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Abstract. In this paper, a comparison of the Adomian and Taylor polynomial solutions of

some nonlinear Ordinary Differential Equations of constant coefficients to those equations

with variable coefficients is presented. The total derivatives of the nonlinear functions

involved in the problem considered were derived in order to obtain the Adomian polynomials

for the problems. For Taylor polynomials, the nonlinear functions involved were iteratively

differentiated. Numerical experiments show that Adomian Decomposition Method can be

extended as alternative way for finding numerical solutions to ordinary differential equations

of variable coefficients. Furthermore, the methods are easy with no assumption and they

produce accurate results when compared with other methods in literature. Moreover, the

Taylor polynomial solution gives more accurate results compared to the results by Adomian

polynomial solution in terms of the absolute errors.

1.0 Introduction

Differential equations generally and nonlinear differential equations in particular often do

not have exact or closed form solutions, Batiha et al (2008). Nonlinear differential equations

abound in many branches of applied mathematics such as psychology, chaos, potential theory,

growth rate in biology and elasticity, Jimoh and Taiwo (2015). The Adomian Decomposition

Method (ADM) proposed by G. Adomian in the 1980’s has been a subject of discussion

and investigation by researchers, Almazmumy et al (2012) and Luo (2005). The (ADM) has

been used by several mathematicians to solve nonlinear problems due to its simplicity and its

ability to circumvent the problems of linearization and perturbation, Zhang et al (2006). The

Adomian Decomposition Method involves separating the problem under consideration into
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linear and nonlinear components, Hendi et al (2012). The nonlinear portion of the problem

is decomposed into a series of polynomials. These are then called Adomian polynomials.

Adomian decomposition method is a semi-analytical method for solving ordinary and par-

tial nonlinear differential equations, Wazwaz (2000). The method, developed from 1970s to

1990s by George Adomian is also applied to solve both linear and nonlinear Boundary Value

Problems (BVPs) and integral equations. The numerical result is obtained with minimum

amount of computation or mathematics, Hosseini (2006). Adomian technique is based on a

decomposition of a solution of nonlinear functional equation in a series of functions. Each

term of the series is obtained from polynomial generated by a power series expansion of an

analytic function, Hosseini and Nasabzadeh (2007). Some of the advantages of the Adomian

decomposition are that; it can be applied directly for all types of functional equations both

linear and nonlinear and it has ability of greatly reducing the size of computational work

while still maintaining high accuracy of the numerical solution, Hosseini and Nasabzadeh

(2006). Adomian Decomposition Method (ADM) provides an analytical approximate so-

lution for nonlinear functional equations in terms of a rapidly converging series, without

linearization, perturbation or discretization, Hasan and Zhu (2009).

Taylor series method is one of the singlestep methods which have different increment func-

tions. From the application point of view, the Taylor series method has a major disadvantage.

The method requires evaluation of partial derivatives of higher orders manually, Hoffman

(2001). However, with the advent of computers, this challenge is being surmounted. The

Taylor series can be written as the finite Taylor series, also known as the Taylor formula

or Taylor polynomial. The Taylor series is a polynomial of infinite order, Vygodsky (1975).

Thus,

f(x) = f(x0) + f ′(x0)(x− x0) +
1

2!
f ′′(x0)(x− x0)2 + ...

It is, of course, impractical to evaluate an infinite number of terms, Hoffman (2001). The

Taylor polynomial of degree n is defined by

f(x) = Pn(x) +Rn+1(x)

where the Taylor polynomial Pn(x), and the remainder term Rn+1(x) are given by

Pn(x) = f(x0) + f ′(x0)(x− x0) +
1

2!
f ′′(x0)(x− x0)2 + ...+

1

n!
f (n)(x0)(x− x0)n

Rn+1(x) =
1

(n+ 1)!
f (n+1)(ξ)(x− x0)(n+1), x0 ≤ ξ ≤ x

The Taylor polynomial is a truncated Taylor series, with an explicit remainder, or error term,

Mileties and Molnarka (2004). The Taylor polynomial cannot be used as an approximating

function for discrete data because the derivatives required in the coefficients cannot be de-

termined. It does have great significance, however, for polynomial approximation, because

it has an explicit error term, Mileties and Molnarka (2005).
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2.0 Adomian Polynomials

Consider a functional equation

(1) u = f + L(u) +N(u)

where L and N are respectively linear and nonlinear operators and f is a known function.

By Adomian decomposition method, the solution u(x, t) of (1) is decomposed in the form of

an infinite series

(2) u(x, t) =
∞∑
n=0

un(x, t)

Furthermore, the nonlinear function N(u) assumes the following representation:

(3) N(u) =
∞∑
n=0

An(u0, u1, ..., un)

where, A′ns are nth order Adomian polynomials. In the linear case, N(u) = u then An simply

reduces to un.

Cherruault and Adomian (1993) gave a method for determining these polynomials by parametriz-

ing u(x, t) as

(4) uα(x, t) =
∞∑
n=0

un(x, t)αn

and assuming N(uα) to be analytic in α, which decomposes as

(5) N(uα) =
∞∑
n=0

An(u0, u1, ..., un)αn

Hence, the Adomian polynomials An are given by

(6) An(u0, u1, ..., un) =
1

n!

∂nN(uα)

∂αn
|α=0∀n ∈ N0

where, Nm = [n ∈ Nu0 : n ≥ m] and N denotes the set of positive integers.

Rach (1984), suggested the following formulae for determining Adomian polynomials, Rach

(2008):

(7) A0(u0) = N(u0)

(8) An(u0, u1, ..., un) =
n∑
k=1

c(k, n)Nk(un)∀n ∈ N
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The first-few Adomian polynomials are listed by Zhu et al (2005) as follows:

(9)

A0 = f(t, y0)

A1 = y1f
′(t, y0)

A2 = y2f
′(t, y0) + 1

2
y1

2f ′′(t, y0)

A3 = y3f
′(t, y0) + y1y2f

′′(t, y0) + 1
6
y1

3f ′′′(t, y0)


where primes denote the partial derivatives with respect to y.

3 Adomian Polynomial Solutions of Ordinary Differential Equations

The generalized first order nonlinear equation considered is given by

(10) y′ = f(x, y)

together with the initial condition

(11) y(xa) = ya

The main goal of this article is to extend the Adomian decomposition method, with modi-

fication in order to obtain a polynomial solution of (10) and (11). Adomian Decomposition

Method (ADM) solves nonlinear operator equations for any analytic nonlinearity, providing

an easily computable, readily verifiable and rapidly convergent sequence of analytic approx-

imate solutions. Since it was first presented in the 1980’s, Adomian decomposition method

has led to several modifications on the method made by various researchers in an attempt to

improve the accuracy or expand the application of the original method, Duan (2011). The

choice of decomposition is non-unique and provides a valuable advantage to the analyst, per-

mitting the freedom to design modified recursion schemes for ease of computation in realistic

systems, Duan (2011). In order to obtain the Adomian polynomial solution of (10) and (11),

the nonlinear variable coefficient equation (10) is written in its operator form as

(12) Ly +Ry +Ny = F

where F is a known function and y is the unknown function to be determined, L is the

linear operator to be inverted, R is the linear remainder operator and N is the nonlinear

operator, which is assumed to be analytic. The choice for L and its pair L−1 (inverse of L)

are determined by the equation being considered, hence the choice is non-unique. Here, we

L is chosen to be

L =
d

dx
(.)

and thus its inverse L−1 follows as the one-fold definite integration operator from x0 to x.

Thus,

L−1Ly = y − ψ

assumes the initial value as

ψ = ya
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Remark: For nth-order differential equation, the choice of L is given by

L =
dn

dxn
(.)

and its inverse, L−1 is the n-fold definite integration operator from x0 to x. Thus, ψ absorbs

the initial value as

ψ =
n−1∑
k=0

αk
(x− x0)k

k!

Applying the inverse linear operator L−1 to both sides of equation (12), leads to

(13) y = β(x)− L−1[Ry +Ny]

where β(x) = ψ + L−1F

The unknown function, y is expressed in a series of the form

(14) y =
∞∑
k=0

yk

and the nonlinear term Ny is decomposed into a series

(15) Ny =
∞∑
k=0

Ak

where the A′ks which depend on y0,y1,...,yk, are called the Adomian polynomials, and are

obtained for the nonlinearity Ny = f(y) by

(16) Ak =
1

k!

∂k

∂λk
[f(

∑
ynλ

n)]λ=0, k = 0, 1, 2, ...

where λ is a formal parameter.

However, in this work, the formulae (9) are modified to obtain expressions for the first-few

Adomian polynomials A0 through A4, inclusively, as

(17)

A0 = f(t0, y0)

A1 = y1f
′(t0, y0)

A2 = y2f
′(t0, y0) + 1

2
y1

2f ′′(t0, y0)

A3 = y3f
′(t0, y0) + y1y2f

′′(t0, y0) + 1
6
y1

3f ′′′(t0, y0)

A4 = y4f
′(t0, y0) + 1

2
y2

2f ′′(t0, y0) + 1
6
y1y3f

′′′(t0, y0) + 1
24
y1

4f (4)(t0, y0)


where primes denote total derivatives of f(t, y) at (t0, y0).

Using the A′ks in (13) - (15), the recursive formula for yn+1 is obtained as

(18) yn+1 =

∫ x

0

An[t, y0(t), y1(t), ..., yn(t)]dt, n = 0, 1, 2, ...

4 Taylor Polynomial Solutions of Ordinary Differential Equations

Barrio (2005), used a generalized Taylor series method for solving nonlinear ordinary differ-

ential equations of constant coefficients to find a general expansion for a given function f(t).

For Taylor polynomial solutions of first order ordinary differential equations, the initial value
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problem given by an implicit differential equation (10) and initial value given by equation

(11) is considered.

Thus, if the solution g(x) of (10) and (11) is n times differentiable, the n-th degree Taylor

polynomial of g(x) is then sought for. A typical situation is an initial value problem (10)

and (11) for a complex function g with analytic right hand side f . In this case, the solution

g is analytic in a neighbourhood of the initial point x0. The Taylor coefficients are given by

(19) Tn(g, x, x0) = g0 +
n∑
k=1

g(k)(x0)

k!
(x− x0)k

with the derivative list as

g′(x) = f(x, y)|y=g(x) ≡ f(x,y)

g′′(x) =
∂f

∂x
(x, y) +

∂f

∂y
(x, y)g′(x)

=
∂f

∂x
(x, y) +

∂f

∂y
(x, y)f(x, y)|y=g(x) ≡ f2(x, y)

. .

. .

. .

(20) g(k) =
∂fk−1
∂x

(x, y) +
∂fk−1
∂y

(x, y)f(x, y)|y=g(x) ≡ fk(x, y)

In the case of an implicit second order differential equation

(21) y′′ = f(x, y, y′)

with initial conditions

(22) y(xa) = ya

and

(23) y′(xa) = yb

the n-th degree Taylor polynomial solution has the form

(24) Tn(g, x, x0) = g0 + g1(x− x0) +
n∑
k=2

g(k)(x0)

k!
(x− x0)k

and the same method as before after calculation of g(k)(x0) is applied for k ≥ 2.

If the right hand side of (21) is a function of the three variables x, y and u, then the

derivatives of g(x) are obtained iteratively as

g′′(x) = f(x, g(x), g′(x))
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and by the chain rule

g′′′(x) =
∂f

∂x
(x, y, u) +

∂f

∂y
(x, y, u)g′(x) +

∂f

∂u
(x, y, u)g′′(x)

=
∂f

∂x
(x, y, u) +

∂f

∂y
(x, y, u)u+

∂f

∂u
(x, y, u)f(x, y, u)|u=g′(x)

for y = g(x) and iteratively

g(k)(x) =
∂fk−1
∂x

(x, y, u) +
∂fk−1
∂y

(x, y, u)g′(x) +
∂fk−1
∂u

f(x, y, u)|u=g′(x) ≡ Fk(x, y, u)

and g(k)(x) is evaluated at the point x = x0 to get g(k)(x0) by taking the limit u −→ y1,

y −→ y0 and x −→ x0 which yields the result.

After obtaining the polynomials g(k)(x0) for k = 1, 2, 3, ..., n, they are then substituted into

equation (19) for the Taylor polynomial solution of equations (10) and (11).

5 Evaluation of the Error

In this paper, error is defined as

Error = max
a≤x≤b

|ExactV alue− ApproximateV alue|

In case the exact solution is not available, the results are compared with those in literature.

6 Illustrative Examples

The Adomian and Taylor polynomial solutions obtained for some nonlinear first order ordi-

nary differential equations of variable coefficients are presented in this section. The results

obtained are tabulated for comparison.

Example 1: Consider the first order nonlinear differential equation

(25) y′ = xy2 + 1

with the initial condition

y(0) = 1

(Griffths and Higham, 2010)

Example 2: Consider the first order nonlinear differential equation

(26) y′ = xy2

with the initial condition

y(0.1) = 1

The exact solution is

y(x) =
2

2.01− x2
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Solution by the Adomian Decomposition method:

y(x) = 0.98973 + 0.169367x− 1.64583x2 + 13.4375x3 − 41.6667x4 + 52.0833x5

(Griffths and Higham, 2010)

Example 3: Consider the first order nonlinear ordinary differential equation

(27) y′ = x2 + y2

with the initial condition

y(0) = 1

Solution by the Adomian Decomposition method:

y(x) = 1 + x+ x2 +
4

3
x3 +

5

3
x4 +

16

15
x5

(Jain et, al, 2012)

Example 4: Consider the first order differential equation

(28) y′ =
y

x
− 5

2
x2y3

with the initial condition

y(1) =
1√
2

Solution by the Adomian Decomposition method:

y(x) = −1.34642 + 7.33484x− 11.4929x2 + 10.6446x3 − 5.4401x4 + 1.30000x5

(Griffths and Higham, 2010) Tables of Results

TABLE 1

Numerical Results for Example 1

x Literature Adomian Poly. Taylor’s Poly.

0.0 1.00000 1.00000 1.00000

0.1 1.10572 1.10593 1.10569

0.2 1.22600 1.22832 1.22579

0.3 1.36856 1.37617 1.36543

0.4 1.54210 1.56171 1.53077

0.5 1.76596 1.80078 1.72917

0.6 2.06740 2.11336 1.96936

0.7 2.50470 2.52396 2.26170

0.8 3.20741 3.06208 2.61834

0.9 4.53927 3.76270 3.05344

1.0 8.00782 4.66667 3.58333
Literature: Taylor Series Method
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TABLE 2

Numerical Results for Example 2

x Exact Solution Adomian Poly. Error Taylor’s Poly. Error

0.10 1.00000 1.00000 0.0000E-5 1.00000 0.0000E-5

0.11 1.00105 1.00106 1.0000E-5 1.00105 0.0000E-5

0.12 1.00220 1.00223 3.0000E-5 1.00221 1.0000E-5

0.13 1.00346 1.00348 2.0000E-5 1.00346 0.0000E-5

0.14 1.00482 1.00485 3.0000E-5 1.00482 0.0000E-5

0.15 1.00629 1.00631 2.0000E-5 1.00629 0.0000E-5

0.16 1.00786 1.00789 3.0000E-5 1.00786 0.0000E-5

0.17 1.00954 1.00956 2.0000E-5 1.00954 0.0000E-5

0.18 1.01133 1.01136 3.0000E-5 1.01133 0.0000E-5

0.19 1.01322 1.01324 2.0000E-5 1.01322 0.0000E-5

0.20 1.01523 1.01527 4.0000E-5 1.01523 0.0000E-5

TABLE 3

Numerical Results for Example 3

x Lit. Adomian Poly. Taylor’s Poly.

0.0 1.000000 1.00000 1.00000

0.1 - 1.11151 1.11146

0.2 1.25253 1.25367 1.25292

0.3 - 1.44209 1.43837

0.4 1.69318 1.69892 1.68749

0.5 - 2.05417 2.02708

0.6 2.62293 2.54694 2.49251

0.7 - 3.22677 3.12913

0.8 5.49363 4.15486 3.99375

0.9 - 5.40536 5.15604

1.0 34.3075 7.06667 6.70000
Lit. Taylor series method of order four
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TABLE 4

Numerical Results for Example 4

x Lit. Adomian Poly. Taylor’s Poly.

1.0 1.00000 1.00000 1.00000

1.1 - 1.11227 1.11145

1.2 1.25478 1.25371 1.25289

1.3 - 1.44140 1.43833

1.4 1.69912 1.69808 1.68744

1.5 - 2.05371 2.02702

1.6 2.57034 2.54703 2.49243

1.7 - 3.22713 3.12903

1.8 4.27532 4.15499 3.99363

1.9 - 5.40508 5.15590

2.0 7.20134 7.06686 6.69983
Lit. Modified Euler Method
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Figure 1: The behaviour of the Taylor Series Method compared with

the Adomian and Taylor polynomial solutions.
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Figure 2: The behaviour of the exact solution compared with

the Adomian and Taylor polynomial solutions.

0 0.2 0.4 0.6 0.8 1

0

10

20

30

x

y
(x

)

Graph of Example 3

Taylor Series
Adomian Poly.

Taylor Poly.

Figure 3: The behaviour of the Taylor Series Method compared with
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Figure 4: The behaviour of the Modified Euler’s Method compared with

the Adomian and Taylor polynomial solutions.

7 Discussion of Results

The Adomian and Taylor polynomial solutions of some nonlinear ordinary differential equa-

tions of variable coefficients were obtained. The results were compared with the exact so-

lutions (where available) and some existing results in literature. The absolute errors show

that the results by the two polynomial solutions are in excellent agreement with the exact

solutions. Moreover, the Taylor polynomial solution gives a better approximation than the

Adomian polynomial solution as can be seen in the tables 1 - 4 presented. It is also noted

that the Taylor polynomial solution performs better than the Taylor series method as the

results by the Taylor series method diverge as the value of x moves away from the initial

point.
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Mathematics 207, 73-91.

[2] Abassy, T. A., El-Tawil, M. A. and Zoheiry, H. E. (2007d). Toward a Modified Variational Iteration

Method. Journal of Computational and Applied Mathematics 207, 137-147.

[3] Almazmumy, M., Hendi, F. A., Bakodah, H. O. and Alzumi, H. (2012). Recent Modifications of Adomian

Decomposition Method for Initial Value Problems in Ordinary Differential Equations. American Journal

of Computational Mathematics, 2, 228-234.

[4] Babolian, E. and Javadi, S. (2003). Restarted Adomian Method for Algebraic Equations. Applied Math-

ematics and Computation, Vol. 146, No. 2-3, pp: 533-541.



COMPARISON OF ADOMIAN AND TAYLOR POLYNOMIAL SOLUTIONS 13

[5] Babolian, E., Javadi, S. and Sadehi, H. (2004). Restarted Adomian Method for Integral Equations.

Applied Mathematics and Computation, Vol. 153, No. 2, pp: 353-359.

[6] Barrio, B. (2005). Performance of the Taylor series method for ODEs/DAEs. Applied Mathe- matics and

Computation, 163(2): 525-545.

[7] Batiha, B., Noorani, M. S. M. and Hashim, I. (2008). Numerical Solution of the Nonlinear Integro-

Differential Equations. Int. J. Open Problems Compt. Math., Vol. 1, No. 1 pp: 34 - 42.

[8] Bigi, D. and Riganti, R. (1986). Solution of nonlinear boundary value problems by the decomposit -ion

method. Applied Mathematics Modelling 10, 49-52.

[9] Cherruault, Y. and Adomian, G. (1993). Decomposition Method: A New Proof of Convergence. Mathe-

matical and Computer Modelling, Vol. 18, No. 12, pp: 103-106.

[10] Duan, J. S. (2011). Convenient analytic recurrence algorithms for the Adomian polynomials. Appl.

Math. Comput., 217: 6337 - 6348

[11] Griffths, D. F. and Higham, D. (2010). Numerical Methods for Ordinary Differential Equation: Initial

Value Problems. Springer-Verlag, London Limited.

[12] Hasan, Y. Q. and Zhu, L. M. (2009). Solving singular boundary valued problems of higher-order ordinary

differential equations by modified Adomian decomposition method. Commun. Nonlinear Sci. Numer.

Simulat., 14, 2592-2596.

[13] Hendi, F. A., Bakodah, H. O., Almazmumy, M. and Alzumi, H. (2012). A Simple Program for Solv-

ing Nonlinear Initial Value Problem Using Adomian Decomposition Method. International Journal of

Research and Reviews in Applied sciences, Vol. 12, No. 3.

[14] Hoffman, J. D. (2001). Numerical Methods for Engineers and Scientists (2nd Edition). Marcel Dekker.

[15] Hosseini, M. M. and Nasabzadeh, H. (2006). On the convergence of Adomian decomposition method.

Appl. Math. Comput., 182, 536-543.

[16] Hosseini, M. M. and Nasabzadeh, H. (2007). Modified Adomian decomposition method for specific

second order ordinary differential equations. Appl. Math. Comput., 186, 117-123.

[17] Jain, M. K., Iyengar, S. R. K. and Jain, R. K. (2012). Numerical Methods for Scientific and Engineering

Computation (Sixth Edition), New Age International Publishers.

[18] Jimoh, A. K. and Taiwo, O. A. (2015). Integrated Collocation Methods for Solving Fourth Order

Integro-Differential Equations. Journal of Science, Technology, Mathematics and Education (JOSTMED),

11(1):151-161.

[19] Luo, X. G. (2005). A Two-Step Adomian Decomposition Method. Applied Mathematics and Computa-

tion, Vol. 170, No. 1, pp: 570-583.

[20] Mileties, E. and Molnarka, G. (2004). Taylor series method with numerical derivatives for initial value

problems. J. Comput. Meth. Sci. Eng., 4(1-2): 105-114.

[21] Mileties, E. and Molnarka, G. (2005). Implicit extension of Taylor series method with numerical deriva-

tives for initial value problems. Comput. Math. Appl., 50(7): 1167-1177.

[22] Rach, R. (2008). A new definition of the Adomian polynomials. Kybernetes, 37, 910-955.

[23] Vygodsky, M. (1975). Mathematical handbook, higher mathematics. Mir Publishers.

[24] Wazwaz, A. M. (2000). A note on using Adomian decomposition method for solving boundary value

problems. Found. Phys. Letters 13, 493-498.

[25] Zhang, B. Q., Wu, Q. B. and Luo, X. G. (2006). Experimentation with Two-Step Adomian Decompo-

sition Method to solve Evolution Models. Applied Mathematics and Computation, Vol. 175, No. 2, pp:

1495-1502.

[26] Zhao, J. and Zhang, T. (2003). Finite volume element methods for integro-differential equations of

hyperbolic type. Mathematica Applicata, 16(3):12-26.



14 A. K. JIMOH, A. M. AYINDE

[27] Zhu, Y., Chang, Q. and Wu, S. (2005). A new algorithm for calculating Adomian Polynomials. Appl.

Math. Comput., 169, 402-416.

[28] Zou, L., Wang, Z. and Zong, Z. (2009). Generalized differential transform method to differential -

difference equations. Physics Letters A 373, 442-451.


