
ASIAN JOURNAL OF MATHEMATICS AND APPLICATIONS 
Volume 2016, Article ID ama0317, 9 pages 
ISSN 2307-7743 
http://scienceasia.asia 

_______________ 

Key words and phrases: partial metric spaces, surjection, expansive mapping, fixed point. 

  © 2016 Science Asia 

 1 / 9 

 

FIXED POINT AND COMMON FIXED POINT THEOREMS UNDER VARIOUS EXPANSIVE 

CONDITIONS IN PARTIAL METRIC SPACES 

 
SURAJ SHRIVASTAVA, R. D. DAHERIYA, MANOJ UGHADE 

 

Abstract: In the present paper, we prove some fixed point theorems for self-mappings satisfying various 

expansive type conditions in the setting of a partial metric space.  The presented theorems extend, generalize 

and improve many existing results in the literature. 

 

 

1 INTRODUCTION  

Fixed point theory is one of the most popular tool in nonlinear analysis. Most of the 

generalizations for metric fixed point theorems usually start from Banach contraction 

principle [4]. It is not easy to point out all the generalizations of this principle. In 1994, 

Matthews [13] introduced the concept of partial metric space in which the self distance of 

any point of space may not be zero. In 1996, O'Neill generalized the concept of partial metric 

space by admitting negative distances. In 1984, Wang et.al [16] introduced the concept of 

expanding mappings and proved some fixed point theorems in complete metric spaces. In 

1992, Daffer and Kaneko [5] defined an expanding condition for a pair of mappings and 

proved some common fixed point theorems for two mappings in complete metric spaces. 

Aage and Salunke [1] introduced several meaningful fixed point theorems for one expanding 

mapping. For more details on expanding mapping and related results we refer the reader to 

[5-8, 14, 16-18]. 

In this paper, we prove some fixed point theorems for surjective mappings satisfying 

various expansive type conditions in the setting of a partial metric space.  The presented 

theorems extend, generalize and improve many existing results in the literature. 

2 PRELIMINARIES 

Throughout this paper  ℝ  and  ℝ + will represents the set of real numbers and nonnegative 

real numbers, respectively.  

The following definitions are required in the sequel. 

Definition 2.1 (see [13]) Let X be a nonempty set, and 𝑝 ∶  𝑋 × 𝑋 → ℝ + be a function. We 

say 𝑝 is a partial metric on 𝑋 if and only if for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 the following conditions are 

satisfied: 

(1) 𝑥 = 𝑦 if and only if 𝑝(𝑥, 𝑥) = 𝑝(𝑥, 𝑦) = 𝑝(𝑦, 𝑦); 

(2) 𝑝(𝑥, 𝑥) ≤ 𝑝(𝑥, 𝑦); 

(3) 𝑝(𝑥, 𝑦) = 𝑝(𝑦, 𝑥); 
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(4) 𝑝(𝑥, 𝑦) ≤ 𝑝(𝑥, 𝑧) + 𝑝(𝑧, 𝑦) − 𝑝(𝑧, 𝑧) 

The pair (𝑋, 𝑝) is called a partial metric space.  

Remark 2.3 It is clear that the partial metric space need not be a b-metric spaces, since in a 

partial metric space if 𝑝(𝑥, 𝑦) = 0 implies 𝑝(𝑥, 𝑥) = 𝑝(𝑥, 𝑦) = 𝑝(𝑦, 𝑦) = 0 then 𝑥 = 𝑦. But in 

a partial metric space if 𝑥 = 𝑦 then 𝑝(𝑥, 𝑥) = 𝑝(𝑥, 𝑦) = 𝑝(𝑦, 𝑦) may not be equal zero. 

Therefore the partial metric space may not be a b-metric space. 

Every partial metric 𝑝 defines a metric 𝑑𝑝 , where 

                     𝑑𝑝(𝑥, 𝑦) = 2𝑝𝑏(𝑥, 𝑦) − 𝑝(𝑥, 𝑥) − 𝑝(𝑦, 𝑦), 𝑥, 𝑦 ∈ 𝑋. 

The following lemma will be useful in what follows; see [13]. 

Definition 2.4 A sequence  {𝑥𝑛}𝑛=1
∞  in a partial metric space (X, 𝑝) is said to be: 

1. convergent to a point  𝑥 ∈ 𝑋, written as lim
n→∞

𝑝(𝑥, 𝑥𝑛) = 𝑝(𝑥, 𝑥);. 

2. a Cauchy sequence if 𝑙𝑖𝑚
𝑛,𝑚→+∞

𝑝(𝑥𝑛, 𝑥𝑚) exists (and is finite); 

Definition 2.5 A partial metric space  (X, 𝑝) is said to be complete if every Cauchy sequence 

in 𝑋 converges to a point 𝑥 ∈ 𝑋 such that 

𝑝(𝑥, 𝑥) = 𝑙𝑖𝑚
𝑛→∞

𝑝(𝑥𝑛, 𝑥) = 𝑙𝑖𝑚
𝑛→∞

𝑝(𝑥𝑛, 𝑥𝑚) 

Lemma 2.6 A sequence {𝑥𝑛}𝑛=1
∞  is a Cauchy sequence in a partial metric space (X, 𝑝) if and 

only if it is a Cauchy sequence in the metric space  (X, 𝑑𝑝). 

Lemma 2.7 A partial metric space (X, 𝑝) is complete if and only if the metric space (X, 𝑑𝑝) is 

complete. Moreover, 𝑙𝑖𝑚
𝑛→∞

𝑑𝑝(𝑥𝑛, 𝑥𝑚) = 0 if and only if 

𝑝(𝑥, 𝑥) = 𝑙𝑖𝑚
𝑛→∞

𝑝(𝑥𝑛, 𝑥) = 𝑙𝑖𝑚
𝑛→∞

𝑝(𝑥𝑛, 𝑥𝑚) 

3.3 FIXED POINT THEOREMS 

In this section, we prove some fixed point theorems satisfying expansive condition by 

considering surjective self-mappings in the context of partial metric space. 

We begin with a simple but a useful Lemma. 

Lemma 3.1 Let {𝑥𝑛}𝑛=1
∞  be a sequence in a partial metric space (𝑋, 𝑝) such that  

(3.1)                                  𝑝𝑏(𝑥𝑛, 𝑥𝑛+1) ≤ 𝜆𝑝𝑏(𝑥𝑛−1, 𝑥𝑛)  

where 𝜆 ∈ [0,1) and 𝑛 = 1,2, … … …. Then {𝑥𝑛}𝑛=1
∞  is a Cauchy sequence in 𝑋. 

Proof By the simple induction with the condition (3.1), we have 

(3.2)       𝑝(𝑥𝑛, 𝑥𝑛+1) ≤ 𝜆𝑝(𝑥𝑛−1, 𝑥𝑛) ≤ 𝜆2𝑝(𝑥𝑛−2, 𝑥𝑛−1) ≤ ⋯ ≤ 𝜆𝑛𝑝(𝑥0, 𝑥1) 

On the other hand, since 

                        max{ 𝑝(𝑥𝑛, 𝑥𝑛), 𝑝(𝑥𝑛+1, 𝑥𝑛+1)} ≤ 𝑝(𝑥𝑛, 𝑥𝑛+1) 

then from (3.2), we have 

(3.3)               max{ 𝑝(𝑥𝑛, 𝑥𝑛), 𝑝(𝑥𝑛+1, 𝑥𝑛+1)} ≤ 𝜆𝑛𝑝(𝑥0, 𝑥1) 

Therefore 

(3.4)              𝑑𝑝(𝑥𝑛, 𝑥𝑛+1) = 2𝑝(𝑥𝑛, 𝑥𝑛+1) − 𝑝(𝑥𝑛, 𝑥𝑛) − 𝑝(𝑥𝑛+1, 𝑥𝑛+1) 

                                             ≤ 2𝑝(𝑥𝑛, 𝑥𝑛+1) + 𝑝(𝑥𝑛, 𝑥𝑛) + 𝑝(𝑥𝑛+1, 𝑥𝑛+1) 
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                                             ≤ 4𝜆𝑛𝑝(𝑥0, 𝑥1) 

This show that lim
𝑛→+∞

𝑑𝑝(𝑥𝑛, 𝑥𝑛+1) = 0. Now we have 

(3.5)   𝑑𝑝(𝑥𝑛, 𝑥𝑛+𝑚) ≤ 𝑑𝑝(𝑥𝑛, 𝑥𝑛+1) + 𝑑𝑝(𝑥𝑛+1, 𝑥𝑛+𝑚) 

                                   ≤ 𝑑𝑝(𝑥𝑛, 𝑥𝑛+1) + 𝑑𝑝(𝑥𝑛+1, 𝑥𝑛+2) + 𝑑𝑝(𝑥𝑛+2, 𝑥𝑛+𝑚) 

                                   ≤ 𝑑𝑝(𝑥𝑛, 𝑥𝑛+1) + 𝑑𝑝(𝑥𝑛+1, 𝑥𝑛+2) + ⋯ 

                                   +𝑑𝑝(𝑥𝑛+𝑚−2, 𝑥𝑛+𝑚−1) + 𝑑𝑝(𝑥𝑛+𝑚−1, 𝑥𝑛+𝑚) 

                                   ≤ 4𝜆𝑛𝑝(𝑥0, 𝑥1) + 4𝜆𝑛+1𝑝(𝑥0, 𝑥1) + ⋯ 

                                   +4𝜆𝑛+𝑚−2𝑝(𝑥0, 𝑥1) + 4𝜆𝑛+𝑚−1𝑝(𝑥0, 𝑥1) 

                                   ≤ 4𝜆𝑛{1 + 𝜆 + 𝜆2 + ⋯ … … . . }𝑝(𝑥0, 𝑥1) 

                                 ≤
4𝜆𝑛

1−𝜆
𝑝(𝑥0, 𝑥1). 

Note that 𝜆 < 1. This show that {𝑥𝑛}𝑛=1
∞  is a Cauchy sequence in metric space (𝑋, 𝑑𝑝), then 

from Lemma 2.6, {𝑥𝑛}𝑛=1
∞  is a Cauchy sequence in partial metric space (𝑋, 𝑝). 

Theorem 3.2 Let (𝑋, 𝑝) be a complete partial metric space. Assume that 𝑇: 𝑋 → 𝑋 is 

surjection and satisfies 

(3.6)                                   𝑝(𝑇𝑥, 𝑇𝑦) ≥ 𝜆𝑝(𝑥, 𝑦)  

 ∀ 𝑥, 𝑦 ∈ 𝑋, where 𝜆 > 1. Then 𝑇 has a unique fixed point in 𝑋. 

Proof; Let 𝑥0 ∈ 𝑋, since 𝑇 is surjection, then there exists 𝑥1 ∈ 𝑋 such that 𝑥0 = 𝑇𝑥1. By 

continuing this process, we get 

(3.7)                              𝑥𝑛 = 𝑇𝑥𝑛+1, ∀ 𝑛 ∈ ℕ ∪ {0}. 

In case 𝑥𝑛0
= 𝑥𝑛0+1 for some 𝑛0 ∈ ℕ ∪ {0},then it is clear that 𝑥𝑛0

 is a fixed point of 𝑇. 

Without loss of generality, we assume that  𝑥𝑛 ≠ 𝑥𝑛−1  for all 𝑛. Consider, 

(3.8)                               𝑝(𝑥𝑛−1, 𝑥𝑛) = 𝑝(𝑇𝑥𝑛, 𝑇𝑥𝑛+1) 

Now by (3.7) and definition of the sequence 

                              𝑝(𝑥𝑛−1, 𝑥𝑛) = 𝑝(𝑇𝑥𝑛, 𝑇𝑥𝑛+1)  

                                                  ≥ 𝜆𝑝(𝑥𝑛, 𝑥𝑛+1)  

and so             

(3.9)                𝑝(𝑥𝑛, 𝑥𝑛+1) ≤
1

𝜆 
𝑝(𝑥𝑛−1, 𝑥𝑛) = ℎ𝑝(𝑥𝑛−1, 𝑥𝑛)  

where ℎ =
1

𝜆 
<

1

𝑠 
 . Then by Lemma.3.1,  {𝑥𝑛}𝑛=1

∞  is a Cauchy sequence in 𝑋. Since (𝑋, 𝑝) is a 

complete, then from Lemma 2.7, (𝑋, 𝑑𝑝) is complete and so the sequence  {𝑥𝑛}𝑛=1
∞  is 

converges in the metric space (𝑋, 𝑑𝑝), that is there exists 𝑥⋆ ∈ 𝑋 such that   

                                           lim
𝑛→+∞

𝑑𝑝(𝑥𝑛, 𝑥⋆) = 0.  

Again from Lemma 2.7, we have 

(3.10)                 𝑝(𝑥⋆, 𝑥⋆) = 𝑙𝑖𝑚
𝑛→∞

𝑝(𝑥𝑛, 𝑥⋆) = 𝑙𝑖𝑚
𝑛→∞

𝑝(𝑥𝑛, 𝑥𝑚) 

Moreover, since {𝑥𝑛}𝑛=1
∞  is a Cauchy sequence in the metric space (𝑋, 𝑑𝑝), 

                                       𝑙𝑖𝑚
𝑛→∞

𝑑𝑝(𝑥𝑛, 𝑥𝑚) = 0, 
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On the other hand, since  

                        max{ 𝑝(𝑥𝑛, 𝑥𝑛), 𝑝(𝑥𝑛+1, 𝑥𝑛+1)} ≤ 𝑝(𝑥𝑛, 𝑥𝑛+1) 

then by the simple induction with (3.9), we have 

(3.11)                max{ 𝑝(𝑥𝑛, 𝑥𝑛), 𝑝(𝑥𝑛+1, 𝑥𝑛+1)} ≤ ℎ𝑛𝑝(𝑥0, 𝑥1) 

Hence, we have 𝑙𝑖𝑚
𝑛→∞

𝑝(𝑥𝑛, 𝑥𝑛) = 0. Thus from the definition of 𝑑𝑝, we have 

                                             𝑙𝑖𝑚
𝑛→∞

𝑝(𝑥𝑛, 𝑥𝑚) = 0. 

Therefore, from (3.10), we have 

                    𝑝(𝑥⋆, 𝑥⋆) = 𝑙𝑖𝑚
𝑛→∞

𝑝(𝑥𝑛, 𝑥⋆) = 𝑙𝑖𝑚
𝑛→∞

𝑝(𝑥𝑛, 𝑥𝑚) = 0. 

Since 𝑇 is surjection on 𝑋, there exists 𝑧 ∈ 𝑋 such that 𝑥⋆ = 𝑇𝑧. From (3.6), we have  

(3.12)                         𝑝(𝑥𝑛, 𝑥⋆) = 𝑝(𝑇𝑥𝑛+1, 𝑇𝑧) 

                                                     ≥ 𝜆𝑝(𝑥𝑛+1, 𝑧)  

Taking limit as 𝑛 → +∞ in the above inequality, we get  

                                 0 = 𝑝(𝑥⋆, 𝑥⋆) ≥ 𝜆𝑝(𝑥⋆, 𝑧) 

This implies that 𝑝(𝑥⋆, 𝑧) = 0. Also from (3.6), we have  

                         0 = 𝑝(𝑥⋆, 𝑥⋆) = 𝑝(𝑇𝑧, 𝑇𝑧) ≥ 𝜆𝑝(𝑧, 𝑧)  

and so 𝑝(𝑧, 𝑧) = 0. Thus 𝑝(𝑥⋆, 𝑥⋆) = 𝑝(𝑥⋆, 𝑧) = 𝑝(𝑧, 𝑧) implies that 𝑥⋆ =  𝑧 = 𝑇𝑧. Hence 𝑥⋆ is 

a fixed point of 𝑇. Finally, assume 𝑥⋆ ≠ 𝑦⋆ is also another fixed point of 𝑇. From (3.6), we 

get 

(3.13)                      𝑝( 𝑥⋆, 𝑦⋆) = 𝑝( 𝑇𝑥⋆, 𝑇𝑦⋆)   

                                                   ≥ 𝜆𝑝( 𝑥⋆, 𝑦⋆) 

This is true only when 𝑝( x⋆, y⋆) = 0. Also 𝑝( 𝑥⋆, 𝑥⋆) = 0 = 𝑝( 𝑦⋆, 𝑦⋆). So x⋆ = y⋆. Hence 𝑇 

has a unique fixed point in 𝑋.  

Corollary 3.3 Let (𝑋, 𝑝) be a complete partial metric space and 𝑇: 𝑋 → 𝑋 be a surjection. 

Suppose that there exist a positive integer 𝑛  and a constant 𝜆 > 1 such that 

(3.14)                                   𝑝(𝑇𝑛𝑥, 𝑇𝑛𝑦) ≥ 𝜆𝑝(𝑥, 𝑦)  

∀ 𝑥, 𝑦 ∈ 𝑋. Then 𝑇 has a unique fixed point in 𝑋. 

Proof From Theorem 3.2, 𝑇𝑛 has a unique fixed point 𝑥⋆. But 𝑇𝑛(𝑇𝑥⋆) = 𝑇(𝑇𝑛𝑥⋆) = 𝑇𝑥⋆. So 

𝑇𝑥⋆ is also a fixed point of 𝑇𝑛. Hence 𝑇𝑥⋆ = 𝑥⋆, 𝑥⋆ is a fixed point of 𝑇. Since the fixed point 

of 𝑇 is also fixed point of 𝑇𝑛, the fixed point of 𝑇 is unique. 

3.3 COMMON FIXED POINT THEOREMS 

Now, we give a common fixed point theorem of two weakly compatible mappings in partial 

metric spaces. 

In [14] Jungck introduced the concept of commuting maps. In [15] Jungck introduced the 

concept of compatible mappings which generalize the concept of commuting maps. Jungck 

in [16] further generalized the concept of weakly compatible maps as follows.  
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Definition 4.1 Let 𝑆 and 𝑇 be two self-mappings on a nonempty set 𝑋. Then 𝑆 and 𝑇 are said 

to be weakly compatible if they commute at all of their coincidence points; that is, 𝑆𝑥 =

 𝑇𝑥 for some 𝑥 ∈  𝑋 and then 𝑆𝑇𝑥 = 𝑇𝑆𝑥. 

Theorem 4.2 Let (𝑋, 𝑝) be a complete partial metric space. Let 𝑆 and 𝑇 be two self-mappings 

of 𝑋 and 𝑇(𝑋) ⊆ 𝑆(𝑋). Suppose that 𝑎, 𝑏, 𝑐 ≥ 0 with 𝑎 + 𝑏 + 𝑐 > 1 such that  

(4.1)            𝑝(𝑆𝑥, 𝑆𝑦) ≥ 𝑎𝑝(𝑇𝑥, 𝑇𝑦) + 𝑏𝑝(𝑆𝑥, 𝑇𝑥) + 𝑐𝑝(𝑆𝑦, 𝑇𝑦)  

∀ 𝑥, 𝑦 ∈ 𝑋. If one of the subspaces 𝑇(𝑋) or 𝑆(𝑋) is complete, then 𝑆 and 𝑇 have a point of 

coincidence in 𝑋. Moreover, if 𝑎 > 1,  then point of coincidence is unique. If 𝑆 and 𝑇 be 

weakly compatible and 𝑎 > 1, then  𝑆 and 𝑇 have a unique common fixed point in 𝑋.  

Proof: Let 𝑥0 ∈ 𝑋. Since 𝑇(𝑋) ⊆ 𝑆(𝑋), choose 𝑥1 ∈ 𝑋 such that 𝑦1 = 𝑆𝑥1 = 𝑇𝑥0. In general, 

choose 𝑥𝑛+1 ∈ 𝑋 such that 𝑦𝑛+1 = 𝑆𝑥𝑛+1 = 𝑇𝑥𝑛. Now by (4.1), we have 

                        𝑝(𝑦𝑛, 𝑦𝑛+1) = 𝑝(𝑆𝑥𝑛, 𝑆𝑥𝑛+1) 

                                            ≥ 𝑎𝑝(𝑇𝑥𝑛, 𝑇𝑥𝑛+1) + 𝑏𝑝(𝑆𝑥𝑛, 𝑇𝑥𝑛) + 𝑐𝑝(𝑆𝑥𝑛+1, 𝑇𝑥𝑛+1)  

                                            = 𝑎𝑝(𝑦𝑛+1, 𝑦𝑛+2) + 𝑏𝑝(𝑦𝑛, 𝑦𝑛+1) + 𝑐𝑝(𝑦𝑛+1, 𝑦𝑛+2) 

and so 

                                 (1 − 𝑏)𝑝(𝑦𝑛, 𝑦𝑛+1) ≥ (𝑎 + 𝑐)𝑝(𝑦𝑛+1, 𝑦𝑛+2) 

If 𝑎 + 𝑐 = 0, then 𝑏 > 1. The above inequality implies that a negative number is greater 

than or equal to zero. That is impossible. So, 𝑎 + 𝑐 ≠ 0 and 1 − 𝑏 > 0. Therefore, 

(4.2)                               𝑝(𝑦𝑛+1, 𝑦𝑛+2) ≤ ℎ𝑝(𝑦𝑛, 𝑦𝑛+1)  

where ℎ =
1−𝑏

𝑎+𝑐 
<

1

𝑠 
. Then by Lemma 3.1,  {𝑥𝑛}𝑛=1

∞  is a Cauchy sequence. Since 𝑇(𝑋) ⊆ 𝑆(𝑋) 

and  𝑇(𝑋) or 𝑆(𝑋) is a complete subspace of 𝑋. Then from Lemma 2.7, (𝑆(𝑋), 𝑑𝑝) is 

complete and so the sequence {𝑦𝑛}  = {𝑇𝑥𝑛−1}  ⊆ 𝑆(𝑋)  is converges in the metric space 

(𝑆(𝑋), 𝑑𝑝) , that is, there exists 𝑧⋆ ∈ 𝑋 such that   

                                           lim
𝑛→+∞

𝑑𝑝(𝑦𝑛, 𝑧⋆) = 0.  

Consequently, we can find 𝑢 ∈ 𝑋 such that 𝑆𝑢 = 𝑧⋆. Again from Lemma 2.7, we have 

(4.3)          𝑝(𝑆𝑢, 𝑧⋆) = 𝑝(𝑧⋆, 𝑧⋆) = 𝑙𝑖𝑚
𝑛→∞

𝑝(𝑦𝑛, 𝑧⋆) = 𝑙𝑖𝑚
𝑛→∞

𝑝(𝑦𝑛, 𝑦𝑚) 

Moreover, since {𝑦𝑛}𝑛=1
∞  is a Cauchy sequence in the metric space (𝑆(𝑋), 𝑑𝑝), 

                                       𝑙𝑖𝑚
𝑛→∞

𝑑𝑝(𝑦𝑛, 𝑦𝑚) = 0, 

On the other hand, since  

                        max{ 𝑝(𝑦𝑛, 𝑦𝑛), 𝑝(𝑦𝑛+1, 𝑦𝑛+1)} ≤ 𝑝(𝑦𝑛, 𝑦𝑛+1) 

then by the simple induction with (4.2), we have 

 (4.4)                max{ 𝑝(𝑦𝑛, 𝑦𝑛), 𝑝(𝑦𝑛+1, 𝑦𝑛+1)} ≤ ℎ𝑛𝑝(𝑦0, 𝑦1) 

Hence, we have 𝑙𝑖𝑚
𝑛→∞

𝑝(𝑦𝑛, 𝑦𝑛) = 0. Thus from the definition of 𝑑𝑝, we have 

                                             𝑙𝑖𝑚
𝑛→∞

𝑝(𝑦𝑛, 𝑦𝑚) = 0. 

Therefore, from (4.3), we have 

                    𝑝(𝑆𝑢, 𝑧⋆) = 𝑝(𝑧⋆, 𝑧⋆) = 𝑙𝑖𝑚
𝑛→∞

𝑝(𝑦𝑛, 𝑧⋆) = 𝑙𝑖𝑚
𝑛→∞

𝑝(𝑦𝑛, 𝑦𝑚) = 0. 
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Now to show that 𝑇𝑢 = 𝑧⋆. From (4.1), we have  

(4.5)                𝑝(𝑆𝑢, 𝑆𝑥𝑛) ≥ 𝑎𝑝(𝑇𝑢, 𝑇𝑥𝑛) + 𝑏𝑝(𝑆𝑢, 𝑇𝑢) + 𝑐𝑝(𝑆𝑥𝑛, 𝑇𝑥𝑛)                                       

Taking limit as 𝑛 → +∞ in the above inequality, we get  

                            0 = 𝑝(𝑆𝑢, 𝑧⋆) ≥ 𝑎𝑝(𝑇𝑢, 𝑧⋆) + 𝑏𝑝(𝑧⋆, 𝑇𝑢)  

                                                    = (𝑎 + 𝑏)𝑝(𝑇𝑢, 𝑧⋆) 

This implies that 𝑝(𝑇𝑢, 𝑧⋆) = 0 and so 𝑇𝑢 = 𝑧⋆. Therefore, 𝑆𝑢 = 𝑇𝑢 = 𝑧⋆.  Therefore, 𝑧⋆ is a 

point of coincidence of 𝑆 and 𝑇.  

Now we suppose that 𝑎 > 1. Let 𝑤⋆ be another point of coincidence of 𝑆 and 𝑇. So 𝑆𝑣 =

𝑇𝑣 = 𝑤⋆ for some 𝑣 ∈ 𝑋. Then from (4.1), we have 

                               𝑝( 𝑧⋆, 𝑤⋆) = 𝑝( 𝑆𝑢, 𝑆𝑣)   

                                                ≥ 𝑎𝑝(𝑇𝑢, 𝑇𝑣) + 𝑏𝑝(𝑆𝑢, 𝑇𝑢) + 𝑐𝑝(𝑆𝑣, 𝑇𝑣) 

                                                = 𝑎𝑝(𝑧⋆, 𝑤⋆)    

This is true only when 𝑝( z⋆, w⋆) = 0. Also 𝑝( 𝑧⋆, 𝑧⋆) = 0 = 𝑝( 𝑤⋆, 𝑤⋆). So  z⋆ = w⋆.                                   

Since 𝑆 and 𝑇 be weakly compatible, 𝑆𝑇𝑢 = 𝑇𝑆𝑢, that is, 𝑆𝑧⋆ = 𝑇𝑧⋆. Now we show that 𝑧⋆ is 

a common fixed point of 𝑆 and 𝑇. If 𝑎 > 1, then from condition (4.1), we have 

                   𝑝(𝑆𝑧⋆, 𝑆𝑥𝑛) ≥ 𝑎𝑝(𝑇𝑧⋆, 𝑇𝑥𝑛) + 𝑏𝑝(𝑆𝑧⋆, 𝑇𝑧⋆) + 𝑐𝑝(𝑆𝑥𝑛, 𝑇𝑥𝑛) 

Proceeding to the limit as 𝑛 → +∞, we have 𝑝(𝑆𝑧⋆, 𝑧⋆) ≥ 𝑎𝑝(𝑇𝑧⋆, 𝑧⋆) = 𝑎𝑝(𝑆𝑧⋆, 𝑧⋆), which 

implies that 𝑝(𝑆𝑧⋆, 𝑧⋆) = 0. Also 𝑝(𝑆𝑧⋆, 𝑆𝑧⋆) = 0 = 𝑝(𝑧⋆, 𝑧⋆). Hence 𝑆𝑧⋆ = 𝑧⋆  and so 𝑆𝑧⋆ =

𝑇𝑧⋆ = 𝑧⋆. Hence 𝑆 and  𝑇 have a unique fixed point in 𝑋. This completes the proof. 

Remark 4.3 If we take , 𝑆 = 𝑇, 𝑇 = 𝐼 in Theorem 4.2, then we get Theorem 2.1 of Huang et al. 

[26]. 

Now, we prove the following common fixed point theorem, which is generalization of 

Theorem 2.2 of Shatanawi et al. [14] in the setting of partial b-metric space. 

Theorem 4.4 Let 𝑇, 𝑆: 𝑋 → 𝑋 be two surjective mappings of a complete partial metric space 

(𝑋, 𝑝). Suppose that 𝑇 and 𝑆 satisfying inequalities  

(4.6)                      𝑝(𝑇(𝑆𝑥), 𝑆𝑥) + 𝑘𝑝(𝑇(𝑆𝑥), 𝑥) ≥ 𝑎𝑝(𝑆𝑥, 𝑥) 

(4.7)                      𝑝(𝑆(𝑇𝑥), 𝑇𝑥) + 𝑘𝑝(𝑆(𝑇𝑥), 𝑥) ≥ 𝑏𝑝(𝑇𝑥, 𝑥)  

for 𝑥 ∈ 𝑋 and some nonnegative real numbers 𝑎, 𝑏 and k with 𝑎 > 1 + 2𝑘 and 𝑏 > 1 + 2𝑘.. 

If  𝑇 or 𝑆 is continuous, then 𝑇 and 𝑆 have a common fixed point in 𝑋. 

Proof Let 𝑥0 be an arbitrary point in 𝑋. Since 𝑇 is surjective, there exists 𝑥1 ∈ 𝑋 such that 

𝑥0 = 𝑇𝑥1. Also, since S is surjective, there exists 𝑥2 ∈ 𝑋 such that 𝑥2 = 𝑆𝑥1. Continuing this 

process, we construct a sequence {𝑥𝑛} in 𝑋 such that 

(4.8)                            𝑥2𝑛 = 𝑇𝑥2𝑛+1 and 𝑥2𝑛+1 = 𝑆𝑥2𝑛+2  

for all 𝑛 ∈ 𝑁 ∪ {0}, Now for 𝑛 ∈ ℕ ∪ {0}, by (4.6) we have 

                        𝑝(𝑇(𝑆𝑥2𝑛+2), 𝑆𝑥2𝑛+2) + 𝑘𝑝(𝑇(𝑆𝑥2𝑛+2), x2𝑛+2) ≥ 𝑎𝑝(𝑆𝑥2𝑛+2, 𝑥2𝑛+2) 

Thus, we have 

                               𝑝(𝑥2𝑛, 𝑥2𝑛+1) + 𝑘𝑝(𝑥2𝑛, 𝑥2𝑛+2) ≥ 𝑎𝑝(𝑥2𝑛+1, 𝑥2𝑛+2) 

which implies that  
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         𝑝(𝑥2𝑛, 𝑥2𝑛+1) + 𝑘[𝑝(𝑥2𝑛, 𝑥2𝑛+1) + 𝑝(𝑥2𝑛+1, 𝑥2𝑛+2) − 𝑝(𝑥2𝑛+1, 𝑥2𝑛+1)] 

                                                                   ≥ 𝑎𝑝(𝑥2𝑛+1, 𝑥2𝑛+2) 

That is,  

         𝑝(𝑥2𝑛, 𝑥2𝑛+1) + 𝑘[𝑝(𝑥2𝑛, 𝑥2𝑛+1) + 𝑝(𝑥2𝑛+1, 𝑥2𝑛+2)] ≥ 𝑎𝑝(𝑥2𝑛+1, 𝑥2𝑛+2) 

Hence  

(4.9)                           𝑝(𝑥2𝑛+1, 𝑥2𝑛+2) ≤
1+𝑘

𝑎−𝑘
 𝑝(𝑥2𝑛, 𝑥2𝑛+1) 

On other hand, we have (from (4.7))  

               𝑝(𝑆(𝑇𝑥2𝑛+1), 𝑇𝑥2𝑛+1) + 𝑘𝑝(𝑆(𝑇𝑥2𝑛+1), 𝑥2𝑛+1) ≥ 𝑏𝑝(𝑇x2𝑛+1, 𝑥2𝑛+1)  

Thus we have  

                             𝑝(𝑥2𝑛−1, 𝑥2𝑛) + 𝑘𝑝(𝑥2𝑛−1, 𝑥2𝑛+1) ≥ 𝑏𝑝(𝑥2𝑛, 𝑥2𝑛+1) 

which implies that  

              𝑝(𝑥2𝑛−1, 𝑥2𝑛) + 𝑘[𝑝(𝑥2𝑛−1, 𝑥2𝑛) + 𝑝(𝑥2𝑛, 𝑥2𝑛+1) − 𝑝(𝑥2𝑛, 𝑥2𝑛)] 

                                                                   ≥ 𝑏𝑝(𝑥2𝑛, 𝑥2𝑛+1)  

That is, 

𝑝(𝑥2𝑛−1, 𝑥2𝑛) + 𝑘[𝑝(𝑥2𝑛−1, 𝑥2𝑛) + 𝑝(𝑥2𝑛, 𝑥2𝑛+1)] ≥ 𝑏𝑝(𝑥2𝑛, 𝑥2𝑛+1) 

Hence  

(4.10)                           𝑝(𝑥2𝑛−1, 𝑥2𝑛) ≤
1+𝑘

𝑏−𝑘
 𝑝(𝑥2𝑛−1, 𝑥2𝑛) 

Let ℎ = 𝑚𝑎𝑥 {
1+𝑘

𝑎−𝑘
,

1+𝑘

𝑏−𝑘
} < 1. 

Then by combining (4.9) and (4.10), we have 

(4.11)                          𝑝(𝑥𝑛, 𝑥𝑛+1) ≤ ℎ 𝑝(𝑥𝑛−1, 𝑥𝑛)   

where  ℎ ∈ [0,1), ∀ 𝑛 ∈ ℕ ∪ {0}. Then by Lemma 3.1, {𝑥𝑛}𝑛=1
∞  is 𝑝-Cauchy sequence in the 

complete partial metric space. Then there exists 𝑥⋆ ∈ 𝑋 such that 𝑥𝑛 → 𝑥⋆ as 𝑛 → +∞. 

Therefore 𝑥2𝑛+1 → 𝑥⋆  and 𝑥2𝑛+2 → 𝑣  as 𝑛 → +∞ . Without loss of generality, we may 

assume that 𝑇 is continuous, then 𝑇𝑥2𝑛+1 → 𝑇𝑥⋆as 𝑛 → +∞. But  𝑇𝑥2𝑛+1 = 𝑥2𝑛 → 𝑥⋆ as 𝑛 →

+∞.Thus, we have 𝑇𝑥⋆ = 𝑥⋆. since 𝑆 is surjective, there exists 𝑧 ∈ 𝑋 such that 𝑆𝑧 = 𝑥⋆. Now 

                                    𝑝(𝑇(𝑆𝑧), 𝑆𝑧) + 𝑘𝑝(𝑇(𝑆𝑧), 𝑧) ≥ 𝑎𝑝(𝑆𝑧, 𝑧) 

implies that 

                                                  𝑘𝑝( 𝑥⋆, 𝑧) ≥ a𝑝( 𝑥⋆, 𝑧) 

Then 𝑝( 𝑥⋆, 𝑧) ≤
k

a
𝑝( 𝑥⋆, 𝑧). Since a > 𝑘, we conclude that 𝑝( 𝑥⋆, 𝑧) = 0. so 𝑥⋆ = 𝑧. Hence 

𝑇𝑥⋆ = 𝑆𝑥⋆ = 𝑥⋆. Therefore 𝑥⋆ is a common fixed point of 𝑇 and 𝑆. 

By taking 𝑏 = 𝑎 in theorem 4.4, we have the following result. 

Corollary 4.5 Let 𝑇, 𝑆: 𝑋 → 𝑋 be two surjective mappings of a complete partial metric space 

(X, 𝑝). Suppose that 𝑇 and 𝑆 satisfying inequalities  

(4.12)                       𝑝(𝑇(𝑆𝑥), 𝑆𝑥) + 𝑘𝑝(𝑇(𝑆𝑥), 𝑥) ≥ 𝑎𝑝(𝑆𝑥, 𝑥) 

(4.13)                       𝑝(𝑆(𝑇𝑥), 𝑇𝑥) + 𝑘𝑝(𝑆(𝑇𝑥), 𝑥) ≥ 𝑎𝑝(𝑇𝑥, 𝑥)  



8 / 9 

SURAJ SHRIVASTAVA, R. D. DAHERIYA, MANOJ UGHADE 

for 𝑥 ∈ 𝑋  and some nonnegative real numbers 𝑎  and 𝑘  with 𝑎 > 1 + 2𝑘 .  If 𝑇  or 𝑆  is 

continuous, then 𝑇 and 𝑆 have a common fixed point in X. 

By taking 𝑆 = 𝑇 in Corollary 4.5, we have the following Corollary. 

Corollary 4.6 Let 𝑇: 𝑋 → 𝑋 be a surjective mappings of a complete partial metric space 

(𝑋, 𝑝). Suppose that 𝑇 satisfying inequality  

(4.14)                           𝑝(𝑇(𝑇𝑥), 𝑇𝑥) + 𝑘𝑝(𝑇(𝑇𝑥), 𝑥) ≥ 𝑎𝑝(𝑇𝑥, 𝑥) 

for 𝑥 ∈ 𝑋 and some nonnegative real numbers 𝑎 and 𝑘 with 𝑎 > 1 + 2𝑘. If 𝑇 is continuous, 

then 𝑇 has a fixed point in 𝑋. 

Now, we present an example to illustrate the usability of Corollary 4.6. 

Example 4.7 Let 𝑋 = [0, ∞) and define 𝑝: 𝑋 × 𝑋 → ℝ+ by 

                        𝑑(𝑥, 𝑦) = 𝑝(𝑥, 𝑦) = max{𝑥, 𝑦} , ∀ 𝑥, 𝑦 ∈ 𝑋.  

Then (𝑋, 𝑝) is a complete partial metric space. Define 𝑇: 𝑋 → 𝑋 by 𝑇(𝑥) = 2𝑥. Then 𝑇 has a 

fixed point. 

Proof Note that   

                            𝑝(𝑇(𝑇𝑥), 𝑇𝑥)  + 𝑝(𝑇(𝑇𝑥), 𝑥)  

                                          = 𝑝(4x, 2x) + 𝑝(4x, x) 

                                          = max{4𝑥, 2𝑥} + max{4𝑥, 𝑥}    

                                          = 4x + 4x 

                                          = 8x 

                                          >
7

2
max{2𝑥, 𝑥} 

                                          =
7

2
𝑝(𝑇𝑥, 𝑥) 

for all 𝑥 ∈ 𝑋. Here 𝑘 = 1 and a =
7

2
. Clearly 

7

2
= 𝑎 > 1 + 2𝑘 = 1 + 2 = 3. Also 𝑇 is surjection 

on 𝑋. Thus T satisfies all the hypotheses of Corollary 4.5 and hence 𝑇 has a fixed point. Here 

0 ∈ 𝑋 is the fixed point of 𝑇. 
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