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Abstract
In the paper, we give some interesting access structures of secret sharing schemes based on torsion codes of
MacDonald codes over F2+uF2+vF2. Later, we study Simplex andMacDonald codes over the �nite ring F2RS.
We discuss the properties of these codes by giving their weight distributions and Gray images. By studying the
binary Gray images of Simplex and MacDonald codes over F2RS, we aim to construct e�cient secret sharing
schemes. These schemes exploit the inherent properties of codes, such as minimumweight, which are essential
for reliable information sharing. Understanding the access structure of these schemes is vital as it determines
which subsets of participants can reconstruct the secret. Through this comprehensive analysis, we contribute
to the �eld of coding theory by showing how Simplex and MacDonald codes over F2RS can be e�ectively used
in cryptographic applications to design secret sharing schemes.

Keywords: Simplex codes, MacDonald codes, Secret sharing scheme.

1 Introduction

A secret sharing scheme (SSS) is a method by which a dealer distributes shares of a secret to participants such
that only quali�ed subsets of participants can recover the secret from their shares. SSS was introduced in 1979
by Shamir [1] and Blakley [2]. Since then, many applications of SSS to several di�erent kinds of cryptographic
protocols have appeared. For example, SSS can be used in a secure key management scheme and multiparty
computation. SSS has been an important cryptographic primitive.

There are many approaches to the design of SSSs. One of them is based on linear codes over �nite �elds.
It was �rst pointed out by McEliece-Sarwate [3] that Shamir’s secret sharing scheme is closely related to the
Reed-Solomon coding scheme. After that, Massey [4] constructed secret sharing schemes by linear codes. The
relationship between a minimal quali f ied set and minimal codeword of its dual code was also characterized in
[4]. However, the access structure of the secret sharing scheme, which is based on a linear code,e is hard to
determine in general. Several authors have considered the minimal codewords of certain codes and character-
ized the access structure of the secret sharing schemes [5–7]. Only well-structured linear codes can have secret
sharing schemes with desirable access structures. The access structures based on some linear codes over �nite
�elds have been determined in [8, 9]. Secret sharing schemes from linear codes over �nite chain rings were
considered in [10, 11].

In [12], A. Dertli and Y. Cengellenmis constructed MacDonald codes over the ring R = F2 + vF2. Also, in
[13], R. Dertli and S. Eren constructed MacDonald codes over the �nite non-chain ring S = F2 +uF2 +vF2 and
then studied the torsion codes. In this paper, we give some interesting access structures of SSS based on torsion
codes of MacDonald codes over F2 + uF2 + vF2. This paper aims to present a special case of coding theory and
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cryptography, especially over the �nite ring F2RS. This includes studying the structure and properties of linear
simplex and MacDonald codes over F2RS, studying the properties of gray images of linear codes over F2RS,
and analyzing the Hamming weight distributions of these gray images to understand their error detection and
correction capabilities. In addition, the study aims to examine the structure of the minimal linear code over
F2RS, highlighting its e�ciency and reliability. Finally, the study aims to construct secret sharing schemes based
on the minimal linear simplex and MacDonald codes over F2RS and shows how these codes can be e�ectively
used to establish reliable and robust methods for secret information sharing between multiple parties. Through
this detailed analysis, our work aims to improve the understanding and application of coding theory concepts
in cryptography.

2 Secret Sharing Schemes From Linear Codes

We use P to denote the set of participants. The subset of participants A ⊆ P , which can recover the secret,
is called a quali�ed set, while a set B ⊆ P that can’t recover the secret is called an unquali�ed set. Moreover,
the secret sharing scheme is perfect if all the unquali�ed sets cannot get information about the secret in the
information theoretic sense. We consider only perfect secret sharing schemes in this paper. A secret sharing
scheme is ideal if the shares are the same size as the secret. If A ⊆ P is a quali�ed set and for all C ⊂ A with
C is an unquali�ed set, then A is called a minimal quali�ed set. The set of all quali�ed sets is called the access
structure of the corresponding secret sharing scheme. Let Δ denote the access structure, that is Δ = {A ⊆ P : A
is a quali f ied set}.

There are many methods to design secret sharing schemes. One of them is to employ linear codes over the
�nite �eld Fq. We can construct secret sharing schemes from linear codes with the method in [4]. Let C be an
[n , k]q linear code and C⊥ be its dual code. Let H = (h0 , h1 , · · · , hn−1) be the generator matrix of C⊥. The
dealer choose u ∈ Fn−kq randomly such that u· h0 = s. Here is the secret to be shared. Let u·H = (s, c1 , ..., cn−1),
participant Pi receives ci as his share, 1 ≤ i ≤ n −1. The secret sharing scheme constructed in this way is ideal.
Generally, we have the following result.

Lemma 1 [4] Let G be a generator matrix of an [n , k]q linear code C. In the secret sharing scheme based on C, a set of
shares {ti1 , ti2 , · · · , tim }, 1 ≤ i1 <· · · < im ≤ n − 1 and 1 ≤ m ≤ n − 1, determines the secret if and only if there is a
codeword (1, 0, · · · , 0, ci1, 0, · · · , 0, cim , 0, · · · , 0) (in the dual code C⊥, where ci j ≠ 0 for at least one j).

In Lemma, the secret sharing scheme is constructed from C , while we construct the scheme from its dual
C⊥. The support of a vector (c0 , c1 , ..., cn−1) is de�ne as the set{0 ≤ i ≤ n − 1, ci ≠ 0}. The Hamming
weight of a vector is the number of its non-zero components. A vector c1 is covered by a vector c2 if the
support of c2 contains the support of c1. If a non-zero codeword c covers only its scalar multiples but no
other non-zero codewords, it is called a minimal codeword. The covering problem of a linear code C is to
determine all its minimal codewords. This is a tough problem in general. From Lemma, we can see a one-to-
one correspondence between the set of minimally quali�ed sets and the set of minimal codewords with 1 as its
�rst component in the dual code C⊥.

It is generally di�cult to determine the access structure of a secret sharing scheme constructed from a linear
code C. Because the covering problem of a linear code is complex. However, in some special cases, the access
structure can be determined.

Lemma 2 [5] Let C be an [n , k]q linear code and G = [g0 , g1 , · · · , gn−1] be its generator matrix. If each non-zero
codeword of C is a minimal codeword, then in the secret sharing scheme based on C⊥, there are altogether qk−1 minimal
quali�ed sets. In addition, we have the following:

1. If gi is a multiple of g0, 1 ≤ i ≤ n − 1, then participant pi must be in every minimal quali�ed set.
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2. If gi is not a multiple of g0, 1 ≤ i ≤ n − 1, then participant pi must be in (q − 1)qk−2 out of qk−1 minimal
access sets.

The access structure in Lemma is interesting. In Case 1 of Lemma, some participants must be in every
minimal access set and thus are dictators. As in Case 2 of Lemma, each participant plays the same role as he is
involved in the same number of minimal quali�ed sets. Such a secret sharing scheme is said to be democratic.
Secret sharing schemes like these cases may be required in certain applications. So, it is useful to construct a
linear code in which all of its codewords are minimal.

According to [14], let a dealer p0 and p = {p1 , p2 , ......, pn−1} be a set of n − 1 participants. Also, let 𝜇p
be the set of all access elements on p. In the secret sharing scheme based on C , to compute shares for all the
participants, the dealer randomly chooses a vector u = (u0 , ..., uk) ∈ F kp such that s = ug0. There are pk−1

such vectors o ∈ F kp . Therefore, the dealer treats u as an information vector and calculates the corresponding
codeword v = uG = (v0 , v1 , ..., vn−1), where G = [g0 , g1 , ..., gn−1] is a generator matrix of C. Consequently,
it gives vi to party pi as their share for each 1 ≤ i ≤ n − 1. If s = v0ug0, then a set of shares (vi1 , vi2 , ..., vim )
determines the secret s if and only if column go of G is a linear combination of the columns; g0 =

∑m
j=1 n j gi j .

Then the secret s is recovered by computing s =
∑m
j=1 n jvi j .

3 Secret Sharing Schemes over F2 + uF2 + vF2
3.1 MacDonald code over F2 + uF2 + vF2
In [13] constructed MacDonald codes of type 𝛼 over the ring F2 + u F2 + vF2, where u2 = u , v2 = v, uv = vu =

0, F2 = {0, 1} is the �eld of two elements and investigate their properties such as torsion codes and weight
distributions. From this point of view;

De�nition 3 [13] The code C𝛼
k ,u generated by G

𝛼
k ,u is called a type 𝛼 MacDonald code. We can see that the code C

𝛼
k ,t

is a linear code over the ring F2 + u F2 + vF2 of length n = 23k − 23t . Let C𝛼
k ,u ,T be the torsion code of C𝛼

k ,u . That is
the generator matrix of C𝛼

k ,u ,T is obtained by replacing (1 − v) by 1 in the matrix of (1 − v)G𝛼
k ,u . Similarly, we can get

another torsion code of C𝛼
k ,u by replace v by 1 in vG

𝛼
k ,u . We know that the two torsion codes are equivalent. Therefore,

we only consider the former case, i.e., we only study C𝛼
k ,u ,T . We give the Hamming weight distributions of C

𝛼
k ,u ,T in the

following result.

Theorem 4 [13] The torsion code of M𝛼
k ,u is binary linear [2

3k − 23u , k , 23k−1 − 23u−1] code with weight distribution
AH (0) = 1, AH (23k−1 − 23u−1) = [2k−u (2u − 1)] and AH (23k−1) = [2k−u − 1].

Proof. Since the torsion code of M𝛼
k ,u is the set of codewords obtained by replacing u by 1 in all u-linear

combination of the rows of the matrix, u.G𝛼
k ,u.

We prove by induction with respect to k and t. For k = 2 and u = 1 the result holds. Suppose the result
holds for k − 1 and 1 ≤ u ≤ k − 2. Then for k and 1 ≤ u ≤ k − 1 the matrix u.G𝛼

k ,u takes the form,

u.G𝛼
k ,u = [u.G𝛼

k |
0

u.G𝛼
t
]. Each non-zero codeword of u.M𝛼

k ,u has Hamming weight either 2
3k−1 − 23u−1 or 23k−1

and the dimension of the torsion code of M𝛼
k ,t is k , than there will be [2k−u (2u − 1)] codewords of Hamming

weight 23k−1 − 23u−1 and the number of codewords with Hamming weight 23k−1 is 2k−u − 1.

3.2 Secret sharing schemes based on Torsion codes

The access structure of a secret sharing scheme constructed from a linear code is complex. However, since the
codewords of a linear code are minimal, we can construct an interesting secret sharing scheme based on its dual
code. In the following, we will prove that all the codewords of the torsion codes C𝛼

k ,u ,T are minimal. First, we
need the following Lemma to character the minimal codewords of a linear code.
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Lemma 5 In an [n , k]q linear code C, let wmin andwmax be the minimum and maximum non-zero weights, respectively.
If wminwmax

>
q−1
q , then all the codewords of C are minial. Let G𝛼

k ,u ,T be the generator matrices of C𝛼
k ,u ,T . We have the

following result.

Theorem 6 In the secret sharing scheme based on C𝛼 ⊥
k ,u ,T , there are 2

3k−23u−1 participants and pk−1 minimal quali�ed
sets. If the i-th column ofG𝛼

k ,u ,T is a multiple of the 0-th column ofG𝛼
k ,u ,T , then participant pi is in every minimal quali�ed

set. Otherwise each participant pi is involved in exactly (p − 1)pk−2 out of pk−1 minimal quali�ed sets.

Proof. Let wmin and wmax be the minimum and maximum nonzero weights in the torsion code C𝛼
k ,u ,T . From

Theorem 4 in [13] , we know that wmin = (23k−1 − 23u−1) and wmax = (23k−1). Then we have;

wmin
wmax

=
23k−1 − 23u−1

23k−1
= 1 − 1

23(k−u)
>
p − 1
p

=
1
2

where 1 ≤ u ≤ k − 1. From Lemma 5, we have that all the codewords of C𝛼
k ,u ,T are minimal.

Example 7 Consider the ring (F2 + u F2 + vF2), the code 𝜙(M𝛼
k ,t) over F2 of length n = 56 generated by 𝜙(Ω𝛼

2,1)
de�ned as follows

156 ⊗
[
11111111 11111111 00000000 00000000 11111111 11111111 00000000
01100110 01100110 01100110 01100110 01100110 01100110 01100110

]
.

The access structure has 55 participants and 2 minimal quali�ed sets. Each participant Pi , 1 ≤ i ≤ 55 in
the set 〈55〉 = {1, 2, ..., 55} is in 2 minimal access set.

4 Secret Sharing Scheme over F2RS

The ring R = FqR1R2 introduced in [15]. We have taken q = 2 here. The purpose of this section is to provide
the reader with the information necessary to evaluate the analysis of the ring.

F2RS = F2 (F2 + vF2) (F2 + u F2 + vF2) .

By establishing these foundations, we lay the groundwork for exploring the properties and applications of
this ring in coding theory.

F2RS = F2 (F2 + vF2) (F2 + u F2 + vF2)
F2RS = {𝜎 = (n1 , n2 , n3) : n1 ∈ F2 , n2 ∈ R , n3 ∈ S , u2 = u , v2 = v, uv = vu = 0}.

The Lee weight of c = (𝜆 , 𝜇, v) ∈ F2RS is de�ned as wLee ((𝜆 , 𝜇, v)) = wtLee (𝜆 ) +wtLee (𝜇) +wtLee (v).
We will de�ne the Gray map and then construct the weight in such a way that will give us a distance-

preserving isometry

𝜙 : F2 × R × S → F62
(x , y , z) → 𝜙(x , y , z)

where 𝜙(x , y , z) = (x , a1 , a1 + b1 , a2 , a2 + b2 , a2 + c2) , with y = a1 + b1v and z = a2 + b2u + c2v.
If extending 𝜙 naturally from F 𝛾

2 × R𝜗1 × S𝜗2 to Fn=𝛾+2𝜗1+3𝜗22 , we check that 𝜙 is a linear isometry.

Theorem 8 If C is a linear code over F2RS of lenght n and minimum Lee weight d , then 𝜙(c) is a linear code with the
parameters [6n , k , dLee = dH ].
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The weight perspective provides a su�cient condition for a linear code to be minimal, based on comparing
theminimumweight of the code with theminimumnon-zero weight of any non-zero codeword. The following
Lemma establishes that if a linear code is minimal, all codewords of weight equal to the minimum distance are
minimal codewords.

Lemma 9 [16] Let C be an [n , k , dH ]-linear code over F2 and let wmin and wmax be the minimum and maximum
nonzero weights of C, respectively. If wmin/wmax ≥ (p − 1)/p, then all nonzero codewords of care minimal. We require
the idea of minimal codewords to �nd the minimal access sets.

Remark 10 [18] A non-zero codeword c ∈ C is said to be minimal if the only codewords that cover it are scalar multiples
of c.

Consider the systematic code C with parameters [n , k , d] corrects t = [ d−12 ] errors, so its generator matrix
is G = [Ik |A], and its parity-check matrix is H = [−At |In−k]. This code can be used to establish secret sharing
schemes.

4.1 Simplex and MacDonald codes over F2RS

In this section, we delve into the detailed study of linear simplex and MacDonald codes over �nite ring F2RS.
These codes play an important role in coding theory by providing an error detection and correction method
essential for reliable data transmission. By analyzing its concepts and structures, we gain insight into how
these codes can be e�ectively implemented and optimized within the algebraic structure of F2RS. While
linear simplex codes recognize simple structures, MacDonald codes o�er advanced error correction techniques
suitable for more complex applications. This chapter aims to provide a detailed understanding of these coding
techniques by demonstrating their adaptability and bene�ts to various applications. Based on the de�nitions
and frameworks established in [17], we have:

De�nition 11 The generator matrix of S𝛼k , simplex codes of type 𝛼 over F2RS, as the concatenation of 2
5k copies of the

generator matrix of S𝛼F2 ,k , 2
4k copies of the generator matrix of S𝛼R ,k and 2

3k copies of the generator matrix of S𝛼S ,k given
by

Ω𝛼
k =


G𝛼
F2 ,k

...G𝛼
F2 ,k︸         ︷︷         ︸ |

25k

������ G
𝛼
R ,k ...G

𝛼
R ,k︸        ︷︷        ︸

24k

������ G
𝛼
S ,k ...G

𝛼
S ,k︸       ︷︷       ︸

23k


for k ≥ 1.

De�nition 12 MacDonald codes M𝛼
k ,t is a linear code over F2RS of length n = 3.26k − (25k+t + 24k+2t + 23k+3t)

generated by

Ω𝛼
k ,t =


G𝛼
F2 ,k ,t

...G𝛼
F2 ,k ,t︸             ︷︷             ︸ |

25k

������ G
𝛼
R ,k ,t ...G

𝛼
R ,k ,t︸           ︷︷           ︸

24k

������ G
𝛼
S ,k ,t ...G

𝛼
S ,k ,t︸           ︷︷           ︸

23k


for k ≥ 1 and 1 ≤ t ≤ k − 1.

Gray images of linear codes over F2RS

In this section, we explore the concept of gray images of linear simplex and MacDonald codes over the �nite
ring F2RS.

Theorem 13 Let S𝛼k be a F2RS-simplex code of type 𝛼 with the minimum Lee weight dL, then 𝜙(S
𝛼
k ) is a simplex code

over F2 with the length [6.26k; k].

5
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Proof. If Ω𝛼
k is generator matrix of the F2RS-simplex code S

𝛼
k , then 𝜙(Ω𝛼

k ) has the form

𝜙(Ω𝛼
k ) =


G𝛼
F2 ,k

...G𝛼
F2 ,k︸         ︷︷         ︸

6.25k


whereG𝛼

F2 ,k
is a generator matrix of the simplex code S𝛼F2 ,k . The result than follows by induction on k.

Theorem 14 Let M𝛼
k ,t be a F2RS MacDonald code of type 𝛼 and minimum Lee weight dL. Then 𝜙(M𝛼

k ,t) is a Mac-
Donald code over F2, with the parameters [2k + 22k+1 + 3.23k − (2t + 22t+1 + 3.23t)].

Proof. The proof employs a similar methodology to that of Theorem 13. Using the format of the generator
matrices of the linear codes 𝜙(M𝛼

k ,t), we have the following results that give the Hamming weight distributions.

Corollary 15 𝜙(M𝛼
k ,t) linear code with weight distribution AH (0) = 1, AH ((2k−1 + 2.22k−1 + 3.23k−1) − (2t−1 +

2.22t−1 + 3.23t−1)) = 6(2k − 2k−t) and AH (2k−1 + 2.22k−1 + 3.23k−1) = 6(2k−t − 1).

4.2 Aminimal linear code over F2RS

In this section, we explore the concept of minimal linear code over the F2RS ring and its applications in se-
cret sharing schemes. Minimal linear codes are characterized by their simplicity and optimality in terms of
the number of codewords required to achieve speci�c coding objectives. When applied within the framework
F2RS, these codes exhibit unique properties that enhance their e�ectiveness in secure communications. Specif-
ically, in secret-sharing schemes, minimal linear codes play a crucial role in distributing a secret amongmultiple
participants so that only authorized subsets can reconstruct the secret, while unauthorized subsets gain no in-
formation. By exploring these codes’ theoretical underpinnings and practical applications, we demonstrate
their importance in designing e�cient and secure cryptographic protocols.

Theorem 16 All nonzero codewords of codes 𝜙(M𝛼
k ,t) over F2 are minimal.

Proof. Using Corollary Hamming weights distribution, the code 𝜙(M𝛼
k ,t) over F2 satis�ed

wmin
wmax

=
(2k−1 + 2.22k−1 + 3.23k−1) − (2t−1 + 2.22t−1 + 3.23t−1)

2k−1 + 2.22k−1 + 3.23k−1
≥ p − 1

p
.

This theorem leads us to the following remark.

Remark 17 The codes 𝜙(M𝛼
k ,t) over F2 are minimal.

4.3 Secret sharing scheme based on the minimal linear MacDonald codes

Previously, wementioned that identifying the access structure of a secret-sharing scheme based on a linear code
can be challenging. However, when minimal linear simplex and MacDonald codes are used, the construction
of secret-sharing schemes becomes more organized and e�cient. Minimal linear codes simplify the process by
directly linking each codeword’s minimality to the scheme’s access structure. This makes it easier to determine
which subsets of participants can reconstruct the secret.

These types of codes, with their well-de�ned properties and minimality, provide a structured and reliable
foundation for designing robust secret-sharing schemes, enhancing both security and ease of implementation.

Theorem 18 Let 𝜙(M𝛼
k ) be the linear torsion code over F2. Then in the secret sharing scheme based on 𝜙(M

𝛼
k )

⊥, there
are 𝜏 = (2k + 22k+1 + 3.23k) − (2t + 22t+1 + 3.23t) − 1 participants. Moreover, each participants pi is involved in
(p − 1)p (k−2) out of p (k−1) minimal access sets.
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Proof.We can derive the desired outcome by considering Lemma 9 and Theorem 16.

Example 19 Consider the ring F2RS = F2 (F2 + vF2) (F2 + u F2 + vF2), the code 𝜙(M𝛼
2,1) over F2 of length n = 986

generated by 𝜙(Ω𝛼
2,1) de�ned as follows

1986 ⊗

G𝛼
F2 ,2,1

...G𝛼
F2 ,2,1︸               ︷︷               ︸

1024

������ G
𝛼
R ,2,1...G

𝛼
R ,2,1︸             ︷︷             ︸

256

������ G
𝛼
S ,2,1...G

𝛼
S ,2,1︸            ︷︷            ︸

64


where

G𝛼
F2 ,2,1

=

[
0 1 1
1 0 1

]

G𝛼
R ,2,1 =

[
1 1 1 1 1 1 1 1 0 0 0 0
0 1 1 0 0 1 1 0 0 1 1 0

]

G𝛼
S ,2,1 =

[
11111111 11111111 00000000 00000000 11111111 11111111 00000000
01100110 01100110 01100110 01100110 01100110 01100110 01100110

]
The access structure has 985 participants and 2 minimal quali�ed sets. Each participant Pi , 1 ≤ i ≤ 985

in the set 〈985〉 = {1, 2, ..., 985} is in 2 minimal access set.

5 Conclusion

In this paper, we give some interesting access structures of SSS based on torsion codes of MacDonald codes
over F2+uF2+vF2 where u2 = u , v2 = v, uv = vu = 0. Hamming weight distributions of simplex codes of type 𝛼
are given. Moreover, weight distributions of torsion codes ofMacDonald codes are given. The result shows that
all of these torsion codes are p-ary two-weight linear codes and all non-zero codewords of these torsion codes
are minimal. Therefore, the access structure of SSS is based on a dual code of torsion code can be determined.
Then, valuable information about the structure and applications of Linear Simplex and MacDonald Codes
over F2RS is provided. By analyzing the concept of Gray images, Hamming weight distributions and minimal
codes, a deeper understanding of the properties of these codes and their importance in secret sharing schemes is
obtained. The �ndings highlight the role of these codes in providing secure data transmission and contributing
to the development of robust cryptographic protocols in various �elds. This research provides a foundation
for future work aimed at optimizing these codes for improved security and e�ciency, thus playing a key role
in the advancement of secure communication technologies.
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