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Abstract. In Tanzania, management of land and water resources is considered an ab-

solutely strategic priority for agricultural development. In this study, a Multi-Objective

optimization (MOO) model was formulated to utilize the available water by identifying the

best crop patterns which maximize the farm total net benefit and minimize the total vari-

able costs. The data for 6 crops collected from Nkoanrua region and FAO were used for the

model analysis. The Subdivision Algorithm which is a set oriented numerical method was

used to analyse the model. After 54 subdivision steps, the model proposed that, the amount

of land allocated to crops which are less profitable depends on the minimum requirement

constraints, while, for more profitable crops, the allocation is based on costs of production,

minimum and maximum requirement constraints, Benefit, and water requirements. Lastly,

the sensitivity analysis shows that, the price and production costs for carrots and maize has

no impact on the model solutions.

1. Introduction

Land and water are essential resources to sustainable agricultural development, and are

basically linked to global challenges of food insecurity. Pressure from population explosion,

urbanization, extravagant lifestyles, climate change, intensive agriculture and industrializa-

tion makes water and land to be under threat. Planning and managing agricultural water

in the world is an important field of study for the assurance of food supply and to minimize

water stress in the future.
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There have been extensive efforts that had fairly succeeded in introducing the concept of

water rights which lead to the formation of different water board organizations at different

levels [5], meanwhile, most of these organizations have not kept pace with the growing inten-

sity of agricultural development and the increasing level of interdependence and competition

over land and water resources. The needs for an optimization model is crucial tool to support

reallocation of the limited water resources based on a fair, effective and sustainable standard

[24]. To address this challenge, global optimization techniques are essential field of study. In

agriculture the aim is to achieve maximum crop yield under limited water and land supply

[20]. When many uncertainty factors are involved in irrigation practice, management of wa-

ter for irrigation becomes a complex tasks. The factors such as crop planting area, irrigation

water use efficiency, water supply, groundwater resources, minimum and maximum resource

constraints, and economic constraints may have characteristics of an uncertainty that may

affect the efficiency of the model.

There are a number of models that has been formulated to ensure the efficient utilization

of available water and land in agriculture. [22] formulated a model for maximizing bene-

fits for irrigation project in India, Genetic Algorithm (GA) and Linear Programming (LP)

techniques were applied to solve the model and the results were compared. The comparison

showed that, GA is an effective optimization tool for irrigation planning and can be used for

more complicated systems that involve non-linear optimization. [2] developed a non-linear

optimization (NLP) and Linear Programming (LP) model for the determination of optimum

cropping pattern, water amount and farm income under sufficient and limited water supply

environments. The NLP model provide higher farm income values than the LP model under

deficit irrigation conditions.

[25] proposed a multi-criteria decision-making (MCDM) framework to analyse production

targets under physical, biological, economic and environmental constraints. The Goal Pro-

gramming (GP) and simple LP techniques were employed to analyse the model, the obtained

results showed that GP solutions were better than of the simple LP. This supports [4] claim

about the effectiveness of GP in analysing multi-objective, nevertheless, there is an argument

on how to select the target values and weights for the different goals.

[17] formulated a model for optimal irrigation planning with the area for cultivation as

decision variable, the model comprises of three conflicting objectives. To obtain individual

solutions of the objective functions, Crisp Linear Programming (CLP) was used, then, the

crisp solutions were then solved together to obtain the solution under fuzzy multi-objective

environment with maximum-minimum operators. The two-phase Multi- Objective Fuzzy

Linear Programming (MOFLP) approach didn’t show any significant improvement over the

maximum-minimum MOFLP.

In the study conducted by [15], a multi-objective irrigation water resources optimal al-

location model (ICSIMP) was developed, the model was integrated with Interval Linear
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Programming (ILP), the Chance-Constrained Programming(CCP), Semi-Infinite Program-

ming (SIP) and Integer Programming (IP). The obtained solutions offered a scientific basis

for local and and similar area with water resources optimal allocation system.

Other studies which proposed the model for irrigation water management: [18, 19],[14, 23]

and [1, 9]. Prominent methods used for multi-objective model analysis includes; Genetic Al-

gorithm (GA), Non-Sorting Genetic Algorithm (NSGA-II) and Multi-Objective Differential

Evolution (MODE) respectively.

Despite the successes of the previous studies on optimizing the use of water for irrigation

by using either traditional mathematical programming methods or evolutionary algorithms

to determine the solutions of the problem, it is true that, the use of traditional program-

ming methods does not offer Pareto optimal solutions in a single run and are very sensitive

to the shape of the Pareto front [12]. Furthermore, there is a question if there is a suffi-

cient and commonly accepted delineations of the quantitative performance metrics for the

multi-objective optimizers when using Evolutionary Algorithms [11]. For the purpose of the

contribution of the body of knowledge in the field of irrigation water optimization, the pa-

per proposed a model for optimizing irrigation water allocation by identifying the best crop

patterns for maximizing the farm net benefit and minimizing the crops production costs.

The Subdivision Algorithm proposed by [6], which is a set oriented numerics method was

used to analyse the model, by using this method, the Pareto set is approximated by a nested

sequence of increasingly refined box coverings.

2. Problem formulation

The multi-objective programming algorithm was taken into consideration in model for-

mulation. The algorithm is one of the Multi-objective Decision Making (MODM) technique

in which problem with multiple conflicting objectives are considered [10]. Planning the use

of available water and land for irrigation was structured as a Multi-objective Optimization

Problem (MOOP) with multiple conflicting objectives. The model consists of the uncertain-

ties of the problem (decision variables ), the known data (parameters), the constraints (the

relationships that describe and control the system) and the drivers of the optimization (two

objective functions).

2.1. Decision Variables of the Model. The decision variables for the model are the

amounts of land in hectares that will be allocated to different crop varieties. The allocation

should be determined in a way that provide the maximum value of total net benefit and

Minimum value of the total variable costs through proper utilization of available water and

land. Defined as Ai for i = 1, 2, ..., I.

2.2. Parameters of the Model. The parameters are the known values (data) that are

required by the model as an input to calculate the decision variables. These parameters are
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as defined in Table 1

Table 1. Parameters and description.

Parameters Description

V Ci Variable cost (TZS) in a single cycle of crop i production, represented as per unit hectare.

Pi Market price (TZS) of crop i represented as per unit kilogram (Kg).

Y mi Maximum crop yield (Kg), represented as per unit hectare.

ETa Actual evapotranspiration (mm).

ETm Maximum (crop) evapotranspiration (mm).

λi,j Sensitivity index of crop i to water stress at growth stage j.

ki Crop i yield response factor.

IWRi Amount of irrigation water needed by the crop i to grow optimally, represented as per unit hectare

TAW Total available water for Irrigation supply in the region (mm)

Amax Maximum crop i area (Ha)

Amin Minimum crop i area (Ha)

J Number of growth stages

I Number of crops

CPi Crop i Production Costs, the sum of fixed costs (FC) and variable costs (VC)

wi,j Amount of water required by crop i at growth stage j

Pe Effective precipitation (mm)

PT Total precipitation (mm)

2.3. Objective Function. The multi-objective optimization problem designated in this re-

search consists of two objective functions, namely: Maximizing Total Net Benefit (maxTNB)

from planning region under different crops after meeting the costs of seeds, fertilizer, labor,

transportation, surface water and plant protection, and Minimizing the Total related Vari-

able Costs (minTV C) in irrigation and crops growing.

1. Total Net Benefit

The Total Net Benefit (TNB) from planning region under different crops after meet-

ing the costs of seeds, transport, fertilizer, labour, and plant protection are to be

maximized.

(1) Maximize TNB
Ai

=
I∑
i=1

(Y ai(wi,j)Pi − PCi)Ai

where Y ai(wi,j) is expressed from [13] crop production function as:

Y ai(wi,j) = Y mi

J∏
j=1

(
ETai,j
ETmi,j

)λi,j
(2)

Upon substitution, equation 2 into 1, the objective is expressed as follows:

Maximize TNB
Ai

=
I∑
i=1

(
PiY mi

J∏
j=1

(
ETai,j
ETmi,j

)λi,j
− PCi

)
Ai(3)
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The calculation of ETa is given by [8]:

ETa(z, t) = g(z)ETm(t)(4)

g(z) =

{
1 (1− p)TASW < z ≤ TASW

z
[(1−p)TASW ]

0 < z ≤ (1− p)TASW
(5)

where, z = level of soil moisture in the root zone, t = time interval, g(z) = soil water

depletion function, TASW = total available soil water, p = soil moisture depletion

factor for no stress and ETm(t) = maximum evapotranspiration.

Since the only decision variables are the optimal allocation of cropped areas, the

actual yield is taken to be equal to the maximum yield, hence: g(z) = 1 [7].

2. Variable Costs Minimization

Minimization of all variable costs incurred in crop production (TZS). The vari-

able costs in crop production includes: Labour Costs (LC); Plant Protection Costs

(PPC); Fertilizer Costs (FC); Seeds Cost (SC) and Transport Costs (TRC).

V C = LC + PPC + FC + SC + TRC(6)

since the variable costs for crop production is proportional to the land allocated for

cultivation Ai, the objective function is given as follows:

Minimize TV C
Ai

=
I∑
i=1

V CiAi(7)

2.4. Model Constraints. The best combination of the decision variables Ai is found with

respect of the defined limitations or constraints. In this paper the constraints of the system

are as follows:

1 Total Available Area

The total area allocated for different crops in a particular season should be less than

or equal to the corresponding cultivable command area:

I∑
i=1

Ai ≤ TA(8)

2 Total Available Water

Sum of all Crop Irrigation Water Requirement (IWR) for all crops should be less

than or equal to Total Available Water (TAW ) in the given irrigation scheme in a

year:

I∑
i=1

IWRiAi ≤ TAW(9)
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3 Upper and Lower bounds (Affinity)

The area of crop(s) in any season must be greater than or equal to the minimum area

(Amini ) and less than or equal to maximum area (Amaxi ) . Maximum and Minimum

area were fixed based on the existing and projected cropping area in the command

area:

Amini ≤ Ai ≤ Amaxi for i = 1, ..., I(10)

2.5. Model Input. Table 2 shows the input parameters for the formulated model as col-

lected from Nkoanrua region and literature. kai and λbi are Yield response factor and Crop

Table 2. Some critical data for the annual crops under Nduruma Catchment

Crop

Growth Parameter Maize Carrots Cucumber Tomato Melon Cabbage

Initial Stage ka 0.4 0.45 0.45 0.45 0.45 0.45

λb 0.35 0.39 0.39 0.39 0.39 0.39

Devt. Stage ka 0.80 0.75 0.70 0.75 0.75 0.75

λb 0.75 0.69 0.64 0.69 0.69 0.69

Mid Stage ka 1.15 1.05 0.90 1.15 1.00 1.05

λb 1.20 1.06 0.87 1.02 0.99 1.06

Late Stage ka 0.70 0.90 0.75 0.80 0.75 0.90

λb 0.64 0.87 0.69 0.75 0.69 0.87

P e (TZS/Kg) 540 200 634 600 300 165

V Ce (TZS/Ha×105) 6.5 4.9 6.1 15.1 6.0 4.5

Y me (Kg) 3000 13000 15000 22000 24000 25000

IWR (m3/Ha) 4005 4300 2400 4500 3000 4000

sensitivity index to water stress respectively. a Enza Zaden; b Estimated by using [8] model

and eNkoanrua Region.

3. Multi-Objective Optimization Problem (MOOP)

Consider the general form of a MOOP:

max/min fm(x), m = 1, 2, ...,M ; M ≥ 2;

Subject to: gj(x) ≥ 0, j = 1, 2, ..., J ;

hk(x) = 0, k = 1, 2, ..., K;

xLi ≤ xi ≤ xUi , i = 1, 2, ..., n.(11)

A solution x ∈ Rn is a vector of n decision variables representing the quantities for which

values are to be chosen in the optimization problem: x = [x1, x2, ..., xn]T . The image of
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the decision variable space Rn under f is the objective space which consists of the points

z = [z1, z2, ..., zM ]T .

Definition 3.1. Let v, w ∈ RM . The vector v is less than w (v <p w) if vm < wm
∀m ∈ {1, ...,M}. The relation ≤p is defined in an analogous way.

In Multi-Objective Optimization there is no single solution (as in single objective) that

simultaneously optimizes each objective function. Instead, we usually look for set of ”trade-

offs”. The set of trade-offs is called Pareto set (after Vilfredo Pareto) and is defined as

follows:

Definition 3.2. [Pareto Dominance relation, Pareto Optimal]

(a) A point x∗ ∈ Rn Pareto dominates a point x ∈ Rn, denoted by x∗ ≺p x, if f(x∗) ≤p
f(x) and f(x∗) 6= f(x).

(b) A point x∗ ∈ Rn is called (globally) Pareto optimal if there exists no point x domi-

nating x∗ ∈ Rn.

(c) The non-dominated set of the entire feasible search space is the globally Pareto-

optimal set, its image is called Pareto front.

A more detailed introduction to multi-objective optimization can be found in [16] and [12].

4. Subdivision Algorithm

The subdivision algorithm was used to solve the formulated problem. The algorithm has

been implemented in the software package Global Analysis of Invariant Objects (GAIO). To

be able to use GAIO, the optimization model and the constraints have to be implemented

in MATLAB [6, 21]. GAIO has an advantage over other methods when the image space

dimension increases, Pareto front is disconnected and derivatives are hard to compute or

not available. The Pareto set is approximated by a nested sequence of increasingly refined

box coverings. Each iteration of the algorithm consists of a subdivision step and a selection

step. In the subdivision step, the current box covering is subdivided into a finer covering

that covers the same set. In the selection step, all boxes of the new box covering that are

completely dominated by other boxes are removed from the collection. In this way each box

covering is a more precise covering of the Pareto set (Algorithm 1).

4.1. Hausdorff Distance. Hausdorff distance (dH) is the farthest distance any point of B

is from the set A, or the farthest any point of A is from B, whichever is greater.

Definition 4.1. Given a metric space X, the set of closed sets of X supports a metric,

the Hausdorff metric. If A is a set in X and r > 0, we define the r−thickening, or

r−neighbourhood, of A to be the set A(r) defined by

(12) A(r) =
⋃
x∈A

Bx(r)
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where Bx(r) is the (open) ball of radius r about x. if A,B ⊂ X are closed sets, define their

Hausdorff distance dH(A,B) to be the number

(13) dH(A,B) = inf
{
r > 0 |B ⊂ A(r) and A ⊂ B(r)

}
Recall that the infimum of an empty set is regarded to be + ∞. A equivalent definition is as

follows. Given a point p ∈ X and a closed set A ⊂ X, define

(14) d(p,A) = inf
y∈A

dist(p, y)

then the Hausdorff distance is

(15) dH = max

{
sup
x∈A

d(x,B), sup
x∈B

d(y, A)

}
Theorem 4.2. If (X, d) is a bounded metric space, the set of closed sets of X is itself a

metric space with the Hausdorff metric

Algorithm 1 Subdivision (Derivative Free)

Required: Box constraints xmin, xmax ∈ Rn, number of subdivision steps Nsub

1: Create initial box collection β0 defined by the constraints xmin, xmax, for example β0 =

B = [xmin, xmax]× ...× [xmin, xmax]

2: for i = 1, ..., Nsub do

3: Subdivision step: Construct from βi−1 a new collection β̂i of set such that:
⋃
B∈β̂i B =⋃

B∈βi−1
B and diam(β̂i) = θidiam(βi−1), where 0 < θmin ≤ θi < θmax ≤ 1

4: Insert S sampling points x1, ..., xS into each box and evaluate the objective func-

tion f(xs), s = 1, ..., S

5: Selection step: Eliminate all boxes that contain only dominated points: βi ={
B ∈ β̂i |There exists no x∗ ∈

⋃
B̂∈β̂i\B B̂ such that f(x∗) ≤p f(x)∀x ∈ B

}
6: end for

5. Results

Nkoanrua irrigation scheme is operated traditionally and designed to supply water to irri-

gate 200 Hectare, with average discharge of the 3000000m3 annually. The model analyses the

farm benefit, crop water requirement, available land, production costs, crop prices, market

considerations and minimum food requirement. Once the optimal irrigation areas are ob-

tained, a sensitivity analysis was performed to test the effectiveness of the model, specifically

the efficiency of the model was tested by changing the model parameters (Net Benefit and

Production Costs) in the following scenarios: (1) Decreasing and increasing in crop market

price and (2) Increasing and decreasing in crop production costs. Both price and cost have

an effect on the farm benefit and production costs which are the coefficients of the objective

functions.
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5.1. Pareto Set and Pareto Front. 54 subdivision steps, Monte Carlo sampling method

and affinity constraints as initial box were used for model computation. After 9 minutes and

33.20 seconds, a total number of 2227000 functions were evaluated with 2973 non dominated

boxes, the model was implemented in a Debian GNU/Linux 8 (jessie) operating system

desktop computer with 8 GB memory, and Intel(R) Core(TM)2 Duo CPU 3.16 GHz each.

Fig.1a and Fig.1b show the entire approximated Pareto set of the problem, the Pareto set

represents the possible optimal area (xi, i = 1, 2, ..., 6). The farmer may choose crop pattern

from the Pareto set depending on his/her preference. In multi-objective optimization prob-

lem, the preference attitudes of the decision maker play a vital role that specifies the sense

of optimality or desirability. From the figures, the amount of land required for maize (x1)

and carrots (x2) is based on the minimum limitations requirements, therefore the decision

maker has no choice based on his/her preference.
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Figure 1. Pareto set
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Figure 2. Pareto Front

Fig.2, shows the image of the Pareto set (Pareto front) under the objective functions, it

is the trade-off ” curve that explain the optimal compromise point between Total Benefits

(f1(x)) derived from the farm against the Total Variable Costs (f2(x)) incurred during crops

production.

5.2. Sensitivity Analysis. In view of mathematics, the Hausdorff distance (dH) was used

to analyse the distance between Pareto set of the base model and the Pareto sets of the new

models after parameter variation due to market price and production cost change. Fig.3a
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shows that, the model is not sensitive to the price of maize and carrots (less profitable crops),

the change in prices does not produce significant Hausdorrf distance (dH ≤ 20). Meanwhile,

the Hausdorff distance suggested that, the market price of cucumber, melon, tomato and

cabbage are sensitive parameters to the model, the new model suggested different Pareto

set (dH ≥ 20). Fig.3b shows that, the variation of maize and carrots production costs have

no impact to the solutions of the base model, the variations produce insignificant Hausdorff

distances (dH ≤ 20). Nevertheless, variations of cucumber, tomato, melon, and cabbage

production costs have an impact to the optimal solutions of the basic model because, the

calculated Hausdorff distance is lager enough (dH ≥ 20).

The table 3 shows the summary of the information expressed in Fig.3a and Fig.3b. The

parameters are given in reference to the index of the crops, i = 1, 2, 3, 4, 5, 6., where, 1 =

maize, 2 = carrots, 3 = cucumber, 4 = tomato, 5 = melon, 6 = cabbage.

Table 3. Summary of sensitivity analysis of the model parameters

Parameter Sensitivity

P1, PC1 No, No

P2, PC2 No, No

P3, PC3 Yes, Yes

P4, PC4 Yes, Yes

P5, PC5 Yes, Yes

P6, PC6 Yes, Yes

Pi and PCi are Crop i Market Price and Crop i Production Costs respectively.
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Figure 3. Hausdorff Distance (dH)

The realization of the impact of parameters variation to the model solutions as described

by Hausdorff distance were expressed by comparing the Pareto set and Pareto front of the
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basic model and the new models after Price and Production costs variation. Fig.4a shows

the Pareto set of the basic model and the new Pareto set after price of melon was reduced

by 75%. The reduction of melon price caused the Pareto set to shift in the direction of x6

by 20 units above (From 30 to 50 Hectares as the maximum possible land allocation)

(a) (b)

Figure 4. Pareto set and Pareto front of the base case and after price of

melon reduced by 75%

Fig.5a presents the comparison between the Pareto sets of the basic model and new model

after reduction of price of carrots by 75%, as in Hausdorff distance scenario, change in carrots

market price does not have any impact to the solution of the problem. The Pareto set and

Pareto front (Fig. 5b) of the new model after Re-computation remains the same as of the

basic model.

(a) (b)

Figure 5. Pareto set and Pareto front of the base case and after carrots price

reduced by 75%

Similar to price changes, the sensitivity with respect to crop production costs has been

investigated: For example, Increasing of melon production costs by 50%, the new model

suggested a significant change of the optimal solution. Fig.6a shows the Pareto sets of the
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base case and new model due to melon production cost change. There is a slight different to

the Pareto front as shown in Fig.6b. The new model propose the maximum land allocation

for cabbage to be 50 Hectares from the basic model with 30 Hectares.

(a) (b)

Figure 6. Pareto set and Pareto front of the base case and after costs of

melon increased by 50%

Lastly, the impact of maize production costs parameter to the Pareto set of the basic

model was analysed, the production costs was changed by +50%, Fig.7a shows the Pareto

sets of the basic model and new model after maize production costs change looks similar.

The Pareto front before and after Re-computation also are the same. Therefore, as in Haus-

dorff distance scenarios, the change in maize production costs has no impact to basic model

solutions. The basic model solutions can be used as the optimal solutions to the new model

when the costs of maize change.

(a) (b)

Figure 7. Pareto set and Pareto front of the base case and after costs of

maize increased by 50%
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6. Conclusion

This work aimed to formulate and analyse a mathematical model for optimizing water

use in agriculture by determining the best crop pattern which maximize the value of farm

benefit and minimize the value of production cost according to regional limitations and wa-

ter availability by using multi-criteria decision support. The model well-found the optimal

distribution of land, the water requirements, total variables cost, and the total benefit. The

model provides several crop patterns (Pareto optimal set) from which the decision maker has

opportunity to choose the best pattern as per preference. Through sensitivity analysis the

model suggested important parameters which require much attention by decision maker on

the course of choosing the pattern from the Pareto optimal set. Sensitivity analysis results

show that, price and production costs for cucumber, melon, tomato and cabbage had a large

impact on the optimal solution. The results support the study by [3], selection of profitable

crops, farmers must pay much consideration on the crop market price and production cost.
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