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MODELING TOBACCO SMOKING EFFECT ON HIV ANTIRETROVIRA
THERAPY AND STABILITY ANALYSISL

JACOB ISMAIL IRUNDE, LIVINGSTONE S. LUBOOBI, YAW NKANSAH-GYEKYE

Abstract. Tobacco smoking effect on ARVs remains a topic under investigation. In this paper,

a deterministic model is formulated by considering smoking interference in metabolism of ARVs

and its effect on one’s adherence to drugs in order to assess stability of equilibrium states and

determine how tobacco smoking affects antiretroviral drugs. Equilibrium states and effective re-

production number Reff are computed and stability condition for equilibrium states established.

Using linearization method and comparison theorem, analysis shows that disease free equilibrium

is globally stable when Reff < 1 and it is unstable when Reff > 1. However, due to high smoking

impairment effective reproduction number Reff cannot be less than unity and the classical require-

ment Reff < 1 for global stability of disease free equilibrium cannot be realized. Therefore tobacco

smoking affects stability of disease free equilibrium. By applying logarithmic Lyapunov function,

endemic equilibrium is asymptotically stable when Reff > 1. The analysis shows that, as tobacco

smoking interference with metabolism of ARVs increases, HIV infected T-cells and macrophages,

and free virus record a corresponding increase and this shows that tobacco smoking decreases the

efficacy of ARVs. To improve patient’s immune system and manage HIV epidemic and its therapy,

integration of smoking cessation programs in HIV care services is recommended.

1. Introduction

Tobacco smoking remains a top health agenda among HIV infected patients whether they are

under therapy or not. Contents of tobacco smoke have a devastating effect in HIV therapy and

exacerbate pathogenesis of HIV in the in-vivo dynamics (23). The benefits of ARVs in reducing

mortality and suffering among HIV infected individuals are negated by tobacco smoking (5; 19).

In addition to causing immune system defective, tobacco smoking also interferes with metabolism

of ARVs and causes drug interaction (2). Drug interaction reduces concentration of the drugs’

and cuts down their absorption which entails reduced efficacy.

To gain insight on the effect of tobacco smoking when a HIV smoker is under therapy, we use

mathematical modeling to study the behaviour of HIV within a host when ARVs are adminis-

tered. Mathematical models play an important role in studying and understanding the dynamics

of infectious diseases and their intervention strategies (13). In this study, the model for tobacco
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smoking effect on antiretroviral therapy is formulated by considering HIV in vivo dynamics and

smoking effect on T-cells and macrophages. Stability analysis of the model equilibrium states is

performed to determine the qualitative behaviour of the dynamics.

Stability analysis of the model steady states is one of the fundamental problem in mathemati-

cal epidemiology (21) as it reveals important features for persistence or eradication of the disease.

Understanding of these features which drive a particular disease helps researchers and health prac-

titioners to design treatment and intervention strategies (28). Apart from designing treatment and

control strategies, stability analysis also offers alert and precautions for disease outbreak.

To perform stability analysis of equilibrium states to determine behaviour of the disease in consid-

eration, different approaches have been proposed. However among the approaches, some are useful

in analysis of local stability and some for global stability. Linearization method (11; 24) is useful

in the analysis of local stability. Under this approach a system is linearized at equilibrium state

to obtain a Jacobian matrix. From Jacobian matrix, we compute eigenvalues. If the eigenvalues

of the Jacobian matrix are negative or have negative real parts, the equilibrium state is proved

stable. However, the equilibrium state is proved unstable when at least one of the eigenvalues is

positive or has positive real part.

Sometimes it is difficult to obtain eigenvalues directly from Jacobian matrix. Whenever it is

impossible to compute the eigenvalues from the Jacobian matrix, linearization method offers al-

ternative methods to test the signs of eigenvalues without computing them. These methods include

trace and determinant method, and Hurwitz criterion. Negative trace and positive determinant

indicate that, the Jacobian matrix has negative eigenvalues. In Hurwitz criterion, we derive a

characteristic equation and test the signs for coefficients. If coefficients do not change sign, nec-

essary condition hold. However, sufficient condition depends on the degree of the characteristic

equation. Linearization method is also used to analyze local stability of endemic equilibrium.

Comparison theorem (4) and Metzler matrix (12) are used in analysis of global stability of disease

free equilibrium. Comparison theorem proves infected classes are diminishing as uninfected classes

are growing to attain the disease free equilibrium point. Metzler matrix forms two matrices from

uninfected and infected classes. The method concludes global stability if the matrix from unin-

fected classes has negative eigenvalues and the elements of the main diagonal in the matrix of the

infected classes are negative. However, since global stability implies local stability the approaches

may also be used to establish local stability.

Lyapunov method can be used to establish stability of disease free and endemic equilibriums.

The Lyapunov functions which are used in the analysis of disease free equilibrium are unique

depending on the nature of the model under consideration. However, the analysis of endemic
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equilibrium uses general Lyapunov functions which are reviewed as follows. Explicit Lyapunov

function was constructed for the analysis of SEIR and SEIS epidemic models (15; 16). Logarith-

mic Lyapunov function was used to analyze Lotka-Voltera systems (6). Later it was used in the

analysis of endemic equilibrium for SIR, SIRS and SIS epidemic models (17). Composite qua-

dratic Lyaponuv function was proposed and used to determine stability of endemic equilibrium

for SIR, SIRS and SIS epidemic models (30). Later the composite-Volterra function was used in

the analysis of endemic equilibrium for the model with relapse (30).

As stability is a requirement for the model application in a real setting, this study analyzes

stability of a mathematical model for tobacco smoking effect on antiretroviral therapy using lin-

earization method, comparison theorem and Lyapunov function. This work is organized as follows:

we describe the model in the next Section, analysis of the model is presented after the next Section,

Numerical analysis and Conclusion mark the end.

2. Model formulation

The model divides T-cells into five classes and macrophages into four classes. Antiretroviral

drugs under consideration are reverse transcription inhibitors (RTIs) and Protease Inhibitors (PIs).

In T-cells, X represents density of uninfected T-cells, X1 density of smoking partially impaired T-

cells, X2 density of HIV latently infected T-cells, X3 density of smoking critically impaired T-cells

and X4 density of HIV productively infected T-cells. For the case of macrophages, Y represents

density of healthy macrophages, Y1 density of smoking partially impaired macrophages, Y2 density

of HIV infected macrophages, Y3 density of smoking critically impaired macrophages and density

of free virus is represented by V .

A function Λ− cV

k + V
which decreases due to the presence of free virus (14; 3) is a recruitment

rate for T-cells. The expression γX1 + ηX3 represents smoking T-cells’ impairment rate with

γ < η being relative smoking impairment rates of X1 and X3 due to the fact that, smoking

critically impaired T-cells have high concentration of tobacco smoke poisonous and carcinogenic

compounds. Parameters β1, β2 and τ represent HIV infection rates for uninfected T-cells X,

smoking partially impaired T-cells X1 and HIV infection rate of uninfected T-cells X from HIV

infected macrophages Y2 respectively. Since reverse transcription in smoking critically impaired

T-cells X3 is assumed to be spontaneous, in the presence of ARVs, HIV infects smoking critically

impaired T-cells at a rate β3(1−f1ε) where ε such that 0 ≤ ε ≤ 1 is the efficacy of RTIs in blocking

reverse transcription in T-cells and f1($) =
e−$

$ + 1
is a smoking effect in inducing metabolism

of ARVs in smoking critically impaired T-cells and macrophages, $ ∈ (0, 1) is the rate at which

smoking induces metabolism of ARVs. When $ = 0, smoking does not induce metabolism of

ARVs and when $ = 1, smoking induces metabolism of ARVs at a highest rate.
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Smoking partially impaired T-cells X1 progress to smoking critically impaired T-cells X3 at

a rate ρ. HIV latently infected T-cells X2 due to the presence of smoking partially impaired

T-cells, progress to productively infected T-cells X4 following successful reverse transcription at

a rate σ(1 − fε) where f = e−$ models smoking effect in inducing metabolism of ARVs in

smoking partially impaired T-cells and macrophages. Functions f and f1 model relative smoking

inducing effect in smoking partially and critically impaired cells as we assume smoking critically

impaired cells experience high smoking inducing effect compared to smoking partially impaired

cells. However, if ζ1 denotes drugs’ reverse transcription blocking rate in T-cells and ϑ adherence

rate to treatment, then ε = ζ1ϑ. Parameter α is smoking induced mortality in critically impaired

T-cells and µ1 is a HIV induced mortality in HIV productively infected T-cells which produce

infectious virions at a rate N1µ1(1 − f1ξ). The parameter ξ = κϑ such that 0 ≤ ξ ≤ 1 is the

efficacy of PIs in blocking production of infectious virions in T-cells, κ is the rate at which PIs

block production of infectious virions in T-cells and ϑ is drugs’ adherence rate.

Macrophages are recruited at a rate λ. Expressions β4(1− ε1), β5(1− fε1) and β6(1− f1ε1) are

HIV infection rates for healthy macrophages Y , smoking partially impaired macrophages Y1 and

smoking critically impaired macrophages Y3, where ε1 = ζ2ϑ such that 0 ≤ ε1 ≤ 1 is the efficacy of

RTIs in macrophages and ζ2 is the rate at which RTIs block reverse transcription in macrophages.

Expression νY1 + θY3 is a smoking impairment rate with relative impairment of Y1 and Y3 given

by ν and θ, we assume that ν < θ because smoking critically impaired macrophages have high

concentration of tobacco smoke poisonous and carcinogenic compounds. Smoking critically im-

paired macrophages suffer smoking induced mortality at a rate α1. HIV infected macrophages

suffer HIV induced mortality at rate δ and produce infectious virions at a rate N2δ(1 − f1ξ1)

where ξ1 = κ1ϑ such that 0 ≤ ξ1 ≤ 1 is the efficacy of PIs in blocking production of infectious

virions in macrophages and κ1 is the rate at which PIs’ block production of infectious virions.

Parameters µy and µv represent natural mortalities for macrophages’ compartments and free virus

respectively.

The model assumes that RTIs and PIs have different efficacies in T-cells and macrophages (1).

Metabolism of RTIs and PIs occurs at a cellular level. Tobacco smoking induces metabolism of

RTIs and PIs uniformly. On HIV infection, smoking partially impaired T-cells join HIV latently

infected compartment because their reverse transcription is not spontaneous and critically impaired

T-cells join productively HIV infected T-cells due to their spontaneous reverse transcription. The

model also assumes that unresponsiveness of T-cells and impairment of macrophages increase

with smoking. Interaction of variables is demonstrated by Figure 2.1, state variables and model

parameters are described in Tables 2.1 and 2.2 respectively.
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Figure 2.1. Interaction of T-cells and macrophages with free virus and tobacco

smoking in the presence of therapy.

Table 2.1. Variables description

Variable Description

X Uninfected CD4+ T-cells

X1 Smoking partially impaired CD4+ T-cells

X2 HIV latently infected CD4+ T-cells

X3 Smoking critically impaired CD4+ T-cells

X4 HIV productively infected CD4+ T-cells

Y Healthy macrophages

Y1 smoking partially impaired macrophages

Y2 HIV infected macrophages

Y3 Smoking critically impaired macrophages

V Free virus
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Table 2.2: Parameters descriptions

Parameters Description

Λ CD4+ T-cells recruitment in the absence of HIV

k half saturation constant

c rate at which HIV reduces newly produced CD4+ T-cells

λ recruitment rate for macrophages

γ rate of impairment from partially impaired CD4+ T-cells

η rate of impairment from critically impaired CD4+ T-cells

ρ progression rate from partially to critically impaired CD4+ T-cells

σ progression rate from HIV latent to actively infected CD4+ T-cells

µ natural mortality rate for CD4+ T-cells

β1 HIV infection rate for uninfected CD4+ T-cells

β2 HIV infection rate for partially impaired CD4+ T-cells

β3 HIV infection rate for critically impaired T-cells

β4 HIV infection rate for uninfected macrophages

β5 HIV infection rate for partially impaired macrophages

β6 HIV infection rate for partially impaired macrophages

ν smoking impairment rate from partially impaired macrophages

θ rate of impairment from critically impaired macrophages

µ1 HIV induced death rate for CD4+ T-cells

µy natural mortality rate for macrophages

δ HIV induced death rate for macrophages

µv natural mortality rate for free virus

α1 smoking induced death rate for impaired macrophages

α smoking induced death rate for impaired CD4+ T-cells

τ HIV transmission rate by infected macrophages to CD4+ T-cells

q progression rate from partially to critically impaired macrophages

N1 & N2 Number of virus released by a T-cell and a macrophage over the life time

ε & ε1 RTIs efficacies in T-cells and macrophages

ξ& ξ1 PIs efficacies in T-cells and macrophages

$ Smoking induction rate in metabolism of RTIs and PIs
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From the flow diagram 2.1, the model is governed by the following system of differential equations:

dX

dt
= Λ− cV

k + V
− (γX1 + ηX3)X − β1V X − τY2X − µX,(1a)

dX1

dt
= (γX1 + ηX3)X − β2V X1 − (ρ+ µ)X1,(1b)

dX2

dt
= β1V X + τY2X + β2V X1 − (σ(1− fε) + µ)X2,(1c)

dX3

dt
= ρX1 − β3(1− f1ε)V X3 − (α + µ)X3,(1d)

dX4

dt
= σ(1− fε)X2 + β3(1− f1ε)V X3 − (µ1 + µ)X4,(1e)

dY

dt
= λ− β4(1− ε1)V Y − (νY1 + θY3)Y − µyY,(1f)

dY1
dt

= (νY1 + θY3)Y − β5(1− fε1)V Y1 − (q + µy)Y1,(1g)

dY2
dt

= β4(1− ε1)V Y + β5(1− fε1)V Y1 + β6(1− f1ε1)V Y3 − (δ + µy)Y2,(1h)

dY3
dt

= qY1 − β6(1− f1ε1)V Y3 − (α1 + µy)Y3,(1i)

dV

dt
= N1µ1(1− f1ξ)X4 +N2δ(1− f1ξ1)Y2 − β1V X − β2V X1 − β3(1− f1ε)V X3

− β4(1− ε1)V Y − β5(1− fε1)V Y1 − β6(1− f1ε1)V Y3 − µvV,(1j)

subject to initial conditions X(0) = X0, X1(0) = X10, X2(0) = 0, X3(0) = 0, X4(0) = 0,

Y (0) = Y0, Y1(0) = Y10, Y2(0) = 0, Y3(0) = 0, and V (0) = V0.

3. Model Analysis

In this section the region under which the solutions of model (1) are bounded is deduced and we

compute equilibrium states, effective reproduction number and determine condition for equilibria

stability.

3.1. Boundedness of Solutions.

To prove boundedness of solutions we consider T-cells, macrophages and free virus separately.

If Tt represents sum of T-cells in all compartments, we have:

dTt
dt

= Λ− cV
k+V
− µTt − αX3 − µ1X4,

dTt
dt

≤ Λ− µTt
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Rearrangement gives the following equation:

(2)
dTt
dt

+ µTt ≤ Λ

whose general solution is given by

(3) Tt ≤
Λ

µ
+

(
Tt(0)− Λ

µ

)
e−µt.

Considering the two cases when Tt(0) >
Λ

µ
and when Tt(0) <

Λ

µ
, we have:

(4)
Tt ≤ Φt, where

Φt = max

{
Tt(0),

Λ

µ

}
.

However, since Tt represents the sum of all T-cells, it follows that:

(5) X4 ≤ Φt.

For the case of macrophages if Mt represents the sum of macrophages in all compartments and we

apply the same procedures as for T-cells, we have

(6) Mt ≤ Φm = max

{
Mt(0),

λ

µy

}
.

Since Mt is the sum of macrophages in all compartments, it follows that

(7) Y2 ≤ Φm.

We now consider equation (1j), so that

dV

dt
= N1µ1(1− f1ξ)X4 +N2δ(1− f1ξ1)Y2 − β1V X − β2V X1 − β3(1− f1ε)V X3

−β4(1− ε1)V Y − β5(1− fε1)V Y1 − β6(1− f1ε1)V Y3 − µvV,
dV

dt
≤ N1µ1(1− f1ξ)X4 +N2δ(1− f1ξ1)Y2 − µvV.

Substitution of X4 and Y2 in equation

(8)
dV

dt
≤ N1µ1(1− f1ξ)X4 +N2δ(1− f1ξ1)Y2 − µvV,

yields solution which shows that free virus are also bounded. The solution is given by

(9) V (t) ≤ Ψ01,

where

Ψ01 = Max

{
N1µ1(1− f1ξ)Tt(0)

µv
+
N2δ(1− f1ξ1)Mt(0)

µv
,
N1µ1(1− f1ξ)Λ

µµv
+
N2δ(1− f1ξ1)λ

µyµv

}
.

The solutions of the model system are bounded in the region

(10) Υ =
{

(T, Y,M, V ) ∈ R10
+ :≤ T ≤ Φt : 0 ≤M ≤ Φm : 0 ≤ V ≤ Ψ01

}
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where T and M represent T-cells’ and macrophages’ compartments respectively.

Any solution on the boundary of Υ converges and remains in the region. Existence, uniqueness

and continuity of solutions of the model (1) hold in Υ.

3.2. Disease Free Equilibrium and Effective Reproduction Number Reff .

The disease free equilibrium of the model (1) when there is no tobacco smoking and HIV is

given by

(11) χ0 (X,X1, X2, X3, X4, Y, Y1, Y2, Y3, V ) =

(
Λ

µ
, 0, 0, 0, 0,

λ

µy
, 0, 0, 0, 0

)
We use disease free equilibrium to compute effective reproduction number Reff in the next section.

3.2.1. Effective Reproduction Number Rff . If we consider the infected classes in a model system

(1) so that the new infections and transfer terms are defined by Mi and Ni respectively, the matrix

M and N are defined by

(12) M =
∂Mi

∂Xj

(χ0) and N =
∂Ni

∂Xj

(χ0).

According to (29), the effective reproduction number Reff is given by

(13) Reff = ρ
(
MN−1

)
which is the maximum eigenvalue of the matrix MN−1. From the model (1), we define the new

infections and transfer terms to be

(14) Mi =



(γX1 + ηX3)X

β1V X + τY2X + β2V X1

0

β3(1− f1ε)V X3

(νY1 + θY3)Y

β4(1− ε1)V Y + β5(1− fε1)V Y1 + β6(1− f1ε1)V Y3
0

N1µ1(1− f1ξ)X4 +N2δ(1− f1ξ1Y2


and

(15) Ni =



(ρ+ µ)X1

(σ(1− fε) + µ)X2

(α + µ)X3 − ρX1

(µ1 + µ)X4 − σ(1− fε)X2

(q + µy)Y1
(δ + µy)Y2

(α1 + µy)Y3 − qY1
µvV


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From equation (13), the effective reproduction number Reff works out to be:

(16) Reff = max{Reff1 , Reff2}

where

Reff1 =
Λγ

µ(ρ+ µ)
+

Ληρ

µ(ρ+ µ)(α + µ)
,

Reff2 =
λν

µy(q + µy)
+

λνq

µy(q + µy)(α1 + µy)
.

The effective reproduction number Reff is given as the maximum of partial effective reproductive

number due to tobacco smoking in T-cells Rff1 and partial effective reproductive number due to

tobacco smoking in macrophages Rff2. Tobacco smoking dominates HIV in producing new infec-

tions. The partial effective reproductive numbers Rff1 and Rff2 can be written as the sum of new

infections which are caused by smoking partially impaired cells and those caused by smoking crit-

ically impaired cells. If the new infections which are caused by smoking partially impaired T-cells

are defined by RePT and those caused by smoking critically impaired T-cells by ReCT then

(17)
Reff1 = RePT +ReCT ,

where RePT =
Λγ

µ(ρ+ µ)
and ReCT =

Ληρ

µ(ρ+ µ)(α + µ)
.

Similarly for the case of macrophages, if the new infections which are caused by smoking par-

tially impaired macrophages are defined by RePM and those which are caused by smoking critically

impaired macrophages by ReCM then

(18)

Reff2 = RePM +ReCM ,

where

RePM =
λν

µy(q + µy)
and ReCM =

λνq

µy(q + µy)(α1 + µy)
.

We use effective reproduction number Reff to determine stability of disease free equilibrium.

3.2.2. Local stability of a Disease Free Equilibrium χ0. When tobacco smoking impairs less than

one cell (T-cells or macrophages) and HIV infects less than one cell (T-cells or macrophages) a

case in which Reff < 1, disease free equilibrium is locally asymptotically stable. It becomes unstable

when tobacco smoking impairs more than one cell (T-cells or macrophages) and HIV infects more

than one cell (T-cells or macrophages) the case in which Reff > 1. To find condition for local

stability of disease free equilibrium, we state and prove the following theorem.

Theorem 1. : Disease free equilibrium is locally asymptotically stable when Reff < 1 and unstable

when Reff > 1.
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To prove the theorem, we linearize the model system (1) at disease free equilibrium to obtain a
matrix

(19) J(χ0) =



−µ −γΛ

µ
0 −γη

µ
0 0 0 −τΛ

µ
0 − c

k
− β1Λ

µ

0
γΛ

µ
− w1 0

ηΛ

µ
0 0 0 0 0 0

0 0 −wA 0 0 0 0
τΛ

µ
0

β1Λ

µ
0 ρ 0 −w0 0 0 0 0 0 0

0 0 σ(1 − fε) 0 −w6 0 0 0 0 0

0 0 0 0 0 −µy −νλ
µy

0 −θλ
µy

− d3
µy

0 0 0 0 0 0
νλ

µy
− w3 0

θλ

µy
0

0 0 0 0 0 0 0 −w4 0
d3
µy

0 0 0 0 0 0 q 0 −w2 0

0 0 0 0 d1 0 0 d2 0 −β1Λ

µ
− d3
µy

− µv



where

d1 = N1µ1(1− f1ξ), d2 = N2δ(1− f1ξ1), d3 = β4λ(1− ε1).

Negative eigenvalues from matrix J(χ0) will mean stable disease free equilibrium. Negative trace

and positive determinant of the matrix J(χ0) also means that the eigenvalues of the matrix J(χ0)

are negative and disease free equilibrium is stable. After identifying two negative eigenvalues −µ
and −µy in first and sixth columns, the matrix reduces to

(20) J1(χ0) =



γΛ

µ
− w1 0

ηΛ

µ
0 0 0 0 0

0 −wA 0 0 0
τΛ

µ
0

β1Λ

µ
ρ 0 −w0 0 0 0 0 0

0 σ(1 − fε) 0 −w6 0 0 0 0

0 0 0 0
νλ

µy
− w3 0

θλ

µy
0

0 0 0 0 0 −w4 0
d3
µy

0 0 0 0 q 0 −w2 0

0 0 0 d1 0 d2 0 −β1Λ

µ
− d3
µy

− µv



If we denote trace and determinant of matrix J1(χ
0) by trJ1 and detJ1, then trace and determi-

nant are given by

(21)
trJ1 = w1(RePT − 1) + w3(ReMP − 1)− β1Λ

µ
− β4(1− ε1)

µy
− µv − w0 − w2

−w4 − wA − w6,
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and

(22)

detJ1 = Φ

[
β1Λ

µµv
+
β4(1− ε1)λ

µyµv
+ 1−ReH

]
(1−Reff1)(1−Reff2),

where ReH =
(τβ4(1− ε1) + β1µµyw4)σΛN1µ1(1− f1ξ)(1− fε)

µµyµvwAw4w6

+
N2δ(1− f1ξ1)β4(1− ε1)λ

µyµvw4

, Φ = µvwAw0w1w2w3w4w6.

The expressions for RePT and ReMP are given in (17) and (18) respectively. We find that

(23) trJ1 < 0 if and only if RePT < 1 and ReMP < 1,

and

(24)
detJ1 > 0 if and only if Reff1 < 1, Reff2 < 1

and ReH <
β1Λ

µµv
+
β4(1− ε1)λ

µyµv
+ 1.

Non-negative determinant and negative trace represent a model system with locally asymptotically

stable disease fee equilibrium when Reff < 1. However since Reff is the maximum of Reff1 and

Reff2, stable disease free equilibrium will not be realized when Reff1 > 1 and Reff2 > 1.

3.2.3. Global Stability of a Disease Free Equilibrium χ0. Global stability analysis of a disease free

equilibrium is usually done by Lyaponuv functions as applied in (27), (31), (25) and (26), and

by comparison theorem as used in (4; 9) and (32). Since Lyapunov functions are not unique and

present a challenge in construction, this work adopts comparison theorem in global stability anal-

ysis for disease free equilibrium.

Considering infected classes alone in the model (1), we write the system without uninfected com-

partments by
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(25)



X ′1
X ′2
X ′3
X ′4
Y ′1
Y ′2
Y ′3
V ′


= (M−N)



X1

X2

X3

X4

Y1

Y2

Y3

V


−



(γX1 + ηX3)

(
Λ

µ
−X

)
(τY2 + β1V )

(
Λ

µ
−X

)
0

0

(νY1 + θY3)

(
λ

µy
− Y

)
β4V

(
λ

µy
− Y

)
0

L+ β1V

(
X − Λ

µ

)
+ β4(1− ε1)V

(
Y − λ

µy

)


L = β1V

Λ

µ
+ β4(1− ε1)V

λ

µy
+ β2V X1 + β3(1− f1ε)V X3 + β5(1− fε1)V Y1 + β6V (1− f1ε1)Y3.

Matrices M and N represent new infections and transfer terms respectively. For t > 0, X ≤ Λ

µ

and Y ≤ λ

µy
we see that

(26)



X ′1
X ′2
X ′3
X ′4
Y ′1
Y ′2
Y ′3
V ′


≤ (M−N)



X1

X2

X3

X4

Y1
Y2
Y3
V


Since the matrix M−N has negative eigenvalues, equation (26) represents a stable disease free

equilibrium whereby (X, Y ) →
(

Λ

µ
,
λ

µy

)
and (X1, X2, X3, X4, Y1, Y2, Y3, V ) → (0, 0, 0, 0, 0, 0, 0, 0)

as t → ∞. This shows that a disease free equilibrium is globally asymptotically stable. We

summarize this result in Theorem 2.

Theorem 2. : The disease equilibrium χ0 is globally asymptotically stable when (X, Y ) →(
Λ

µ
,
λ

µy

)
and (X1, X2, X3, X4, Y1, Y2, Y3, V )→ (0, 0, 0, 0, 0, 0, 0, 0) for which Reff < 1

3.2.4. Global stability of endemic equilibrium. By reverse condition as stated by (29) the endemic

equilibrium Υ∗ is locally stable. Lyapunov functions and LaSalle invariant principle are used to

analyze global stability of endemic equilibrium Υ∗. Using a system (1), we define a logarithmic
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Lyapunov function by

(27) U2(T,M, V ) = b(T − T ∗ lnT ) + c(M −M∗ lnM) + d(V − V ∗ lnV ),

T , M and V represent T-cells, macrophages and free virus respectively and T ∗, M∗ and V ∗

represent T-cells, macrophages and free virus at endemic equilibrium point. In full, function

U2(T,M, V ) is written as

(28)

U2(T,M, V ) = b1(X −X∗ lnX) + b2(X1 −X∗1 lnX1) + b3(X2 −X∗2 lnX2)

+b4(X3 −X∗3 lnX3) + b5(X4 −X∗4 lnX4) + b6(Y − Y ∗ lnY )

+b7(Y1 − Y ∗1 lnY1) + b8(Y2 − Y ∗2 lnY2) + b9(Y3 − Y ∗3 lnY3)

+b10(V − V ∗ lnV ).

Derivative of equation (28) with respect to time, gives

(29)

dU2

dt
= b1

(
1− X∗

X

)
dX

dt
+ b2

(
1− X∗1

X1

)
dX1

dt
+ b3

(
1− X∗2

X2

)
dX2

dt

+b4

(
1− X∗3

X3

)
dX3

dt
+ b5

(
1− X∗4

X4

)
dX4

dt
+ b6

(
1− Y ∗

Y

)
dY

dt

+b7

(
1− Y ∗1

Y1

)
dY1
dt

+ b8

(
1− Y ∗2

Y2

)
dY2
dt

+ b9

(
1− Y ∗3

Y3

)
dY3
dt

+b10(1−
V ∗

V
)
V

dt
,

Substitution of the rate of change for each variable at endemic equilibrium, simplification and

rearrangements give

(30)

dU2

dt
= −b1µX

(
1− X∗

X

)2

− b2w1X1

(
1− X∗1

X1

)2

− b3wAX2

(
1− X∗2

X2

)2

−b4w0X3

(
1− X∗3

X3

)2

− b5w6X4

(
1− X∗4

X4

)2

− b6µyY
(

1− Y ∗

Y

)2

−b7w3Y1

(
1− Y ∗1

Y1

)2

− b8w4Y2

(
1− Y ∗2

Y2

)2

− b9w2Y3

(
1− Y ∗3

Y3

)2

−b10µvV
(

1− V ∗

V

)2

+ F2(X,X1, X2, X3, X4, Y, Y1, Y2, Y3, V ),
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where

(31)

F2 = −b1γXX1

(
1− X∗

X

)(
1− X∗X∗1

XX1

)
− b1ηXX3

(
1− X∗

X

)(
1− X∗X∗3

XX3

)
−b1β1V X

(
1− X∗

X

)(
1− V ∗X∗

V X

)
− b1τY2X

(
1− X∗

X

)(
1− Y ∗2 X

∗

Y2X

)
−b2β2V X1

(
1− X∗1

X1

)(
1− V ∗X∗1

V X

)
− b4β3(1− f1ε)V X3

(
1− X∗3

X3

)(
1− V ∗X∗3

V X3

)
−b6β4(1− ε1)V Y

(
1− Y ∗

Y

)(
1− V ∗Y ∗

V Y

)
− b6νY Y1

(
1− Y ∗

Y

)(
1− Y ∗Y ∗1

Y Y1

)
−b6θY Y3

(
1− Y ∗

Y

)(
1− Y ∗Y ∗3

Y Y3

)
− b7β5(1− fε1)V Y1

(
1− Y ∗1

Y1

)(
1− V ∗Y ∗1

V Y1

)
−b9β6(1− f1ε1)V Y3

(
1− Y ∗3

Y3

)(
1− V ∗Y ∗3

V Y3

)
− b10β1V X

(
1− V ∗

V

)(
1− V ∗X∗

V X

)
−b10β2V X1

(
1− V ∗

V

)(
1− V ∗X∗1

V X1

)
− b10β3V X3

(
1− V ∗

V

)(
1− V ∗X∗3

V X3

)
−b10β4V Y

(
1− V ∗

V

)(
1− V ∗Y ∗

V Y

)
− b10β5V Y1

(
1− V ∗

V

)(
1− V ∗Y ∗1

V Y1

)
−b10β6V Y3

(
1− V ∗

V

)(
1− V ∗Y ∗3

V Y3

)
.

Following the approach in (22) and (20), F2 is non-positive. Function

F2 ≤ 0 for X,X1, X2, X3, X4, Y, Y1, Y2, Y3, V > 0. The time derivative
dU2

dt
≤ 0 when

X,X1, X2, X3, X4, Y, Y1, Y2, Y3, V > 0, for X = X∗, X1 = X∗1 , X2 = X∗2 , X3 = X∗3 , X4 = X∗4 ,

Y = Y ∗, Y1 = Y ∗1 , Y2 = Y ∗2 , Y3 = Y ∗3 , V = V ∗,
dU2

dt
= 0. This indicates that, the largest invariant

set Υ for which
dU2

dt
= 0 is a singleton Υ∗ which is endemic equilibrium. Using LaSalle Invariant

Principle (18), Υ∗ is globally stable in the interior of Υ when Reff > 1. This result is summarized

in the following theorem

Theorem 3. : If Reff > 1, then the model system (1) has unique endemic equilibrium Υ∗ which

is globally asymptotically stable in the interior of Υ∗.

4. Numerical Analysis

In this section we illustrate the effect of tobacco smoking on antiretroviral therapy, and we show

existence and stability of equilibrium states numerically. As smoking interferes with metabolism

of antiretroviral drugs, stability of equilibrium states is assessed by considering infected and non

infected classes. The simulation results on how smoking affects ARVs on the dynamics of HIV

among T-cells and macrophages are discussed. We use parameter values in Table 4.1 to simulate

the model using MATLAB (Version 7.1.0.246 (R14) Service Pack 3).
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Table 4.1: Parameter values

Parameter Value/Unit Source

Λ 600 year−1 Assumed

k 12 (3)

c 110 year−1 (14)

λ 100 cells
ml yaer

(8)

γ 0.0025 year−1 (10)

η 0.007 year−1 Assumed

ρ 0.785 year−1 Assumed

σ 0.45 year−1 Assumed

µ 0.135 year−1 (8)

β1 0.00876 ml
virus year

(26)

β2 0.0012 ml
virus year

(7)

β3 0.0016 ml
virus year

(10)

β4 0.0002 ml
virus year

(8)

β5 0.0004 ml
virus year

(8)

β6 0.0005 ml
virus year

(8)

ν 0.0016 year−1 Assumed

θ 0.003 year−1 Assumed

µ1 0.775 year−1 Assumed

µy 0.0351 year−1 (10)

δ 0.25 year−1 (8)

µv 50 year−1 Assumed

α1 0.03 year−1 Assumed

α 0.102 year−1 Assumed

τ 0.000365 year−1 (14)

q 0.38 year−1 Assumed

N1 100 year−1 (26)

N2 100 year−1 (8)

$&ϑ 0.1 & 0.5 Assumed

ζ1&ζ2 0.5 &0.6 Assumed

κ1&κ2 0.9 &0.92 Assumed

In this section, we begin by plotting the general dynamics for model (1). Figure 4.1 shows the

dynamics among HIV in T-cells and macrophages when smoking induces metabolism of ARVs
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at a rate 0.3. The dynamics show the existence of unstable disease free equilibrium between 0

and 2 years. During this time interval, uninfected T-cells and healthy macrophages grow slightly.

However, smoking compartments indicate a fast growth compared to HIV compartments which take

over later.
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Figure 4.1. Variation of cells’ populations in the general dynamics when a HIV

smoker is under therapy.

To show the endemic equilibrium, we plot HIV infected and smoking impaired classes and they

are shown in Figure 4.2. Smoking impaired classes increase between 0 and 5 years and on their

downfall HIV infected classes and free virus increases.
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Figure 4.2. Variation of HIV infected and smoking impaired classes with time.

We have shown unstable disease free and endemic equilibriums, now we assess the effect of

tobacco smoking on the antiretroviral drugs by looking into how HIV latently and actively infected

T-cells, HIV infected macrophages and free virus behave when smoking interferes metabolism of
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ARVs.

In Figures 4.3 and 4.4, HIV actively infected T-cells, HIV infected macrophages and free virus

increase correspondingly with increasing in interference of ARVs’ metabolism. This shows that

smoking interference in metabolism of ARVs reduces drugs’ efficacy. For HIV latently infected

T-cells as antiretroviral drugs are taken, they increase from 0 to 10 years. However from 10 years

and above HIV latently infected T-cells decreases as smoking interference with metabolism of ARVs

increases. This is the time when ARVs becomes ineffective due to tobacco smoking.
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Figure 4.3. Variation of HIV actively and latently infected T-cells with respect to

smoking inducing effect.
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Figure 4.4. Variation of HIV infected macrophages and free virus with respect to

smoking inducing effect.

We study stability of endemic equilibrium in the dynamics of HIV in T-cells and macrophages by

considering uninfected T-cells and macrophages, smoking partially and critically impaired classes,

HIV infected T-cells and macrophages and free virus. Figures 4.5, 4.6, 4.7 and 4.8 show the

trajectories for mentioned compartments. The trajectories for different initial conditions converge

to a single point as time goes on. This indicate the existence of endemic equilibrium which we
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already established earlier. Convergence for trajectories indicates that endemic equilibrium exists,

and it is globally asymptotically stable whenever it exists.
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Figure 4.5. Trajectories of uninfected T-cells and healthy macrophages.
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Figure 4.6. Trajectories of Smoking critically impaired T-cells and macrophages.
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Figure 4.7. Trajectories of HIV actively infected T-cells and macrophages.

0 2 4 6 8 10 12 14 16 18 20
0

100

200

300

400

500

600

700

800

Time[years]

F
r
e

e
 
v

i
r
u

s
 
(
v

i
r
u

s
/
m

m
3
)

Figure 4.8. Trajectories of free virus.

5. Conclusion

A mathematical model to determine the effect of tobacco smoking on antiretroviral therapy and

assess stability of equilibrium states is presented and analyzed. The effective reproduction number

Reff is computed by using next generation approach (29) and it is given as the maximum of partial

effective reproduction numbers due to tobacco smoking in T-cells Reff1 and macrophages Reff2. The

disease free equilibrium is shown to be globally asymptotically stable when Reff < 1. However with

the parameters that we have used in simulation, Reff1 and Reff2 are not less than unit. Since Reff

is the maximum of Reff1 and Reff2, it will never be less than unity and the classical requirement

of Reff < 1 for global stability of disease free equilibrium cannot be achieved. Therefore tobacco

smoking affects stability of disease free equilibrium.

Numerical simulation indicates that the unstable disease free equilibrium and stable endemic

equilibrium exist. Convergence of trajectories in Figures 4.5, 4.6, 4.7 and 4.8 proves the existence

of endemic equilibrium and its stability. Endemic equilibrium is asymptotically stable whenever it

exists when Reff > 1. Simulation indicates that tobacco smoking reduces the efficacy of antiretro-

viral therapy. This is reflected by increase of free virus, HIV infected T-cells and macrophages

when smoking induces metabolism of ARVs.
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