a
codeword (1,0,---,0,¢1,0,---,0,¢,,0,---,0) (in the dual code C+, where ¢;; # 0 for at least one j).

In Lemma, the secret sharing scheme is constructed from C, while we construct the scheme from its dual
C*+. The support of a vector (cg, ¢, ..., ¢,—1) is define as the set{0 < i < n—1,¢ # 0}. The Hamming
weight of a vector is the number of its non-zero components. A vector ¢ is covered by a vector c¢gy if the
support of ¢g contains the support of ¢;. If a non-zero codeword ¢ covers only its scalar multiples but no
other non-zero codewords, it is called a minimal codeword. The covering problem of a linear code C is to
determine all its minimal codewords. This is a tough problem in general. From Lemma, we can see a one-to-
one correspondence between the set of minimally qualified sets and the set of minimal codewords with 1 as its
first component in the dual code C*.

It is generally difficult to determine the access structure of a secret sharing scheme constructed from a linear
code C. Because the covering problem of a linear code is complex. However, in some special cases, the access

structure can be determined.
Lemma 2 [5] Let C be an [n, k], linear code and G = [go, g1, - - , gu-1] be its generator matrix. If each non-zero
codeword of C is a minimal codeword, then in the secret sharing scheme based on C*, there are altogether ¢*~' minimal

qualified sets. In addition, we have the following:

1. If g; is a multiple of gy, 1 <i < n — 1, then participant p; must be in every minimal qualified set.
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9. If g; is not a multiple of gy, 1 < i < n — 1, then participant p; must be in (¢ — 1)¢*2 out of ¢*~! minimal
access sets.

The access structure in Lemma is interesting. In Case 1 of Lemma, some participants must be in every
minimal access set and thus are dictators. As in Case 2 of Lemma, each participant plays the same role as he is
involved in the same number of minimal qualified sets. Such a secret sharing scheme is said to be democratic.
Secret sharing schemes like these cases may be required in certain applications. So, it is useful to construct a
linear code in which all of its codewords are minimal.

According to [14], let a dealer pg and p = {p1, po, ...... , Pu—1} be a set of n — 1 participants. Also, let y,
be the set of all access elements on p. In the secret sharing scheme based on C, to compute shares for all the
participants, the dealer randomly chooses a vector « = (uq, ..., u;) € F; such that s = ugy. There are pF~!
such vectors o € Fpk Therefore, the dealer treats u as an information vector and calculates the corresponding
codeword v = uG = (v, v, ..., Vy—1), where G = [go, &1, --., &u—1] is a generator matrix of C. Consequently,
it gives v; to party p; as their share foreach 1 <7 < n — 1. If s = vougp, then a set of shares (v;,, v, ..., vi,)
determines the secret s if and only if column go of G is a linear combination of the columns; gy = Z;": 1 i

Then the secret s is recovered by computing s = 32| n;v;;.

j=1

3 Secret Sharing Schemes over Fo + uFy + vFy

3.1 MacDonald code over Fy + uFy + vky

In [13] constructed MacDonald codes of type @ over the ring Fo + u Fy + vFy, where u? = u, v? = v, uv = vu =
0, Fo = {0, 1} is the field of two elements and investigate their properties such as torsion codes and weight

distributions. From this point of view;

Definition 8 [13] The code C¥  generated by G} is called a type @ MacDonald code. We can see that the code C}!,

is a linear code over the ring Fo + u Fo + vFy of length n = 2% — 23 Let Cy . be the torsion code of C}' . That is
the generator matrix of C® T is obtained by replacing (1 —v) by 1 in the matrzx of (1- v)G“ Szmzlarly, we can get
another torsion code of C ko by replace v by 1 in vG L We know that the two torsion codes are equivalent. Therefore,
we only consider the former case, i.e., we only study C /f T We give the Hamming weight distributions of CZ%T in the
Jollowing result.

Theorem 4 [13] The torsion code of M}'  is binary linear (23 — 98¢k, 93k=1 _ 93u=1] code with weight distribution
Ag(0) =1, AH(23le—l _ 2311—1) — [2k—u(2u -] andAH(QSk—l) — [Qk—u -1].

Proof. Since the torsion code of M, “u is the set of codewords obtained by replacing « by 1 in all u-linear
combination of the rows of the matrix, .G} . "

We prove by induction with respect to /e and t. Fork = 2 and u = 1 the result holds. Suppose the result
holds fork —1and 1 < u < k—2. Thenfor kand 1 < u < k — 1 the matrix . GC’ takes the form,

u. Glgu = [u. G"|u = n] Each non-zero codeword of u. M" has Hamming weight either 23k T — 98u=1 op 93k-1

and the dlmensmn of the torsion code of M7, is k, than there will be [2¢7%(2" - 1)] codewords of Hamming

23k—1 _ 23u—l

weight and the number of codewords with Hamming weight 231 is 2t — 1. m

3.2 Secret sharing schemes based on Torsion codes

The access structure of a secret sharing scheme constructed from a linear code is complex. However, since the
codewords of a linear code are minimal, we can construct an interesting secret sharing scheme based on its dual
code. In the following, we will prove that all the codewords of the torsion codes C k, o are minimal. First, we
need the following Lemma to character the minimal codewords of a linear code.
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Lemma 5 Inan [n, k], linear code C, let wiin and wimax be the minimum and maximum non-zero weights, respectively.
[f Zmin > =L then all the codewords of C are minial. Let G' . be the generator matrices of C;' .. We have the

Wmax

T
Jollowing result.

Theorem 6 In the secret sharing scheme based on C}} ;T , there are 23 — 93 — 1 participants and p*~' minimal qualified
sets. If the i-th column of G} .
set. Otherwise each participant p; is involved in exactly (p — 1)p*=2 out of p*=1 minimal qualified sets.

is a multiple of the 0-th column of G}! ., then participant p; is in every minimal qualified

Proof. Let wiin and wmax be the minimum and maximum nonzero weights in the torsion code Cj’ .. From
Theorem 4 in [13], we know that wmin = (2371 — 23¢71) and wynax = (2371, Then we have;

Winin 23k—1 _ 23u—l _ 1 . ) -1 ~ 1
93k—1 =T 930w 2

Wmax

where 1 <u <k —1. From Lemma 5, we have that all the codewords of C/fu o, are minimal. =

Example 7 Consider the ring (Fg +u Fy +vky), the code ¢(M",) over Fy of length n = 56 generated by $(Q3 |)
defined as follows

11111111 11111111 00000000 00000000 11111111 11111111 00000000
5@ 01100110 01100110 01100110 01100110 01100110 01100110 01100110 |
The access structure has 55 participants and 2 minimal qualified sets. Each participant P;, 1 <7 < 55 in
the set (565) = {1, 2, ..., 55} is in 2 minimal access set.

1

4 Secret Sharing Scheme over FoRS

The ring R = FgR Ry introduced in [15]. We have taken ¢ = 2 here. The purpose of this section is to provide
the reader with the information necessary to evaluate the analysis of the ring.

FQRS = FQ(FQ +7}F2)(F2 +u Fy +7)F2) .

By establishing these foundations, we lay the groundwork for exploring the properties and applications of

this ring in coding theory.

FyRS
FyRS

FQ(FQ +”()F2)(F2 +u F2 +”UF2)

{o- = (n1, ng, ng) : n| € Fo, ng ER,ngES,ugzu,zﬁ:v,uv:vu:O}.

The Lee weight of ¢ = (1, u, v) € FoRS is defined as wr.. (1, &, 0)) = Wiree(A) + WiLee (1) + Wipee (v).
We will define the Gray map and then construct the weight in such a way that will give us a distance-
preserving isometry
¢ : FaxRxS—F
(x,y,2) — ¢(x,5,2)

where ¢(z, v, 2) = (x, a1, a1 + b1, ag, ag + by, ag +¢9) , withy = a; + byv and z = ag + bou + c9v.
If extending ¢ naturally from F) x R"1 x §™ to F;’:”M”%Z, we check that ¢ is a linear isometry.

Theorem 8 If C is a linear code over FoRS of lenght n and minimum Lee weight d, then ¢(c) is a linear code with the
parameters [6n, k, dj .. =dyg].
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The weight perspective provides a sufficient condition for a linear code to be minimal, based on comparing
the minimum weight of the code with the minimum non-zero weight of any non-zero codeword. The following
Lemma establishes that if a linear code is minimal, all codewords of weight equal to the minimum distance are
minimal codewords.

Lemma 9 [16] Let C be an [n, k, diy]-linear code over Fo and let wyin and wiay be the minimum and maximum
nongzero weights of C, respectively. If wyin/Wmax = (p — 1)/p, then all nonzero codewords of care minimal. We require
the idea of minimal codewords to find the minimal access sets.

Remark 10 [18] A non-zero codeword ¢ € C is said to be minimal if the only codewords that cover it are scalar multiples

of c.

Consider the systematic code C with parameters [n, k, d] corrects ¢ = [(%] errors, so its generator matrix
is G = [I}]A], and its parity-check matrix is H = [-A"|I,_;]. This code can be used to establish secret sharing
schemes.

4.1 Simplex and MacDonald codes over FoRS

In this section, we delve into the detailed study of linear simplex and MacDonald codes over finite ring FoRS.
These codes play an important role in coding theory by providing an error detection and correction method
essential for reliable data transmission. By analyzing its concepts and structures, we gain insight into how
these codes can be effectively implemented and optimized within the algebraic structure of FoRS. While
linear simplex codes recognize simple structures, MacDonald codes offer advanced error correction techniques
suitable for more complex applications. This chapter aims to provide a detailed understanding of these coding
techniques by demonstrating their adaptability and benefits to various applications. Based on the definitions
and frameworks established in [17], we have:

Definition 11 The generator matrix of S2, simplex codes of type & over FoRS, as the concatenation of 2°* copies of the

generator matrix of S% b 2% copies of the generator matrix of Sg  and 93k copies of the generator matriz of S § ¢ given
by , , ,
3 (o4 (03 (07 [0 (07
Gryp-Gryul | Grae--Cra | GS 4G5y
QZ = ~————
25k 24k 23k
fork > 1.

Definition 12 MacDonald codes M}, is a linear code over FoRS of length n = 3.90k _ (90k+t | 9ik+2r | 93k+3L)

generated by

a [0 a a a (2
Ghyr Oyt | | Oropr=Orpt | Gspi-Gs s

QY =
kit 9t ok 93k

Jork>=1land1 <t <k-1.

Gray images of linear codes over FoRS

In this section, we explore the concept of gray images of linear simplex and MacDonald codes over the finite

ring FoRS.

Theorem 13 Let S;! be a FoRS-simplex code of type a with the minimum Lee weight d,, then ¢(S") is a simplex code
over Fy with the length [6.2%%; k).
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Proof. If Q" is generator matrix of the FoRS-simplex code S, then () has the form

) GR G
6.9

where Gl% , 1s a generator matrix of the simplex code SI‘% 4+ The result than follows by induction on k. m

Theorem 14 Let M}, be a FyRS MacDonald code of type @ and minimum Lee weight dr. Then ¢(M)) is a Mac-
Donald code over Fo, with the parameters [2% + 2%+1 4 8,93k _ (9t 4 92141 4 8 931)],

Proof. The proof employs a similar methodology to that of Theorem 13. Using the format of the generator
matrices of the linear codes ¢(M; ), we have the following results that give the Hamming weight distributions.
|

Corollary 15 ¢(M}*) linear code with weight distribution Ap(0) =1, Ap (241 +2.2%71 4+ 3.931) — (2171 +
2221 18.9%71)) = 6(2¢ - 2¢71) and A (21 +2.2%-1 1 3.2%-1) = 6(2k - 1).

4.2 A minimal linear code over FoRS

In this section, we explore the concept of minimal linear code over the FoRS ring and its applications in se-
cret sharing schemes. Minimal linear codes are characterized by their simplicity and optimality in terms of
the number of codewords required to achieve specific coding objectives. When applied within the framework
F9RS, these codes exhibit unique properties that enhance their effectiveness in secure communications. Specif-
ically, in secret-sharing schemes, minimal linear codes play a crucial role in distributing a secret among multiple
participants so that only authorized subsets can reconstruct the secret, while unauthorized subsets gain no in-
formation. By exploring these codes’ theoretical underpinnings and practical applications, we demonstrate
their importance in designing eflicient and secure cryptographic protocols.

Theorem 16 Al nonzero codewords of codes ¢(M,) over Fy are minimal.
Proof. Using Corollary Hamming weights distribution, the code ¢(M}",) over Fy satisfied

Wain _ (271 42,2271 48,9971 — (97149292714 8.9%7)  p-1
Wmax B 9k=1 4 9 92-1 4 g 93k-1 =7 .

This theorem leads us to the following remark. =

Remark 17 The codes ¢(M W) over Fy are minimal.

4.3 Secret sharing scheme based on the minimal linear MacDonald codes

Previously, we mentioned that identifying the access structure of a secret-sharing scheme based on a linear code
can be challenging. However, when minimal linear simplex and MacDonald codes are used, the construction
of secret-sharing schemes becomes more organized and efficient. Minimal linear codes simplify the process by
directly linking each codeword’s minimality to the scheme’s access structure. This makes it easier to determine
which subsets of participants can reconstruct the secret.

These types of codes, with their well-defined properties and minimality, provide a structured and reliable
foundation for designing robust secret-sharing schemes, enhancing both security and ease of implementation.

Theorem 18 Let ¢(M;") be the linear torsion code over Fo. Then in the secret sharing scheme based on ¢ (M} )L, there
are T = (2% + Q%+l 4 3,98k _ (9t 4 9241 1 8 931) _ 1 participants. Moreover, each participants p; is involved in
(p — Dp*2 out of p*=V) minimal access sets.
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Proof. We can derive the desired outcome by considering Lemma 9 and Theorem 16. m

Example 19 Consider the ring FoRS = Fo(Fg +vFy) (Fg +u Fg +vFy), the code ¢(Mg |) over Fy of length n = 986
generated by ¢(QF |) defined as follows

a [0 a (07 (07 a
GG@QJ‘”Ch%2J GRﬂJ'“GRﬂJ GﬁgJ-“GSQJ

loge ®
1024 256 64
where
0 1 1
ng’?’lzll 0 1]
Ge |11 1111110000
R,2,1 01 1001 10O0T1T1F0
Ge _ | TITIIIIL 11111111 00000000 00000000 11111111 11111111 00000000
$,2,1 =

01100110 01100110 01100110 01100110 01100110 01100110 01100110

The access structure has 985 participants and 2 minimal qualified sets. Each participant P;, 1 <7 < 985
in the set (985) = {1, 2, ..., 985} is in 2 minimal access set.

5 Conclusion

In this paper, we give some interesting access structures of SSS based on torsion codes of MacDonald codes

2 =u,v® = v, uv = vu = 0. Hamming weight distributions of simplex codes of type a

over Fo+ulFo+vFg where u
are given. Moreover, weight distributions of torsion codes of MacDonald codes are given. The result shows that
all of these torsion codes are p-ary two-weight linear codes and all non-zero codewords of these torsion codes
are minimal. Therefore, the access structure of SSS is based on a dual code of torsion code can be determined.
Then, valuable information about the structure and applications of Linear Simplex and MacDonald Codes
over FyRS is provided. By analyzing the concept of Gray images, Hamming weight distributions and minimal
codes, a deeper understanding of the properties of these codes and their importance in secret sharing schemes is
obtained. The findings highlight the role of these codes in providing secure data transmission and contributing
to the development of robust cryptographic protocols in various fields. This research provides a foundation
for future work aimed at optimizing these codes for improved security and efliciency, thus playing a key role
in the advancement of secure communication technologies.
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