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FREE VIBRATION OF UNIFORM AND NON-UNIFORM EULER BEAMS USING 

THE DIFFERENTIAL TRANSFORMATION METHOD 
 

MAHMOUD A. A., ABDELGHANY S. M., EWIS K. M. 
 

Abstract. In this paper, the differential transformation method (DTM) is applied for free vibration analysis of 
beams with uniform and non-uniform cross sections. Natural frequencies and corresponding normalized 
mode shapes are calculated for different cases of cross section and boundary conditions. MATLAB code is 
designed to solve the differential equation of the beam using the differential transformation method.  
Comparison of the present results with the previous solutions proves the accuracy and versatility of the 
presented paper. 
 
 

1. Introduction 
 
In order to calculate fundamental natural frequencies and the corresponding mode 

shapes, different  variational techniques such as Rayleigh_Ritz and Galerkin methods had 
been applied in the past. Besides these techniques, another numerical methods were also 
successfully applied to beam vibration analysis such as finite element method. 

 
The DTM is a technique that uses Taylor series for the solution of differential 

equations in the form of a polynomial.  The Taylor series method is computationally 
tedious for high order equations. The differential transform method leads to an iterative 
procedure for obtaining an analytic series solutions of functional equations. Since the 
beginning of 1986, Zhou and Pukhov [1] have developed a so-called differential 
transformation method (DTM) for electrical circuits problems. In recent years researchers 
had applied the method to various linear and nonlinear problems. Ayaz [2] applied The 
differential transform method to the differential algebraic equations ,  Moustafa  El-Shahed 
[3] applied DTM to the non-linear oscillatory systems , Reza Attarnejad and Ahmad Shahba 
[4] applied DTM to the free vibration analysis of rotating non-prismatic beams, 
Rajasekaran S. [5] used the differential transformation (DT) to determine the natural 
frequency of beams and columns, Reza Attarnejad et al. [6]  presented an application of 
differential transform in free vibration analysis of Timoshenko beams resting on two-
parameter elastic  foundation. Differential transform method is applied to the sine-Gordon 
equation by Jafar Biazar and Fatemeh Mohammadi [7], which arise in differential geometry, 
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propagation of magnetic flux and stability of fluid motions. J. Biazar and M. Eslami [8] used 
DTM for Nonlinear Parabolic-hyperbolic Partial differential equations. DTM was applied to 
linear and nonlinear system of ordinary differential equations by Farshid Mirzaee [9]. 
Keivan Torabi et al. [10] applied DTM for longitudinal vibration analysis of beams with 
non-uniform cross section. The non-linear vibration analysis of beams is applied by Qiang 
Guo and Hongzhi Zhong [11] using a spline-based differential quadrate method. 

 
In this paper, the vibration problems of uniform and non-uniform Euler-Bernoulli 

beams have been solved analytically using DTM for various end conditions.  
 

 
2. Basic Idea of Differential Transformation Method 

 
Following ref [2] we can obtain the idea of the DTM, The differential transformation of 
function u(x) is defined as follows; 
 

0
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In Eq. (1), u(x) is the original function and U(k) is the transformed function. Differential 
inverse transform of U(k) is defined as follows; 
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 In fact, from (1) and (2), we obtain 
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Eq. (3) implies that the concept of differential transformation is derived from the Taylor  
series expansion. From the definitions (1) and (2), it is easy to obtain the following 
mathematical operations; [2, 3, 4, 6, 9] 
 
1. If ( ) ( ) ( ),f x g x h x= ±   then  ( ) ( ) ( ).F k G k H k= ±  
2. If ( ) ( ),f x cg x=   then  ( ) ( ),F k cG k=  c is a constant. 
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5. If ( ) ,nf x x=   then  ( ) ( ),F k k nδ= −  δ  is the Kronecker delta. 
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−∑ , where a and 

b are constants 
 

 
3. Formulation of the Problem 

 
 

Free Vibration of a Non-uniform Beam 
 

The governing differential equation for a non-uniform Euler beam shown in fig. 1  is 
given by: 

 
2 2 2

2 2 2

( , ) ( , )( ) ( ) 0v x t v x tA x EI x
t x x

ρ
 ∂ ∂ ∂

+ = ∂ ∂ ∂ 
                                                (4)   

 
 
Where ρ is the density of the beam material, ( )A x is the cross sectional area of the beam, 

( , )v x t  is displacement of the beam, ( )I x is the inertia at distance x from the left end of the 
beam and E is young’s modulus of the beam. 
 
 

 
 

Figure 1 Beam with variable cross-section 
 

y 
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Boundary conditions: 
 
 

Case  a. Simple –Simple Beam 
 

 (0, ) 0v t = ;    
2

2

(0, ) 0v t
x

∂
=

∂
;    ( , ) 0v L t = ;   

2

2

( , ) 0v L t
x

∂
=

∂
      (5) 

 
 

Case  b. Clamped- Clamped Beam 
 

(0, ) 0v t = ;      (0, ) 0v t
x

∂
=

∂
;    ( , ) 0v L t = ;   ( , ) 0v L t

x
∂

=
∂

                 (6) 

 
 

Case  c. Clamped- Roller Beam 
 

(0, ) 0v t = ;     (0, ) 0v t
x

∂
=

∂
;       ( , ) 0v L t = ;   

2

2

( , ) 0v L t
x

∂
=

∂
       (7) 

                  
Where L is the beam length and t is the time 
 
 
 

4. Solution of the problem 
 

 Assume that, the displacement of the beam is given by: 
    

( , ) ( ) exp( )v x t v x i tω=                                                                                           (8) 
                         
Where ω is the natural frequency of the beam. 
 
 
Equation (4) can be conveniently written as : 

 
4 3 2 2

2
4 3 2 2
( ) ( ) ( ) ( ) ( )( ) ( ) 2 0d v x dI x d v x d I x d v xA x v x E E E

dxdx dx dx dx
ρ ω− + + + =         (9) 
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With boundary conditions as, 
 
 

Case  a. Simple –Simple Beam 
 

 (0) 0v = ;    
2

2

(0) 0d v
dx

= ;    ( ) 0v L = ;   
2

2

( ) 0d v L
dx

=    (10) 

 
 
Case  b. Clamped- Clamped Beam 

 

(0) 0v = ;    (0) 0dv
dx

= ;    ( ) 0v L = ;   ( ) 0dv L
dx

=    (11) 

 
 
 
Case  c. Clamped- Roller Beam 

 

(0) 0v = ;    (0) 0dv
dx

= ;    ( ) 0v L = ;   
2

2

( ) 0d v L
dx

=    (12)  

 
 
     

5. Dimensionless form                                         
     
 
Equations (9) can be conveniently written in terms of dimensionless variables as : 
 
 

4 3 2 2
2 1/3

4 3 2 2
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4

2 0

0
  A L

EI
ρω2Ω =   (the non-dimensional frequency of the beam), 0 0 0,  ,  h A I  are the 

beam height , the cross sectional area and the inertia at the point at the left edge of the 
beam, and β   is a constant equals zero for uniform beam. 
 
 
the non-dimensional boundary conditions are, 
 

 
Case  a. Simple –Simple Beam 

 

 (0) 0y = ;    
2

2

(0) 0d y
dx

= ;    (1) 0y = ;   
2

2

(1) 0d y
dx

=    (14) 

 
Case  b. Clamped- Clamped Beam 

 

(0) 0y = ;    (0) 0dy
dx

= ;    (1) 0y = ;   (1) 0dy
dx

=    (15) 

 
 

Case  c. Clamped-  Roller Beam 
 

(0) 0y = ;    (0) 0dy
dx

= ;     (1) 0y = ;   
2

2

(1) 0d y
dx

=    (16)  

 
 
 

6. Applying the Differential Transform Method 
 

In solving the problem, governing differential equations are converted to algebraic 
equations using DTM method which must be solved together with applied boundary 
conditions. Applying the differential transformation method (theorem (1-7)) to the non-
dimensional governing equation (13) yield, 
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Then applying the Differential Transform Method to the non-dimensional boundary 
conditions  equations (14)-(16) yield, 
 
 

Case  a. Simple –Simple Beam 
 
The DT of Eqs. (14) is written as  

y(0)= 0 1 2 3 4 5

0
[ ] [0] [1] [2] [3] [4] [5] ..... 0k

k
Y k x Y x Y x Y x Y x Y x Y x
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= + + + + + + =∑  

leads to    [0] 0Y =           (18.a) 
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Taking [1]Y c=           (18.d) 
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Taking [3]Y d=           (18.f) 
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Equations (18.c) and (18.e) may be written as 
 

1 1 1

1 1 1

0
0

aa bb c
cc dd d
     

=     
    

     (19) 

 
since c1 and d1 are not zero, for a non-trivial solution to exist the determinant of the matrix 
must be zero, i.e. 
 

1 1 1 1 0aa dd cc bb× − × =      (20) 

 
where aa1, bb1 are the coefficients of c1 and d1 in the equation (18.c) and cc1, dd1 are the 
coefficients of c1 and d1 in the equation (18.e). The root of Eq. (20) is the solution for case a 
of the problem. 
 
 

Case  b. Clamped- Clamped Beam 
 
The DT of Eqs. (15) is written as  

y(0)= 0 1 2 3 4 5

0
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k
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Taking [2]Y c=           (21.d) 
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' 0 1 2 3
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4 5
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Taking [3]Y d=           (21.f) 
 
 
Equations (21.c) and (21.e) may be written as 
 

2 2 2

2 2 2

0
0

aa bb c
cc dd d
     

=     
    

     (22) 

 
since c2 and d2 are not zero, for a non-trivial solution to exist the determinant of the matrix 
must be zero, i.e. 
 

2 2 2 2 0aa dd cc bb× − × =      (23) 

 
where aa2, bb2 are the coefficients of c2 and d2 in the equation (21.c) and cc2, dd2 are the 
coefficients of c2 and d2 in the equation (21.e). The root of Eq. (23) is the solution for case b 
of the problem. 
 

 
Case  c. Clamped- Roller Beam 

 
 
The DT of Eqs. (16) is written as  

y(0)= 0 1 2 3 4 5

0
[ ] [0] [1] [2] [3] [4] [5] ..... 0k

k
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leads to    [0] 0Y =           (24.a) 
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y(1)= 0 1 2 3 4 5

0
[ ] [0] [1] [2] [3] [4] [5] ..... 0k
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Y k x Y x Y x Y x Y x Y x Y x

∞

=
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∞
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=∑              (24.c) 

Taking [2]Y c=           (24.d) 
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                                                         (4)(5) [3] (5)(6) [4] (6)(7) [5] ..... 0

k

k
y k k Y k x Y x Y x Y x

Y x Y x Y x

∞
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∞
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Taking [3]Y d=           (24.f) 
 
Equations (24.c) and (24.e) may be written as 
 

3 3 3

3 3 3

0
0

aa bb c
cc dd d
     

=     
    

     (25) 

 
since c3 and d3 are not zero, for a non-trivial solution to exist the determinant of the matrix 
must be zero, i.e. 
 

3 3 3 3 0aa dd cc bb× − × =      (26) 

 
where aa3, bb3 are the coefficients of c3 and d3 in the equation (24.c) and cc3, dd3 are the 
coefficients of c3 and d3 in the equation (24.e). The root of Eq. (26) is the solution for case c 
of the problem. 
 
 

7. Results and Discussion 
 
For a beam with simply supported ends 2Ω  = 97.4091 leads to the first non-dimensional 
natural frequency as 9.8696Ω = , which agrees with closed form value [5]. 
 
For a beam with clamped supported ends, 2Ω  =500.564 leads to the first non-dimensional 
natural frequency as 22.3733Ω = , which agrees with closed form value [5] 
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For a beam with one end clamped and the other end free, 2Ω  = 237.721 leads to the first 
non-dimensional natural frequency as 15.4182Ω = , which agrees with closed form value 
[5]. 
 

Table 1 compares the accuracy of the first three non-dimensional frequencies of  Simply 
supported uniform beams for different number of terms N. It is observed that the 
convergence speed increases with decreasing frequency order. i.e, the first frequency Ω1 
needs 25 terms to reach exact solution , while , third frequency Ω3 needs 45 terms. Table 2 
gives results of the first three non-dimensional frequencies of  Euler beams with uniform 
cross section and different cases of boundary conditions. In table 2 exact values are also 
listed for direct comparison. It can be demonstrated that the differential transformation 
method is an efficient method in solving the vibrations of beams with good accuracy.  Table 
3 gives results of the first three non-dimensional frequencies of simply supported  non-
uniform Euler beams with different values of beta β . It can be demonstrated that the first 
three frequencies of the simply non-uniform beam  decreases with  increasing β due to 
decreasing the beam cross section. Tables 4 and 5 gives results of the first three non-
dimensional frequencies of  clamped-clamped  and clamped-roller non-uniform Euler 
beams with different values of beta β  which give different cross sections. It is also 
observed that the first three frequencies of the clamped-clamped  and clamped-roller  non-
uniform beam decreases with  decreasing of  the cross section. 
 
 
Table 1.  The first three Non-dimensional frequencies of Simple-Simple uniform Euler      
Beams for different number of terms N 
 
 Ω1 Ω2 Ω3 
N=10 9.8902098156 - - 
N=15 9.8696683979 37.2824413197 - 
N=16 9.8696683979 37.2824413197 - 
N=17 9.8696020437 40.064696792 58.0531514621 
N=19 9.8696044699 39.4169139196 - 
N=20 9.8696044699 39.4169139196 - 
N=25 9.8696044011 39.4784501712 87.8912222720 
N=30 9.8696044011 39.4784176959 88.8107229014 
N=35 9.8696044011 39.4784176044 88.8264496362 
N=40 9.8696044011 39.4784176044 88.8264396509 
N=45 9.8696044011 39.4784176044 88.8264396098 
N=46 9.8696044011 39.4784176044 88.8264396098 
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Table 2. Comparison of results for free vibration of  uniform Euler beams. 
The first three Non-dimensional frequencies of uniform Euler Beams: 

Uniform Beam 
(β=0) 

Ω 1 Ω 2 Ω 3 

DTM Exact] 
Relative 
error % 

DTM Exact 
Relative 
error % 

DTM Exact  
Relative 
error % 

Simple-Simple 9.8696 9.8696 0.00 39.4784 39.4784 0.00 88.8264 88.8264 0.00 

Clamped-
Clamped 

22.3733 22.3733 0.00 61.6729 61.6728 0.00 120.9031 120.9030 0.00 

Clamped-Roller 15.4182 15.4182 0.00 49.9649 49.9649 0.00 103.9982 103.9982 0.00 

 
 
 
-The first three Non-dimensional frequencies of Non-uniform Euler Beams for different 
values of β: 
 
Table 3. Simply supported Non-uniform Euler Beams  

3

0

( ) (1 )
( )

EI x x
EI x

β= −  
Ω 1 Ω 2 Ω 3 

β=0 β=0.25 β=0.5 β=0 β=0.25 β=0.5 β=0 β=0.25 β=0.5 

Simple-Simple 9.8696 8.5772 7.1215 39.4784 34.4062 28.9519 88.8107 77.3785 64.9802 

 
 
Table 4. Clamped-Clamped Non- uniform Euler Beams  

3

0

( ) (1 )
( )

EI x x
EI x

β= −  
Ω 1 Ω 2 Ω 3 

β=0 β=0.25 β=0.5 β=0 β=0.25 β=0.5 β=0 β=0.25 β=0.5 

Clamped-Clamped 22.3733 19.4836 16.3356 61.6729 53.6971 44.9817 120.9031 105.2123 88.1593 

 
 

Table 5. Clamped - Roller Non -uniform Euler Beams 
3

0

( ) (1 )
( )

EI x x
EI x

β= −  
Ω 1 Ω 2 Ω 3 

β=0 β=0.25 β=0.5 β=0 β=0.25 β=0.5 β=0 β=0.25 β=0.5 

Clamped-Roller 15.4182 13.9524 12.3001 49.9649 44.0199 37.5276 103.9982 91.2744 77.1247 

 
 
Figures (2-4) show the first three mode shapes of  uniform Euler beams with 

different boundary conditions. From figures (2-4) It can be seen that the first three mode 
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shapes drawn  using DTM is very agreement with the mode shaped drawn using exact 
methods.  Figures (5-7) show, respectively, the first, the second and the third mode shapes 
of simply supported non-uniform Euler beams with different cross sections. Also figures 
(8-13)  show, respectively, the first, the second and the third mode shapes of clamped-
clamped  and clamped-roller  non-uniform Euler beams with different cross sections. From 
figures (5-13)).  It can be seen that the value of beta (β=0, 0.25 and 0.5) has a significant 
effect on the mode shapes and the deflection values. Deflection of non-uniform beams 
increases as  cross section decreases (β  values increases). For  Euler beam with uniform 
cross section (β =0). 

 
 

 
Fig. 2 The first three mode shapes of  Simple –Simple 
uniform-beam 

 
Fig. 3 The first three mode shapes of  Clamped- 
Clamped uniform-beam 
 

 
Fig. 4 The first three mode shapes of  Clamped- 
Roller uniform beam 

 

 
Fig. 5 The first mode shapes  for three different values 
of Beta of  Simple –Simple non-uniform  beam 
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Fig. 6 The Second mode shapes  for three different 
values of Beta of  Simple –Simple non-uniform  beam 

 
Fig. 7 The Third mode shapes  for three different 
values of Beta of  Simple –Simple non-uniform  beam 

 
Fig. 8 The first mode shapes  for three different 
values of Beta of  Clamped-Clamped non-uniform 
beam 

 
Fig. 9 The Second mode shapes  for three different 
values of Beta of  Clamped-Clamped non-uniform 
beam 

 
Fig. 10 The Third mode shapes  for three different 
values of Beta of  Clamped-Clamped non-uniform 
beam 

 
Fig. 11 The first mode shapes  for three different 
values of Beta of  Clamped- Roller non-uniform beam 
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Fig. 12 The Second mode shapes  for three different 
values of Beta of  Clamped- Roller non-uniform beam 

 
 

8. Conclusion  
 

 
Fig. 13 The Third mode shapes  for three different 
values of Beta of  Clamped- Roller non-uniform beam 

Based on the results presented, it can be demonstrated that the differential 
transformation method is an efficient method in solving the vibrations of beams with good 
accuracy using a few terms. The frequency of non-uniform beam decreases with decreasing 
of the cross section area and its inertia. Also it is observed that the deflection of the non-
uniform Euler beam is increased as the cross section is decreased.  
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