
ASIAN JOURNAL OF MATHEMATICS AND APPLICATIONS
Volume 2013, Article ID ama0093, 10 pages
ISSN 2307-7743
http://scienceasia.asia

2010 Mathematics Subject Classification: 11M99.

Key words and phrases: Riemann Hypothesis, Robin’s reformulation, Lagarias’ reformulation, Littlewood’s

reformulation, algorithmic complexity.

© 2013 Science Asia

 1 / 10

THE CONDITIONAL INDEPENDENCE OF THE RIEMANN HYPOTHESIS IN

RELATION TO ZFC

CRISTIAN DUMITRESCU

Abstract. In this article I describe a proof of the fact that ZFC cannot decide whether a certain modified Turing

machine, or computer (satisfying a certain condition related to the running time without hal ting, up to a

certain threshold) will ever halt successfully in finite time. The consequences of this fact in relation to the

Riemann Hypothesis are presented.

Introduction.

The Riemann Hypothesis has been an open problem for a long time. One of the reasons why

this problem remained not solved for over 150 years is that, most likely, ZFC cannot prove

that RH is false. In this article I present the main ideas in support of this view, that ZFC

cannot prove that RH is false (and some metatheoretical consequences).

Section 1. Reformulations of the Riemann Hypothesis.

The following reformulations have been known for some time and the proofs of the

statements in this section can be found in many references.

Lagarias’ reformulation of RH [5]. The Riemann Hypothesis is true if and only if

(n)  Hn + exp(Hn)  log(Hn) , for all n (here (n) is the sum of divisors function and Hn

represent the harmonic sums).

Robin’s reformulation of RH [7]. The Riemann Hypothesis is true if and only if there is an n0

(and in fact n0 = 5040) such that (n)/n < e  log(log(n)) , for all n > n0 (here (n) is the

sum of divisors function).

Littlewood’s reformulation of RH [4]. The Riemann Hypothesis is equivalent to the

statement that for every  > 0 , we have M(x) = O(x(1/2 + )), when x   (here M(x) is the

2 / 10
CRISTIAN DUMITRESCU

Mertens‘ function).

Section 2. Algorithmic Complexity, a very brief introduction.

The following very brief presentation of some fundamental notions of algorithmic

information theory is based on references [1], [2], and [8].

Definition 1. A language L, finite or infinite, is called prefix - free if and only if no word in L

is a prefix of another word in L.

Consider the binary alphabet V = {0, 1}. We consider the partial functions

f : V*  V*  V*, where V* is the set of finite strings (words) of V, including the empty word.

We also consider the projections fy(x) = f(x, y).

Definition 2. A computer is a partial recursive function C : V*  V*  V*, such that, for all v 

V*, the domain of Cv is prefix - free.

Concrete construction of a computer, as a modification of a Turing machine. We can think of

u as the program and v as its input. The computation steps follow a finite table that

completely determines the state changes starting with (u, v). The computer C has two

tapes, a program tape and a work tape (each can only contain 0 or 1 in their squares). The

program tape is a read - only tape, and the read - only tape head can only move to the right

(or stay in the same position). Initially, the program u occupies the whole program tape,

except for the leftmost blank square which is scanned by the reading head.

The work tape contains the input v, and the read - write head scans the leftmost square of

the squares containing the symbols that represent the word v. The read - write head can

move in both directions. The computer has finitely many internal states, among which

there is an initial and a halt state.

There is a finite table that determines the state transitions of the computer, depending on

the current state and the scanned symbols from the program and the work tape, which

determine the next state, the symbols written on the work tape, the move of the read - only

head, and the move of the read - write tape.

The computation of the computer is a success if C enters the halt state, when the read - only

head is scanning the rightmost square of the program tape. If the computation is a failure,

the halt configuration is not reached, then C(u, v) is not defined.

3 / 10
THE CONDITIONAL INDEPENDENCE

It can be shown that this concrete machine model computes exactly the partial recursive

functions specified in the definition above.

Definition 3. A computer U is called universal if and only if, for every computer C, there is a

simulation constant sim (C), such that, whenever C(u, v) is defined, there is a program u’

such that U(u‘, v) = C(u, v), and u’  u + sim (C).

Theorem 1 [8]. There is a universal computer.

Note. In the following, we will use the words program and computer interchangeably, we

could look at a computer (its binary encoding), as a program for a universal computer that

simulates it. In both cases we have in mind an algorithm that can perform a computation

successfully or fail, or a modified Turing machine, as described in the previous section. It is

also essential that in this article we only consider computers with no input. This is

important in the presentation, in order to avoid any confusion.

We consider the lexicographic ordering on the set of words over V = {0, 1}.

Definition 4. Given w  V*, the canonical program w* for w is defined by

w* = min {u  V*  U(u, ) = w}, where  is the empty word. Thus, w* is the first (in

lexicographic order) program (and the shortest program) of the universal computer U

producing w, when U started with the empty work tape (empty input).

Theorem 2 [8]. The function f : V*  V* defined by f(w) = w* is total. For any w, there is a

w* such that U(w*, ) = w, and w*  .

Definition 5. The complexity of a word w with respect to a computer C equals

HC(w) = min {u  u  V* and C(u, ) = w}. The min is undefined if the set involved is

empty. We also define H(w) = HU(w), where U is a universal computer. H(w) is the length

of the minimal program for U to compute w when started with an empty work tape.

We will not discuss further the conditional complexity of a word with respect to another

word, the invariance theorem, or the properties related to these notions. Reference [8] is

more than sufficient for clarification.

In the following, I assume that the reader is familiar with the fundamentals of Algorithmic

Information Theory, prefix free codes and Chaitin complexity. In [9] it is stated the

4 / 10
CRISTIAN DUMITRESCU

following theorem.

Theorem 3 [9]. Let T be a 1 - consistent theory and U a universal Chaitin computer. Then

there is a positive constant C (depending only on the universal computer U) such that T can

determine at most H(T) + C bits of .

In the theorem above, H(T) represents the number of bits it takes to describe the

arithmetical theorems of T. In other words, H(T) represents the algorithmic complexity of

the program (modified Turing machine) that generates all the theorems of T systematically

(from axioms and rules of inference). Even if, in general. H(T) in not computable, we can

find upper bounds.

We consider now Lagarias’ reformulation of RH above. We consider the modified Turing

machine Z (that starts from an empty tape) that takes the positive integers n in sequence,

calculates the sum of divisors (n) and the harmonic sum Hn (for each n), and then checks

whether the inequality (n)  Hn + exp(Hn)  log(Hn) is satisfied. If it is satisfied, then it

follows the same procedure for n + 1, and so on. This modified Turing machine (Z) only

stops if it finds an n such that (n) > Hn + exp(Hn)  log(Hn), otherwise it runs forever (it

never stops).

We consider an enumeration of all computers P1 , P2 , P3 ,…….Pn , ….., encoded as binary

strings in lexicographic order. We emphasize that we only consider the computers that

start from a blank tape (with no input). These computers can also be seen as programs for

the universal computer U.

Define  = Pn halts 2n. This number is an encoding of the answers to every instance of

the halting problem in a single real number. The n-th bit of  is 0 if the computer Pn runs

forever (or the computation fails), and it has the value 1 if the computer Pn halts

successfully in finite time (the computation id a success). As far as I know, Turing first

considered this oracle [3].

The real number  is not a random number. The complexity of (n), an initial segment of

length n is around log2(n) [6].

Theorem 4 [6]. The complexity of (n), an initial segment of length n is around log2(n).

Proof. The first n bits of  represent n instances of the halting problem, and to solve these,

we only need to know how many of these n programs halt. We can then simulate each

5 / 10
THE CONDITIONAL INDEPENDENCE

program in parallel until this many programs have halted. We then know that all the other

programs under consideration will never stop. We conclude that n bits of  are computable

from log2(n) bits of information. QED.

We write l(P) for the length of the binary encoding of the corresponding program P, and we

write t(P) for the number of state transitions, (we will also call them time steps), before the

program P halts. If P does not halt in the halting configuration in finite time, then t(P) is

undefined.

Section 3. The modified Turing’s oracle and the main result.

The lexicographic order relation of the listed programs will be represented by <. We will

now define a new order relation <* on the same list of programs.

It is clear that for a successful program we have t(P)  l(P) (from the definitions above). A

failed program can fail because it does not stop in the halting configuration, or it runs

forever.

We reorder only the successful programs P (for which t(P)  l(P) and t(P) < ), in such a

manner that Pi <* Pj (in the new order), iff t(Pi) < t(Pj). In case t(Pi) = t(Pj), then the

programs will be listed in lexicographic order. Only the successful programs P for which

t(P)  l(P) and t(P) <  might change their order rank in the new order <* (compared to

the initial lexicographic order). As a subset, the subset of successful programs is invariant,

as related to the original lexicographic order in the list of programs. Only within the subset

of successful programs, the programs are permuted and reordered, according to the

number of time steps before halting successfully. The number  remains unchanged. As a

subset, the subset of failed programs is invariant, as related to the original lexicographic

order in the list of programs. Within the subset of failed programs, the programs maintain

their initial lexicographic order. The number  stays the same, with the new ordering of the

list of programs.

The new order <* might not be computable from the lexicographic order < (in the list of

programs), but we assume the existence of an oracle O, that gives the list of all programs in

the new order <*. As can be seen, if the validity of the main theorem (in the following) can

be established assuming the existence of the oracle O, then even more so, the main theorem

is valid if we do not assume the existence of the oracle O.

If we know that a successful program P (assuming we know its binary encoding) halts in

6 / 10
CRISTIAN DUMITRESCU

time t(P), and that t(P)  l(P) and t(P) < , then we can compute all the bits corresponding

to all the programs before P (up to the program P) in the order relation <* defined above.

We have the following theorem.

Theorem 5. (The  - segment reconstruction theorem). We assume that we know that the

program P is successful, and we know its binary encoding. Then we can reconstruct all the

bits of , from the initial segment of bits of , up to the bit corresponding to the successful

program P (when the programs are listed following the order relation <* defined above).

Proof. We perform the required permutation among the programs in the subset of all

successful programs. If we know that P is a successful program, then we run P until it halts,

and we find t(P), the number of time steps before P halts successfully. We then run all the

programs up to length t(P) for t(P) time steps. Any program of length greater than t(P) will

stop in more than t(P) time steps (if it is a successful program), so it co mes after P in the

defined new order <*. Among the programs of length less than t(P), we can then find all the

successful programs, and their related number of time steps before halting. We have the

order rank of our program P as related to the order relation <*. It is clear then, that all the

programs before P (in the <* order) that did not halt in t(P) time steps (or failed early), are

all failed programs. We then know the location of 0’s and 1’s in the initial segment of , up

the bit corresponding to the successful program P considered above. QED.

We also have the following important theorem.

Theorem 6. We can only know that a finite number of programs are successful.

Proof. We can find the values for an infinity of bits of , but we can only know that a finite

number of programs are successful. In other words, if we know that an infinity of bits of 

have value 1, and if we also know the corresponding programs that halt successfully (for

which t(P)  l(P) and t(P) < ), then we can reconstruct all the bits of the number  (from

theorem 5). This would be a contradiction, since the halting problem is unsolvable. QED.

We note that, in principle, we know that there are an infinity of successful programs (for

example, programs that print a given word of any length), but we only consider computers

with no input, so any complex dynamics must be embedded in its internal states. It follows

that it is not a trivial matter to find the binary encoding of such programs (if we work

within ZFC), in order to reconstruct a given segment of the list of programs, and the

number .

7 / 10
THE CONDITIONAL INDEPENDENCE

We can then formulate the following main theorem.

Theorem 7 (The Main Theorem). If the modified Turing machine Z (defined above, as

related to RH) satisfies the relation t(Z) > 2H(ZFC) + C (where the constant C can be

determined, and depends on the universal computer U that we choose), then ZFC cannot

determine whether the modified Turing machine (computer) Z eventually halts

successfully in finite time. In other word, under these circumstances, ZFC might be able to

prove that Z fails, but it will never prove that Z halts successfully.

Proof. We write Plast for the program that we can prove that is successful (t(P last)  l(Plast)

and t(Plast) < ), and has the highest order rank in the order relation <* defined above. We

proved that this program exists. We want to find the conditions under which our modified

Turing machine Z (our program Z) has an order rank (in the order <*) that is greater that

the order rank of Plast.

We consider all the bits of , up to the bit corresponding to the program Plast , and we write

N for its length. This initial segment of  of length N has complexity around log2(n). That

means that no program much smaller log2(n) can generate this initial segment of length N

of . If a formal system like ZFC can generate an initial segment of  of length N, then this N

has a maximum value around C’  2(H(ZFC)) = 2H(ZFC) + C (where the constant C can be

effectively determined).

As defined before, whether the program Z (related to the Lagarias‘ reformulation of RH)

halts or runs forever is equivalent to the Riemann Hypothesis being false or true. It is easy

to prove (a simple numerical experiment) that if Z ever halts, then Z is a program that

satisfies the condition t(Z)  l(Z) (we just let it run for l(Z) time steps and see that it does

not halt successfully).

If we can verify that Z also satisfies t(Z) > 2H(ZFC) + C (as we assumed in the hypothesis of

this theorem), then this means that the order rank of Z (for the order relation <* defined

above) is greater than the length of the initial segment of  for which ZFC can determine all

the bits. We note that rank(Z) > t(Z), we can see that from theorem 2. Basically, for any

word of any length, we can think of a computer that starts with no input and prints that

word, the whole action being embedded in its internal states. That means that for any

length less than t(Z), there is a successful computation with that many time steps (the

argument can be further refined), so that any previous order rank is occupied by a

successful program. Note that this does not mean that we can actually identify (find their

binary encoding) all these printing program, we just know that they exist, and that the y

8 / 10
CRISTIAN DUMITRESCU

perform the corresponding successful computation in about the same number of time steps

as the length of the word to be printed..

If we assume that t(Z) > 2H(ZFC) + C, then we can conclude that ZFC cannot decide whether

Z halts in finite time, because the order rank of Z is greater than the order rank of P last,

otherwise ZFC could reconstruct a larger initial segment of  than proved possible. We

could conclude then, that ZFC cannot prove that RH is false. QED.

Observations and conclusions. We used here Lagarias’ reformulation of the Riemann

Hypothesis, but we can use Robin’s reformulation, or other reformulations [4], [5], [7]. The

essential idea is to link the Riemann Hypothesis to a program (computer, algorithm) in

such a manner that RH is false iff the program under consideration halts successfully in

finite time (and RH is true iff the program under consideration fails by running forever).

We also note that verifying that the program Z does not halt in less that 2H(ZFC) + C

computation steps is not an easy task (this may be a task for a quantum computer, but

impossible with current technology, still, we do not know what the future brings).

The conclusion is that ZFC cannot prove that a computer halts successfully if that computer

takes a very long time (longer than the threshold above) to halt (even if, at least in

principle, it might eventually halt in finite time). The very essence of how a formal system

is defined must be modified, in order to deal with these problems, but this is a different

challenge altogether.

Another conclusion is that, since if t(Z) is finite (even larger than the threshold above),

then this finite computation would represent by itself a proof that RH is false (within

ZFC), the only conclusion that we can reach is that the Riemann Hypothesis is true (as a

metatheoretical argument). Refinements of this method can probably lower the value of

the threshold value of the number of time steps. In problems of this type, a very large, but

finite computation, would be sufficient, in order to settle the Riemann Hypothesis. We can

estimate an upper bound for H(ZFC), and the constant C (by choosing a particular universal

computer U).

We emphasize that the results in this article do not prove that ZFC cannot prove that RH is

true, so a direct proof (not metatheoretical) that RH is true might still be possible within

ZFC.

Many conjectures in number theory (including RH) can be linked to the problem of

9 / 10
THE CONDITIONAL INDEPENDENCE

whether a certain computer performs a successful computation or fails ([1]). We let that

particular computer run for 2H(ZFC) + C time steps, and if the computation does not halt

successfully up to that point, then we can conclude that the original conjecture in number

theory cannot be disproved in ZFC. As a conclusion, we might as well take the statement of

that particular conjecture as an axiom (or a true statement, based on metatheoretical

arguments), since we are sure that the new system will be consistent, and continue to study

new conjectures in the new system (with a higher threshold).

I will conclude with some philosophical remarks of a speculative nature. As an estimation,

2H(ZFC) + C is of the order of 210000 , but with a suitable choice of the universal modified

Turing machine in the context of AIT, we can probably decrease this threshold to about 2

1000. In his work, Seth Lloyd estimated that the informational content (or computational

power) of our Universe (our Hubble bubble) is around 2400 bits. Our Platonic view of

number theory (and mathematics in general) must change, and allow an understanding of

mathematics closer to physics. Following Landauer and P. Davis, mathematics is

meaningful only if it is the product of real computational processes, rather than existing in

a Platonic realm. There is then a self - consistency argument that must be incorporated in a

larger program directed at unifying mathematics and physics. It is not true that no matter

how much numerical evidence we have in favor of a conjecture, we might find some

counterexample for larger values of the parameters. For certain problems (and there are

many in number theory, including RH) there is a threshold of numerical evidence (as

shown above, the value 2H(ZFC) + C) that is sufficient to guarantee that ZFC cannot prove

otherwise (the negation of the conjecture), and we can add the mathematical statement

under consideration as an axiom within an extended axiomatic system. The main challenge

is to decrease this number (the threshold) to a smaller number, so that the threshold can

be accessed with current computers. In one sentence, we can reformulate the conclusions

that we reached as “in mathematics, there is no proof of a statement, that is greater (as

informational content, or computational power) than the computational power of the

Universe in which we live”.

REFERENCES

[1] C. H. Bennett, “On Random and Hard to Describe Numbers”, in C. S. Calude, “Randomness and

Complexity, from Leibniz to Chaitin“, World Scientific, Singapore, 2007.

[2] G. Chaitin, “A Theory of program size formally identical to information theory“, Journal of A.C.M. 22

(1975), 329 - 340.

[3] B. J. Copeland, D. Proudfoot “Alan Turing‘s Forgotten Ideas in Computer Science“, Scientific American,

April 1999, 98 - 103.

[4] H. M. Edwards, “Riemann’s Zeta Function“, Dover Publications, Inc., 2001.

[5] J. C. Lagarias, “An elementary problem equivalent to the Riemann Hypothesis”, American Math. Monthly,

10 / 10
CRISTIAN DUMITRESCU

109 (2002), 534 - 543.

[6] T. Ord, T. D. Kieu, “On the Existence of a New Family of Diophantine Equations for “, in C. S. Calude,

“Randomness and Complexity, from Leibniz to Chaitin“, World Scientific, Singapore, 2007.

[7] G. Robin, “Sur L‘Ordre Maximum de la Fonction Somme des Diviseurs”, Seminaire Delange-Pisot-Poitou,

Theorie des nombres (1981 - 1982), Progress in Mathematics 38 (1983), 233 - 244.

[8] G. Rozenberg, A. Salomaa “The Secret Number. An Exposition of Chaitin‘s Theory”, in C. S. Calude,

“Randomness and Complexity, from Leibniz to Chaitin“, World Scientific, Singapore, 2007.

[9] R. M. Solovay, “A version of  for which ZFC can not predict a single bit”, in C. S. Calude, G. Paun (eds.),

“Finite versus Infinite. Contributions to an Eternal Dilemma“, Springer - Verl ag, London, 2000, 323 -

334.

119 YOUNG ST., AP. 11, KITCHENER, ONTARIO N2H 4Z3, CANADA

