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DYNAMIC OPTIMIZATION OF PORTFOLIOS WITH TAIL CONDITIONAL 

EXPECTATION CONSTRAINTS 
 

ENYINNAYA EKUMA-OKEREKE* AND BRIGHT O. OSU 

 

Abstract. We consider an optimal portfolio problem subject to Tail Conditional Expectation (TCE) 

constraint. This problem is formulated as a constrained optimal stochastic control problem with or 

without consumption; where the financial market is composed of d-risky assets driven by geometric  

Brownian motion and one riskless asset. Explicit optimal strategies are derived using a combination of 

Hamilton-Jacobi -Bellman (HJB) equation and the Lagrange multiplier. We deduced from our observations  

that the constraint imposed, reduces risky investment and that the TCE-constrained optimal investment 

is a multiple of the market price of risk and its volatility which is known as the relative risk tolerance in a 

risky markets. 

 

1. INTRODUCTION 

Markowitz pioneered the optimal portfolio problem based on the mean-variance 

approach where variance was substituted as a risk measure [10]. It is basically a single 

period model which makes a one-off decision at the beginning of the period and holds 

on until the end of the period. Later, [9] considered the continuous-time optimal 

portfolio models and stochastic control theory was employed to find the optimal 

strategies in environment where risks are controlled indirectly via the value function.  

Since the dawn of financial history, risk measurement has preoccupied financial market 

investors as well as the institutions involved. The search for a better risk measure has 

proven to be impractically complex. To this end, Value-at-Risk (   ), a downside risk 

measure emerged as one of the most popular tools in measuring risk with regulatory 

authorities enforcing its use [1, 6, and 14]. The Value-at-Risk (   ) is the maximum loss 

which can be expected at a given confidence level over a given time horizon.  

The conditional expectation of X given that 
x

VaRX
,

 , denoted by    

                                            xx
VaRXXETCE

,,
/


   

at confidence level      is called the Tail Conditional Expectation (TCE).  
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Both VaR and TCE are important measures of risks frequently encountered in the 

insurance and financial investment [12].Despite its widespread acceptance,     is 

known to possess unappealing features. [2] proposed an axiomatic foundation for risk 

measures; by identifying four properties that a reasonable risk measure should satisfy 

and provided a characterization of the risk measures satisfying these properties, which 

they called coherent risk measures. By these axioms,     is not coherent, as it does not 

satisfy the subadditivity property [1]. Tail Conditional Expectation (TCE), on the other 

hand, for continuous distribution is a coherent risk measure [5].  

This paper is focused on dynamic portfolio problem with the aim of finding the optimal 

investment and consumption strategies. In the existing literature, investment and 

consumption strategies have received a considerable attention from various authors 

and are often studied in separate problems. This problem has been considered by [1] in 

a non-closed form solution. Here, we consider stochastic control problem with 

investment and with/without intermediate consumption. In addition, direct constrained 

market risk is also considered, which is asymmetric since individuals are naturally risk 

averse. We apply the TCE constraint while maximizing the investor’s logarithmic utility 

over consumption throughout the investment horizon and over the terminal wealth. We 

derived explicit optimal strategies using a combination of HJB-equation and the method 

of Lagrange multiplier.  

The paper is organized as follows: Section 2 gives the financial model of the market and 

description of the dynamics of asset portfolio. Section 3 introduces the control 

processes, Tail Conditional Expectation (TCE) risk measure used in this paper. In 

section 4, the optimization problem is stated and the optimal strategies obtained. 

Section 5 summarizes the paper with derivation of optimal conditions.  

2. FINANCIAL MODEL AND ITS FORMULATIONS 

 

We consider a Black-Scholes type of financial market with the following properties 

see [8]. Uncertainty is represented by a complete filtered probability space 

 Pff
t
),(,, and throughout the paper, we denote by  

0tt
f  the neutral filtration i.e. 

 tssWf
t

 0,);(
 where (.))(W is a standard d-dimensional Brownian motion 

defined on this space with values in .
d

R  The market consists of one riskless bond )( tS
o

 

and several risky assets )( tS
i  on the interval ],0[ T . Their respective prices   

Tt
tS

00

and   
Tti

tS
0

 for di ,...,1 evolve according to the equations:  

                                         
      10,

000
 SdttSrtdS  ,            (1) 

                                        
        00, 

iiiii
sStdtStdS    (2) 

 

where     
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].,0[,0)0(),()( TttdWdttd
ijij

d

ij

ii
 



   

For Nd  , we denote by     
T

tWtWtW
d

...,,)(
1

 a standard d-dimensional Brownian 

motion, i.e., a vector of d independent one-dimensional Brownian process, r  the riskless 

interest rate,  
T

d
 ...,,

1
 the vector of stock-appreciation rates and  

djiij 


,1
 the 

matrix of stock volatilities. The symbol )(
T denotes transpose. Again, we assume that all 

coefficients in (1)-(2) are deterministic functions and satisfy: 

                       dtr
T 22

0

   (3) 

Let )( t
i

 be an admissible portfolio process, i.e.  t
i

 is the fraction of the wealth 

invested into stock i  at time t  and the remaining fraction )(1

1

t
i

d

j




  is invested into 

bond. A non-negative, adapted process   0)( ttc  satisfying for the investment horizon 

0T  
T

sadttc
0

.)( is called the consumption rate process [7]. The independent 

economic agent invests according to an investment strategy that can be described by 

the      -dimensional, predictable process  

                         
)),(),...,(()(

0
ththth

d
     (4)  

where dith
i

,...,1),(   denotes the number of stocks i  held in the portfolio at time 

)0(, bondthetorefersit  . The process h describes an economic investor’s portfolio as 

carried forward through time. The value of the investor’s wealth at time t  is 

represented as 

                      
).()()()()(

1

00
tSthtSthtX

ii

d

i

h 


          (5)    

Since )(
0

th  and )( th
i

 represent the amount invested into bond and stock 

respectively, and as we work in self-financing portfolios, we have (5) rewritten as  

                     

)()()()(1)(

1

0

1

tSttSttX
ii

d

i

i

d

j

A
 





   

 (6)  

such that in differential terms (6) becomes  

                    

  

)7(,)0(,0

)()()()()()(

xXt

dttctdWtdttrtXtdX

A

TT

t

AA



 

 
   

   

where ),( cA  is the control process,  .
1

rI


 By putting 
)(

)(
)(

tX

tc
tv

A
 which 

implies that )()()( tXtvtc
A

 and we can rewrite the differential of the wealth process as: 

         .)()()()()( tdWtdttvtrXtdX
TT

  (8) 
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3. CONTROL PROCESSES AND TAIL CONDITIONAL EXPECTATION (TCE) RISK  

MEASURE 

 

Definition 1: Let  Tt ,0  be a fixed financial horizon. A stochastic control process 

    0,)(),(0)(  ttvtttAA   is called admissible if it is  
0tt

f  adapted with values in 


 x

d  for which equation (8) has a unique strong a.s. positive solution   0,)( ttX
A  

satisfying 

     .)())((
0

2
 duuvuE

T

      (9) 

We denote by A  the class of all admissible control processes. By ito’s formula, for 

every )0(AA , equation (8) has the solution:        

  0,)()()(exp
0 0









   uudWuduuaxX

T T
TA

t
    (10)                   

    where  

     0,
2

1
)(

2

 uvrua
TT



.
     

 

Definition 2: Given some probability level  1,0  and given a time horizon, ,0

the Value-at-Risk (   ) of time of a portfolio )( tX
A at a confidence level 1 is given 

by 

  
  

)11()(

)()(:0inf)(

,

,

tQ

fLtXtXPLtVaR

x

t

AAx










   

   
  

where  

  
 





















 t

AAd

x
fLtXtXPL

SuptQ
)()(:

)(
,           

is the quantile of the projected wealth surplus at the horizon  [6]. 

t
VaR is therefore the 

loss wealth at the horizon  which could be exceeded only with a small conditional 

probability  if the current portfolio were kept unchanged. The fact )(
,

tVaR
x is 

computed under the assumption that the current portfolio is kept unchanged reflects 

the actual practice and the fact that the financial institutions monitoring their 

investment do not typically know the investors’ future portfolio choices over     

horizon. The Measure of     in (11) only requires the knowledge of the current 

portfolio value, the current asset and the conditional distribution of asset returns.  
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Proposition 1 

                         

 

 

)12(

)(

)(
2

1
)()(

exp1)(

)()(

1

2

,,



 





























































t

ttvtr
tX

tQtVaR

T

TT

A

xx

   

    

  

where  xx ,0max
 ,  x  and  x

1
 denote the normal distribution and inverse 

distribution functions respectively. 

Proof: see [3].
     

Definition 3: The )(
,

tTCE
x at confidence level 1 is defined as: 

                    
 )()()()(

,,
tVaRtXtXtTCE

xAAx 
                            

           
 






















)(

()(
)()(

1

tQ

tXtX
tXtXE

AA

AA







   

(13)  

where  A  is the indicator function of the set A. In other words, the Tail Conditional 

Expectation of wealth )( tX
A at time t  is the conditional expected value of the loss 

exceeding ).( tQ


 Again, given the log-normal distribution of asset returns, the TCE can 

be explicitly computed as seen below. 

 

Proposition 2:  The computation of the Tail conditional Expectation is [3]; 

            
 

 















































)(

.)(
exp)(

1

,

t

vtr
XtTCE

T

T

x              (14) 

 

 

4. STATEMENT OF OPTIMAL PROBLEMS 

 

Now we consider the problem of an investor who starts with an endowment )( tX  

and must select an optimal investment and consumption to maximize (over all 

admissible  )(),( tvt ), the expected discounted logarithmic utility of terminal wealth at 

time T and consumption over the entire horizon  T,0 . The )(
,

tTCE
x risk measure is no 

larger than some pre-specified level   0, tX


  where   0, tX


 is thus defined as 

some risk bound. 

In mathematical terms, the final stochastic optimal control problem with TCE 

constraint is:   
 

        





T

tTts

t
Av

TXLogedsscLogeEMax
0,

)()(




 

     (15)            
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  subject to the wealth differential 

                          )()()()()( tdWtdttvtrXtdX
TT

    (16)                        

and the TCE constraint  

                                       TttXtTCE
x

,0,)(
,




 .                          (17)
 
 

Here,
t

E  denotes the expectation operator at time t  given the wealth process with 

respect to the admissible control strategies. The value function is logarithmic which 

yields to very clear explicit results. 0 is the rate of discount of consumption and 

terminal wealth [13]. 

 

Remark 1 

The expression for TCE in (14) implies that a portfolio satisfies the constraint            

   TttXtTCE
x

,0,)(
,




   

if and only if: 

                     

 
 

   0

,

1




























T

T

Log

vr
X

tX
Log

.

 (18) 

It can be verified that (18) is equivalent to: 

                

 
 

    )19(.0
2

1

2

1,

12

2






































T

TT
vr

X

tX
Log

    

   

We see that (19) is quadratic and satisfies an upper and lower bound on the fraction 

)( t  allocated to the risky asset which is 

    ),()(),( txttx


  . 

Hence, 

                 












)(

),(

1

tx

,

   (20) 

where 

                                 

 




















































)(
2

1

2)(

2

2
1










r

X
Log

Z

.

  

We therefore rewrite the stochastic control problem in equations (15) – (17) as 
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 

        





T

tTts

t
Av

TXLogedsscLogeEMax
0,

)()(


     
(21)                         

 s.t 

              )()()()()( tdWtdttvtrXtdX
TT

  (22) 

with the constraint   

                 

 
 

    .0
2

1

2

1,

12

2






































T

TT
vr

X

tX
Log

 (23) 

In what follows we state;  

 

THEOREM 1 

 Let  tXJ ,  denote the value function for the stochastic control problem of (21) – 

(23) and let 

                           





k

k 





)(

1

          

(24)  

where    


,
1T

k , then   0, 


tX for all      TxtX ,0,0,   and J solves the 

HJB-equation 

                             

 








































otherwiseLog

kxJkrxJJ

x

J

xJ

J
if

JLogk
J

J
xrJJ

J

xxxt

x

xx

x

x

xx

x

xt

1

2

1

,

1
2

1

2
22

1

12
2












      

(25)   

 
with terminal condition as 

                                            .,
T

XLogTXJ      (26)   

letting 

                           

 
 

 
 

 tXxJ

tX
tXxJ

tXJ
tX

x

xx

x

,

1

,,,
,

,
min,




















 (27)     

the optimal investment strategy becomes 

                                      
1

,,



T

tXtX              (28)  

  and the optimal consumption given as   

                                tXtX ,,                 (29)   

 so that  
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                                  XtXtXc ,,     (29a)  

 solves (21) – (23). 

 

Proof 

In applying the dynamic programming approach, we solve the HJB equation 

associated with the logarithmic utility maximization problem of equation (21). Defining 

the value function 

        





T

A

T

tT

s

ts

Ac

XLogedscLogeESuptXJ
0

),(

),(


 .
  (30)  

Following [11], we deduce the corresponding HJB equation as: 

  

  

  





















xJxLog

xJJrxJ
J

x

T

xxt

T

x

d








2
2

,0

2

1

max   (31)  

   

subject to the terminal condition 

                                         .,
T

XLogTXJ             (32)  

where the subscripts on J denote the derivatives and )( tXx
A

  the wealth at time .t  

 In solving the HJB-equation (31), subject to the Tail Conditional Expectation 

(TCE) constraint of (23), we reduce the HJB-equation (31) to a non-linear Partial 

Differential Equation (PDE) of J  only. We therefore apply the method of Lagrange 

function to impose the risk measure as: 

      

    txTCExJxLog

xJJrxJL

tx

T

xxt

T

x

,

2

1
,,

22









                (33)   

  

so that by substitution of (23) for the TCE constraint, we have: 

                     

      

 

 

 

   

.

0
2

1

2

1

,

2

1
,,

12

2

22























































































T

TT

x

T

xxtx

vr

X

tX
Log

xJxLog

xJJrxJL

    (34)    

Where  tx ,   is the Lagrange multiplier. We therefore derive the respective 

first-order conditions with respect to admissible controls and Lagrange multiplier of the 

static optimization of (31) as: 
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    


























T

T

T

T

xxx
xJxJ

L

1

2

.

          (35) 

                                        








xJ

L

x

1
0

.
            (36) 

And 

                         

 
 

    .0
2

1

2

1,

12

2






































T

TT
vr

X

tX
Log

  (37) 

               

 
 

      ,0
2

1

2

1

,
,

122









































TTT
vr

X

tX
LogtxH

L

(38) 

where (37) is called complementary slackness condition.

 

Rearranging equation (35) gives 

                 

     .
112









































T

xTxx
xJxJ

       

(39) 

 Since the terms in square brackets are scalar functions of  tx , , this implies that 

(24) must hold for some scalar function [5]. Replacing the optimal strategies of 

equations (28)and(29with equation (38) gives   

                 

 

    0
2

1

)
2

1
(

,

12

22






































k

kr
X

tX
Log

t

  (40)                                                  

  

which is equivalent to: 

   
,





  

where 
  is as defined in equation (24) and   .

1

x
xJ

  

The complementary slackness condition is given as: 

         .0,0,,  txfortxHtx   

By this, equations (35) and (36) and the complementary slackness condition (37) 

implies that: 

                    
  0

2
  xJxJ

xxx
   (41) 
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 
xx

x

xJ

J
tx ,   (42) 

                             
x

xJ
tx

1
,   . (43) 

So that optimal strategies satisfies 

                            
1

,,



T

txtx   (44) 

                       txtx ,,   .  (45) 

Substituting the first order conditions into (31) gives the partial differential equation 

below 

               

 
.1

2

1 12

2




x

xx

x

xt
LogJ

J

J
rxJJJ   (46) 

      If this PDE above has a solution  tXJ ,  such that the strategies defined by (44) and 

(45) are feasible, then we know from the verification theorem (see,  [4]) that this 

strategy is indeed the optimal investment and consumption strategies and the function 

 tXJ ,  is indeed the value function [10]. Problems with no utility from consumption i.e.

0Logc is of course optimal not to consume and it is relatively easy to see that the last 

two terms in the RHS of (46) will vanish and the equation simplifies to: 

 
.

2

1 2

2



xx

x

xt

J

J
rxJJJ    (47) 

OBSERVATIONS 

 

From the analysis of the model above, and to further appreciate the implications of 

TCE constraints for optimal strategies, we consider below alternative or equivalent 

specification of the function  tX ,


  which identifies the maximum admissible TCE of 

risk by the investor at any time  .,0 Tt   Notice that equivalent constraint on TCE for 

logarithmic utility is binding iff: 

                     
    ,,,log inf

0

txtx

Tt









  

where 0


 is as before defined as some risk bound. 

Moreover, it follows from (44) that the TCE-constrained optimal investment is a 

multiple of the market price of risk and its volatility. Following from the termino logy of 

[10], we refer to this multiple as the relative risk tolerance. 

 

5. CONCLUSION 

In this paper, we considered an optimal portfolio problem subject to TCE constraint 

using a combination HJB-equation and Lagrange Multiplier with a Logarithmic utility 

function. We derived explicit expressions for the optimal portfolio choice (investment) 

and consumption given that the complementary slackness condition 
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      .0,0,,  txfortxHtx  We deduced from our observations that the constraint 

imposed such that ,





 reduces risky investment and that the TCE-constrained 

optimal investment is a multiple of the market price of risk and its volatility which is 

known as the relative risk tolerance in a risky markets. Also, we deduce that the optimal 

consumption strategy is to consume a time-varying fraction of wealth as seen from the 

theorem. 
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