DUAL PROPERTIES OF ω -ORDER REVERSING PARTIAL CONTRACTION MAPPING IN SEMIGROUP OF LINEAR OPERATOR

JUDE BABATUNDE OMOSOWON¹, AKINOLA YUSSUFF AKINYELE^{2,*}, FOLASHADE MISTURA JIMOH³

¹Department of Mathematics, West Virginia University, Morgantown, West Virginia, USA

²Department of Mathematics, University of Ilorin, Ilorin, Nigeria

³Department of Physical Sciences, Al-Hikmah University, Ilorin, Nigeria

*Correspondence: olaakinyele04@gmail.com

ABSTRACT. This paper consists of results on dual properties of a ω -order reversing partial contraction mapping (ω -ORCP_n), we assume a Banach space X = H (Hilbert space). We established that the operator $A \in \omega$ -ORCP_n which is the infinitesimal generator of $C_0 - Semigroup$ is reflexive, densely defined and a closed linear operator which is now considered as a semigroup of linear operator.

1. INTRODUCTION AND PRELIMINARIES

Dual properties of a semigroup of linear operator is an important aspect of C_0 -semigroup because of the emphasis on weakly topologies of operator thereby making it to obtain a linear operator called the weak generator of a semigroup $(T(t)^*)_{t\geq 0}$. Suppose X is a Banach space, $X_n \subseteq X$ be a finite set, $(T(t))_{t\geq 0}$ the C_0 -semigroup, $\omega - ORCP_n$ be ω -order-reversing partial contraction mapping (semigroup of linear operator) which is an example of C_0 -semigroup, $\omega - ORCP_n \subseteq ORCP_n$ (Order Reversing Partial Contraction Mapping). let $M_m(\mathbb{N} \cup 0)$ be a matrix, L(X) be a bounded linear operator in X, P_n , a partial transformation semigroup, $\rho(A)$, a resolvent of A, where A is the generator of a semigroup of linear operator and A^* is the adoint of A. This paper will focus on dual properties and results on $\omega - ORCP_n$ in a semigroup of linear operator called C_0 -semigroup.

Yosida [13] established and proved some results on differentiability and representation of oneparameter semigroup of linear operators. Feller [6], obtained semigroups of transformation in a weak topologies. Phillips [9] deduced the adjoint of semigroup and Balakrishnan [1]

Key words and phrases. ω -ORCP_n, Sun Dual Semigroup, C_0 – Semigroup, Adjoint Semigroup, Dual of Semigroup.

introduced an operator calculus for infinitesimal generators of semigroup. Belleni-Morante and Mcbride[3] applied some evolution equations on semigroups. Davies [4], obtained one parameter semigroups and Haraux [7] proved some linear semiroups in Banach space. See [5], Engel and Nagel established one-parameter semigroup for linear evolution equations and in same year characterized some strongly continuous groups of linear operators on a Hilbert space. In [12], Vrabie established and proved some results of C_0 -semigroup and its applications. Rauf and Akinyele [10], obtained ω -order-preserving partial contraction mapping and established its properties, also in [11], Rauf *et.al.* established some results of stability and spectra properties on semigroup of linear operator.

Definition 1.1 $(C_0 - Semigroup)$ [12]

A C_0 -Semigroup is a strongly continuous one parameter semigroup of bounded linear operator on Banach space.

Definition 1.2 $(\omega$ -ORCP_n) [10]

A transformation $\alpha \in P_n$ is called ω -order-reversing partial contraction mapping if $\forall x, y \in \text{Dom}\alpha$: $x \leq y \implies \alpha x \geq \alpha y$ and at least one of its transformation must satisfy $\alpha y = y$ such that T(t+s) = T(t)T(s) whenever t, s > 0 and otherwise for T(0) = I.

Definition 1.3 (Dual of Semigroup) [12]

The family $\{T(t)^*; t \ge 0\} \subseteq L(X^*)$, where, for each $t \ge 0$, $T(t)^*$ is the adjoint of the operator T(t), is called the dual of the semigroup $\{T(t)^*; t \ge 0\}$.

Definition 1.4 (Sun Dual Semigroup)[5]

Corresponding to a strongly continuous semigroup $(T(t)^*)_{t\geq 0}$ on a Banach space X, we defined its sun dual (or semigroup dual) by

 $X^{\odot} = \{x^* \in X^* : \lim_{t \to \infty} ||T(t)^* x^* - x^*|| = 0\}$ and call the semigroup given by the restricted operators.

 $T(t)^{\odot} = T(t)^*, t \ge 0$, the sun dual semigroup.

Definition 1.5 (Translation Semigroup)[5]

The (left) translation operators [T(t)f(s) = f(s+t)], $s, t \in \mathbb{R}$, define a strongly continuous (semi)group on the spaces $C_{ub}\mathbb{R}$ and $L^P(\mathbb{R})$, $1 \le p < \infty$.

Definition 1.6 (Adjoint Semigroup)[12]

Let H be a real Hilbert space identified with its own topological dual. The operator $A : D(A) \subseteq H \to H$ is called:

- (i) self-adjoint if $A = A^*$
- (ii) skew-adjoint if $A = -A^*$

(iii) symmetric if $\langle Ax, y \rangle = \langle x, Ay \rangle$ for each $x, y \in D(A)$;

(iv) skew-symmetric if $\langle Ax, y \rangle = -\langle x, Ay \rangle$ for $x, y \in D(A)$.

1.1. Some Basic Properties of Dual Semigroup Operator. For a semigroup to be dual it is not necessarily strongly continuous on X^* and it is still possible to associate a

"generator" to it. Hence, it needs to be:

(i) Translative, i.e.

$$[T(t)f(s) = f(s+t)], s, t \in \mathbb{R}.$$

(ii) Adjoint, i.e.
 $A = A^*$
 $A = -A^*$
 $< Ax, y > = < x, Ay >$
 $< Ax, y > = - < x, Ay >.$
(iii) Dual and Sun Dual i.e
for $\{T(t)^*; t \ge 0\} \subseteq L(X^*)$, then we have
 $X^{\odot} = \{x^* \in X^* : \lim_{t \to \infty} ||T(t)^*x^* - x^*|| = 0\}$, where
 $T(t)^{\odot} = T(t)^*, t \ge 0.$

Example 1 2×2 matrix $[M_m(\mathbb{N} \cup \{0\})]$ Suppose

$$A = \begin{pmatrix} 2 & 2\\ 2 & - \end{pmatrix}$$

and let $T(t) = e^{tA}$, then

$$e^{tA} = \begin{pmatrix} e^{2t} & e^{2t} \\ e^{2t} & I \end{pmatrix}.$$

Example 2

 3×3 matrix $[M_m(\mathbb{N} \cup \{0\})]$ Suppose

$$A = \begin{pmatrix} 3 & 2 & 1 \\ 2 & 2 & 1 \\ 3 & 2 & 2 \end{pmatrix}$$

and let $T(t) = e^{tA}$, then

$$e^{tA} = \begin{pmatrix} e^{3t} & e^{2t} & e^{t} \\ e^{2t} & e^{2t} & e^{t} \\ e^{3t} & e^{2t} & e^{2t} \end{pmatrix}.$$

Example 3

 3×3 matrix $[M_m(\mathbb{C})]$, we have

for each $\lambda > 0$ such that $\lambda \in \rho(A)$ where $\rho(A)$ is a resolvent set on X.

Suppose we have

$$A = \begin{pmatrix} 3 & 2 & 1 \\ 2 & 2 & 1 \\ 3 & 2 & 2 \end{pmatrix}$$

and let $T(t) = e^{tA_{\lambda}}$, then

$$e^{tA_{\lambda}} = \begin{pmatrix} e^{3t\lambda} & e^{2t\lambda} & e^{t\lambda} \\ e^{2t\lambda} & e^{2t\lambda} & e^{t\lambda} \\ e^{3t\lambda} & e^{2t\lambda} & e^{2t\lambda} \end{pmatrix}.$$

Example 4

Let $\{T(t); t \in \mathbb{R}_+\} \subset L(L^1(\mathbb{R}_+))$ be the translation semigroup, i.e.

$$[T(t)f](s) = f(t+s)$$

for each $t \ge 0$, each $f \in L^1(\mathbb{R}_+)$ and for $s \in \mathbb{R}_+$. Recalling that the dual of $L^1(\mathbb{R}_+)$ is L^{∞} , we easily deduce that, for each $t \in \mathbb{R}_+$, the dual semigroup $T(t)^* : L^{\infty}(\mathbb{R}_+) \to L^{\infty}(\mathbb{R}_+)$ is defined by $[T(t)^*\varphi](s) = \varphi(s+t)$ for each $\varphi \in L^{\infty}(\mathbb{R}_+)$, and $s \in \mathbb{R}_+$. This follows from

 $(T(t)f,\varphi) = \int_{\mathbb{R}_+} f(s-t)\varphi(s)ds = \int_{\mathbb{R}_+} \varphi(s)f(s-t)ds$ for each $f \in L^1(\mathbb{R}_+)$, and each $\varphi \in L^{\infty}(\mathbb{R}_+)$. On the other hand, we can easily deduce that $\{T(t)^*; t \ge 0\}$ does not satisfy the condition $\lim_{t\to 0} T(t)^*\varphi = \varphi$ except if φ is "uniformly continuous" on \mathbb{R}_+ with respect to $\|.\|_{L^{\infty}(\mathbb{R}_+)}$.

1.2. Theorem. Hille-Yoshida [12]

A linear operator $A: D(A) \subseteq X \to X$ is the infinitesimal generator for a C_0 -semigroup of contraction if and only if

i. A is densely defined and closed,

ii. $(0, +\infty) \subseteq \rho(A)$ and for each $\lambda > 0$, we have

(1.1)
$$||R(\lambda, A)||_{L(X)} \le \frac{1}{\lambda}$$

2. Main results

This section presents the result of approximations on ω - OCP_n in semigroup of linear operator:

Theorem 2.1

Suppose X = H is a complex Hilbert space with inner product $\langle ., . \rangle$, let $A : D(A) \subseteq H \to H$ be densely defined, \mathbb{C} -linear operator and let iA be defined by

$$\begin{cases} D(iA) = D(A)\\ (iA)x = iAx \text{ for each } x \in D(iA) \end{cases}$$

for each $x \in D(iA)$ and $A \in \omega$ -ORCP_n.

Then A^* is \mathbb{C} -linear and $(iA)^* = -iA^*$ and A is self-adjoint if and only if A is skew-adjoint.

Proof

Since A is skew-adoint if and only if iA is self-adjoint, then the adjoint of A on the complex Hilbert space H identified with its own topological dual H_c^* , coincides with the adjoint of A on the real Hilbert space H is identified with its own topological dual H_r^* . Then, let $x \in D(A^*)$ and $A \in \omega$ -ORCP_n. For each $y \in D(A)$ and $\lambda \in \mathbb{C}$, we have

(2.1)

$$< \lambda A^* x, y > = < A^* x, \lambda y > = < x, A(\lambda y) >$$

$$= < x, \overline{\lambda} A y >$$

$$= < \lambda x, A y >$$

$$= < A^*(\lambda x), y > .$$

Since D(A) is the dense in H and $y \in D(A)$ arbitrary, from (2.1) above its follows that $A^*(\lambda x) = \lambda A^* x$, which proves that A^* is \mathbb{C} -linear. Now, let $x \in D(A^*)$ and $y \in D(A)$. Then we have

(2.2)
$$< -iA^*x, y > = < A^*x, iy >$$
$$= < x, A(iy) >$$
$$= < x, iAy >$$
$$= < (iA)^*x, y > .$$

So $x \in D((iA)^*)$, and

(2.3) graph $(-iA^*) \subseteq graph((A)^*),$

substituting A by iA in (2.3), we have

(2.4) graph
$$(-i(iA)^*) \subseteq$$
 graph $((-A)^*)$.

From the \mathbb{C} -linearity, we conclude that

(2.5) graph
$$(iA)^* \subseteq \text{graph}((-iA)^*)$$

and thus it follows that

(2.6) graph
$$(iA)^* = \text{graph}(-A^*)$$

Finally, if A is self-adjoint, from the previous consideration, we conclude that

(2.7)
$$(iA)^* = -iA^* = iA$$

Which shows that iA is skew-adjoint. Conversely if iA is skew-adjoint, we have

(2.8)
$$A^* = (-i(iA))^*) = i(iA)^* = -i(iA) = A$$

and hence A is self-adjoint. Similarly, if A is skew-adjoint, then

(2.9)
$$(iA)^* = -iA^* = iA$$

and so iA is self-adjoint. Conversely, if iA is self-adjoint, then

(2.10)
$$A^* = (-i(iA))^*) = i((iA)^*) = i(iA) = -A$$

Hence, the proof is complete.

Theorem 2.2

Let $A \in \omega$ -ORCP_n, where ω -ORCP_n $\in L(X)$, then it follows that $A \in L(X)$ and $A^* \in L(X^*)$ so that

$$||A||_{L(X)} = ||A^*||_{L(X^*)}$$

Proof

Suppose $x^* \in X^*$, then $x \to (Ax, x^*)$ is a linear continuous functional on X, denoted by y since

(2.11)
$$(x, y^*) = (Ax, x^*)$$

we have

(2.12) $D(A^*) = X^*$

In addition

$$\begin{aligned} \|A^*\|_{L(x^*)} &= \sup_{\|x^*\| \le 1} \|A^*x^*\| \\ &= \sup_{\|x\| \le 1} \sup_{\|x\| \le 1} |(x, A^*x^*)| \\ &= \sup_{\|x\| \le 1} \sup_{\|x^*\| \le 1} |(Tx, x^*)| \\ &= \sup_{\|x\| \le 1} \|Ax\| \\ &= \|A\|_{L(x)} \end{aligned}$$

Which complete the proof

Theorem 2.3

Let X be reflexive and let $A : D(A) \subseteq X \to X$, where $A \in \omega$ -ORCP_n (densely defined linear closed operator), that is the infinitesimal generator of a C₀-semigroup of contractions $\{T(t); t \geq 0\}$. Then

- i. A^* is densely defined and closed,
- ii. $\{T(t); t \ge 0\}$ is a C_0 -semigroup of contractions whose infinitesimal generator is A^* : $D(A^*) \subseteq X^* \to X^*$.

Proof

we need to show that A^* is densely defined. By contradiction, assume there exist at least one reflexive Banach space and at least one densely defined linear operator $A: D(A) \subseteq X \to X$

for which $D(A^*)$ is not dense in X^* .

This means that there exists at least one element $y^{**} \in X^{**}$, such that $y^{**} \neq 0$ and

$$(2.13) (x^*, y^{**}) = 0$$

for each $x \in D(A)$ and $A \in \omega$ -ORCP_n. Since X is reflexive, the statement above is equivalent with : there exists $y \in X$ such that

 $y \neq 0$ and $(y, x^*) = 0$,

for each $x^* \in D(A^*)$ and $A \in \omega$ -ORCP_n. Since the graph of A is closed in $X \times X$, it follows that $(0, y) \notin graph(A)$. By a consequence of the Hahn-Banach separation theorem applied to graph(A) and (0, y) in $X \times X$, its follows that there exists $x_1^*, x_2^* \in X^*$ such that

(2.14)
$$(x, x_1^*) - (Ax, x_2^*) = 0$$

for each $x \in D(A)$, and $(0, x_1^*) - (y, x_2^*) \neq 0$.

From the second relation, it follows that both $x_2^* \neq 0$ and $(y, x_2^*) \neq 0$.

On the other hand, from (2.14), we deduce that $x_2^* \in D(A^*)$ and $A^*x_2^* = x_1^*$, which implies $(y, x_2^*) = 0$

This contradiction can be eliminated only if $D(A^*)$ is dense in X^* . In order to prove that A^* is closed, let $(x_n^*)_{n \in \mathbb{N}}$ be a sequence in $D(A^*)$ with the property that

 $\lim_{n\to\infty} x_n^* = x^*$ and $\lim_{n\to\infty} A^* x_n^* = y^*$.

By definition of the operator A^* , we have

 $(Ax, x^*) = \lim_{n \to \infty} (Ax, x_n^*) = \lim_{n \to \infty} (x, A^* x_n^*) = (x, y^*)$

for each $x \in D(A)$ and $A \in \omega$ -ORCP_n. Since D(A) is dense, it follows that $x^* \in D(A^*)$ and

(2.15)
$$A^*x^* = y^*$$

So A^* is closed, and that complete the proof of (i).

To prove (ii), we need to show that A^* satisfies the conditions of Theorem 1.2. By (i) above, A^* is densely defined and closed. So A^* satisfies (i) in Theorem 1.2. We prove that $(0, +\infty) \subseteq \rho(A^*)$ and for each $\lambda > 0$, we have

(2.16)
$$||R(\lambda, A)||_{L(X^*)} \le \frac{1}{\lambda}$$

Since A is infinitesimal generator of a C_0 -semigroup of contractions and $A \in \omega$ -ORCP_n, we have $(0, +\infty) \subseteq \rho(A^*)$.

Suppose there exists $\lambda \in \rho(A)$ and $\lambda \in \rho(A^*)$, then we have

(2.17)
$$R(\lambda; A^*) = R(\lambda; A)^*$$

By virtue of (2.17), we have $\rho(A) \subseteq \rho(A^*)$ and thus $(0, +\infty) \subseteq \rho(A^*)$. By (2.17) and Theorem 1.2, it follows that

(2.18)
$$\|R(\lambda, A)^*\|_{L(X^*)} = \|R(\lambda, A)\|_{L(X)}$$

Recalling that

$$(2.19) ||R(\lambda,A)||_{L(X)} \le \frac{1}{\lambda}$$

for each $\lambda > 0$, we have

(2.20)
$$||R(\lambda, A^*)||_{L(X^*)} \le \frac{1}{\lambda}$$

for each $\lambda > 0$. Hence, A^* is infinitesimal generator of a C_0 -semigroup of contractions $\{T^*(t); t \ge 0\}$. To conclude the proof, we need to show that $T^*(t) = T(t)^*$ for each $t \ge 0$. To show this, let us recall that for each $x^* \in D(A^*)$,

$$T^*(t)x^* = \lim_{\lambda \to \infty} e^{t(A^*)\lambda}x^*$$

where $(A^*)_{\lambda}$ is the Yosida approximation of the operator A^* . By virtue of Theorem 2.2, we have

$$(2.21) (A^*)_{\lambda} = (A_{\lambda})^*$$

In addition

$$(2.22) e^{t(A_{\lambda})^*} = (e^{tA_{\lambda}})$$

and thus,

(2.23)
$$\lim_{\lambda \to \infty} e^{t(A^*)\lambda} x^* = \lim_{\lambda \to \infty} e^{t(A_\lambda)^*} x^* = T(t)^* x^*$$

for each $x^* \in D(A^*)$ and $A \in \omega$ -ORCP_n. Since $D(A^*)$ is dense in X^* , hence the proof is complete.

Theorem 2.4

Let $\{T(t); t \ge 0\}$ be a C_0 -semigroup of contractions on X with the infinitesimal generator of $A \in \omega$ - $ORCP_n$ and let $\{T(t)^*; t \ge 0\}$ be the dual semigroup. If A^* is the adjoint of A and X^{\odot} the closure of $D(A^*)$ in X^* , then the restriction $T(t)^{\odot}$ of $T(t)^*$ to X^{\odot} is a C_0 – Semigroup of contractions whose infinitesimal generator A^{\odot} is the part of A^* in X^{\odot} .

Proof:

Let

(2.24)
$$X^{\odot} = \{ x^{\odot} \in X^*; \lim_{t \to \infty} \|T(t)^* x^{\odot} - x^{\odot}\| = 0 \}.$$

Clearly X^{\odot} is a subspace in X^* and $D(A^*)$ is dense in X^{\odot} . If $x^{\odot} \in D(A^*)$, $x \in X$ and $A \in \omega$ -ORCP_n, we have

(2.25)
$$|(x, T(t)^* x^{\odot} - x^{\odot})| = |(T(t)x - x, x^{\odot})|$$

(2.26)
$$= |A \int_0^t T(s) x ds, x^{\odot}| \le t ||x|| ||A^* x^{\odot}||$$

Accordingly, $\lim_{t\to 0} |(x, T(t)^* x^{\odot} - x^{\odot})| = 0$ uniformly for $||x|| \leq 1$ and therefore

(2.27)
$$\lim_{t \to 0} \|T(t)^* x^{\odot} - x^{\odot}\| = 0$$

. Thus, $D(A^*) \subseteq X^{\odot}$. On the other hand, let us observe that $||T(t)^{\odot}x^{\odot} - x^{\odot}|| \le ||T(t)^{\odot}x^{\odot} - T(t)^{\odot}y^{\odot}|| + ||T(t)^{\odot}y^{\odot} - y^{\odot}|| + ||y^{\odot} - x^{\odot}||$ for each $x^{\odot}, y^{\odot} \in X^{\odot}$. Since by Theorem 2.2,

(2.28)
$$\|T(t)^{\odot}\|_{L(X^{\odot})} \le \|T(t)^*\|_{L(X^*)}\| = \|T(t)\|_{L(X)}\| = 1$$

(2.28) above shows that X^{\odot} is closed and $\{T(t)^{\odot}; t \geq 0\}$ is a C_0 – semigroup of contractions on X^{\odot} . Let denote by A^{\odot} its infinitesimal generator, and remark that $D(A^{\odot}) \subseteq D(A^*)$. Thus $D(A^*)$ is dense in X^{\odot} , A^{\odot} is the part of A^* in X^{\odot} and $T(t)^{\odot}$ is the part of $T(t)^*$ in X^{\odot} and this complete the proof.

Conclusion

In this paper, considering $A \in \omega - ORCP_n$ as the infinitesimal generator of $C_0 - Semigroup$, we hereby obtained dual and sun dual properties of a semigroup of linear operator.

References

- A. V. Balakrishnan, An Operator Calculus for Infinitesimal Generators of Semigroups, Trans. Amer. Math. Soc., 91, (1960), 330-353.
- [2] S. Banach, Surles Operation Dam Les Eusembles Abstracts et lear Application Aus Equation integrals, Fund. Math., 3, (1922), 133-181.
- [3] A. Belleni-Morante, A. McBride, Applied Semigroups and Evolution Equations, Oxford Mathematical Monograph, Oxford University Press, Oxford, (1979).
- [4] E. B. Davies, One-Parameter Semigroups, Academic Press, London, (1980).
- [5] Engel, K., Nagel, R., One-parameter Semigroups for Linear Equations, Graduate Texts in Mathematics, 194, Springer, New York. 3, (2000).
- [6] W. Feller, Semigroup of Transformation in General Weak Topologies, Ann. of Math., 57, (1953), 287-303.
- [7] A. Haraux, *Linear Semigroups in Banach Spaces.*, Pitman Research Notes in Mathematics, 152, Longman, (1986), 93-135.
- [8] K. A. Liu, Characterization of Strongly Continuous Groups of Linear Operators on Hilbert Space, Bull. London. math. Soc., 32, (2000), 54-62.
- [9] R. S. Phillips, The Adjoint Semigroup., Pacific Journal, Math., 5, (1955), 269-283.

- [10] K. Rauf, A. Y. Akinyele, Properties of ω -Order-Preserving Partial Contraction Mapping and its Relation to C_0 -semigroup, International Journal of Mathematics and Computer Science, 14,(1), (2019), 61-68.
- [11] K. Rauf, A. Y. Akinyele, M. O. Etuk, R. O. Zubair, and M. A. Aasa, Some Result of Stability and Spectra Properties on Semigroup of Linear Operator, Advances in Pure Mathematics,9, (2019), 43-51.
- [12] I. I. Vrabie, $C_0 Semigroup$ And Application , Mathematics Studies, 191, Elsevier, North-Holland, (2003).
- [13] K. Yosida, On The Differentiability and Representation of One-Parameter Semigroups of Linear Operators, J. Math. Soc., Japan, 1, (1948), 15-21.